Asynchronous I/0

Asynchronous I/0
Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

System and Device Programming - Stefano Quer 2

Synchronous I/0

< All previously analyzed I/O operations are thread-
synchronous

> 1/0 is blocking and the thread waits until the I/O
operation completes

% Unfortunately, I/O operations are inherently
slow compared to other processing

» Delays may be caused by

= Hardware device, e.g., track and sector seek time
on random access, etc.

= Relatively slow data transfer rate between a physical
device and the system memory

= Network transfer using file servers, storage area
networks, etc.

System and Device Programming - Stefano Quer - 3

Asynchronous I/0

% Threads can perform asynchronous I/O

> A thread can continue without waiting for an I/O
operation to complete

<+ Windows’ OS has three methods for performing
asynchronous I/O

» Each technique has its own advantages and unique
characteristics

» The choice is often a matter of individual
preference

&

System and Device Programming - Stefano Qi er 4

Asynchronous I/0

1| » Multithread I/O
= Each thread within a process (or in different
processes) may perform normal synchronous I/O

e Each thread is responsible for a sequence of one or
more synchronous, blocking I/O operations

e Each thread should have its own file or pipe handle
= Other threads can continue execution
= This is the most general technique

System and Device Programming - Stefano Quer 5

The one we focus on ASY“ChI'OnOUS I/O

2 | » Overlapped I/O with waiting

= A thread continues execution after issuing a read,
write, or another I/O operation

= When the thread requires the I/O results before
continuing it awaits on either the I/O handle or a
specified event

3 | » Extended (or alertable) I/O with completion
routines
= The system invokes a specified “completion routine”

callback funtion within the thread when the I/O
operation completes

= Extended I/O require extended I/O functions (such
as ReadFileEx and WriteFileEx)

System and Device Programming - Stefano Quer 6

Overlapped I/0

% Overlapped I/O with waiting uses the overlapped
data structure to implement aysncronous functions
> First, specify the FILE_FLAG_OVERLAPPED flag as
part of fdwAttrsAndFlags for CreateFile

= Tt specifies that the file is to be used only in
overlapped mode

» Then, use the overlapped data structure with
= ReadFile and WriteFile

-~
Jsethe | Use the file handle [type def struct OVERLAPPED{ |
single, the DWORD Internal;
evgnt for or the overlapped DWORD InternalHigh;
multiple event to wait for DWORD Offset;

el DWORD OffsetHigh;

~_ = HANDLE hEvent;
[Used for asynchronous I/0 J/ K] OVERLAPPED;

System and Device Programming - Stefano Quer 7

I/0 Functions

<+ ReadFile and WriteFile can potentially block while
the operation completes but with the overlapped
data structure they are asynchronous

» I/O operations do not block
= The system returns immediately from a call to
ReadFile and WriteFile

» The returned function value is not useful to
indicate success or failure
= A FALSE value in return does not necessarily indicate
a failure, because

= The I/O operation is most likely not yet complete

e In this case GetLastError will return the value
ERROR_IO PENDING

System and Device Programming - Stefano Q

» The returned number of bytes transferred is also
not useful

» The program may issue multiple reads or writes on
a single file handle
= The user must be able to wait on (or synchronize

with) each I/O operation singularly

e In case of multiple outstanding operations on a single
handle, the user must be able to determine which
operation completed

{ The handle k e I/O operations do not necessarily complete in the

Is the same same order as they were issued
e The handle’s file pointer is meaningless

{ The ov data ? e The event within the overlapped data stucture must

structure be used
differs

System and Device Programming - Stefano Quer 9

GetOverlappedResult

p
BOOL GetOverlappedResult (Be certain IpOverlapped is
HANDLE hFile, unchanged from when it was used
LPOVERLAPPED IpOverlapped, with the overlapped I/O operation
LPWORD IpcbTransfer,
BOOL fWait
);
N J

< After waiting on a synchronization object

» GetOverlappedResult allows you to determine how
many bytes were transferred

v+ Parameter

» The handle and the IpOverlapped structure
combine to indicate the specific I/O operation

System and Device Programming - Stefano Quer 10

GetOverlappedResult

> IpcbTransfer
= The actual number of bytes transferred

> fWait

= If TRUE, it specifies that GetOverlappedResult will
wait until the specified operation completes

= Otherwise, it will return immediately

% Return value
» TRUE, only if the operation has completed

" BoOL GetOverlappedResult (
HANDLE hFile,
LPOVERLAPPED IpoOverlapped,
LPWORD IpcbTransfer,

BOOL fWait

);

- J

System and Device Programming - Stefano Quer 11

(Synchronization on a file

handle (single I/O op)

/ Overlapped I/O
is simple when there is
OVERLAPPED ov ={0, 0, 0, 0, NULL }; only one out_standmg
HANDLE hF; operation
DWORD nREAD;
record t r;

hF = CreateFile (..., FILE FLAG_OVERLAPPED, ...);
ReadFile (hF, &r, sizeof(record_t), &nR, &ov);

Perform other processing Waitt_-fortthe ;

NR is probably not vali OPETation 1o en
ISP oL Ll on the file handle

WaitForSingleObject (hF, INFINITE);

GetOverlappedResult (hF, &ov, &nR, FALSE);

Get ReadFile result #Bytes read

System and Device Programming - Stefano Quer 12

Synchronization on the Exa m ple
event (multiple I/O op) a ~

i i Overlapped I/0 is more
*» Perform the fO”OW|ng file complex when there is
i more than one
encryption L outstanding operation y

» Caesar’s cipher (circa 50 BC)
= pgrm_name shift input_file output_file

input file | A | B | c | o | E | F|..| | | | outputfie
Shiﬂw

JRLE [DWORD shift; Output
File] File

outByte =
(inByte + shift) % 256;

—

System and Device Programming - Stefano Quer 13

Solution 1 & 2

*»» Solution 1

» Sequential, byte by byte
: Selected experimentally
\/
< Solution 2 to optimize performace }
» Sequential, record by record
"while (ReadFile (hin, buffer, BUF SIZE, &nln, NULL)
&& nin > 0 && WriteOK) {

[Encryption J
for (iICopy=0; iCopy<nin; iCopy++) { =
buffer[iCopy] = (buffer[iCopy] + shift) % 256;

writeOK = WriteFile (hOut, buffer, nin, &nOut, NULL);

System and Device Programming - Stefano Quer 14

Solution 3A

< Solution 3A L[ne faster }
read gets
> Parallel, with N threads next record

= et the threads run freely (dynamic partition)
e More contention

Input File
Thread 1 Output
Thread 1 [DWORD shift; File
Thread 3 / /_]
Thread 2 \ outByte =]
Thread 1 (inByte + shift) % 256;
Thread 2 >

s

System and Device Programming - Stefano Quer 15

Solution 3B

Solution 38 o
> Parallel, with N threads the file
= Assign to each thread 1/N of the file (static partition)
Partition e Efficiency is limited by the slower thread
scheme 1 —
Partition
Input File Input File ‘ scheme 2 \
Thread 1 Thread 1 Output
Thread 1 Thread 2 File
Thread 3
Thread 2 Thread 1 >
Thread 2 Thread 2
Thread 3
Thread 3

System and Device Programming - Stefano Quer 16

% Solution 4
» Use memory mapped files

a Header inclusion J —\
_— Encryption

bt

inciude ‘ Input file | | Output file \ constant

VOID caesarCipher (LPCTSTR fin, LPCTSTR fOut, DWORD shift) {
BOOL complete = FALSE;
HANDLE hin = INVALID_HANDLE_ VALUE;
HANDLE hOut = INVALID HANDLE_VALUE;

HANDLE hinMap = NULL, hOutMap = NULL;

LPTSTR pIn = NULL, pInFile = NULL; <[Variable J

LPTSTR pOut = NULL, pOutFile = NULL: definitions

LARGE_INTEGER fileSize; J
o

System and Device Programming - Stefano Quer 17

p

To avoid problems with large file it is
possible to map one block at a time

Open and
/hln = CreateFile (fln, GENERIC_READ, 0, NULL, map entire
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); input file

GetFileSizeEx (hln, &fileSize);
if (fileSize.HighPart > 0)

... This file is too large to map on a Win32 system ...
hinMap = CreateFileMapping (hin, NULL, PAGE_READONLY,

0, 0, NULL);
pinFile = MapViewOfFile (hinMap, FILE_MAP_READ, 0, 0, 0);

]

hOut = CreateFile (fOut, GENERIC READ | GENERIC WRITE,
0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

hOutMap = CreateFileMapping (hOut, NULL, PAGE_READWRITE,
fileSize.HighPart, fileSize.LowPart, NULL);

pOutFile = MapViewOfFile (hOutMap, FILE_MAP_WRITE, 0, O,

\\ (SIZE_TfileSize.QuadPart);

Open and map
entire output file

System and Device Programming - Stefano Quer 18

/ pIn = pinFile; \

pOut = pOutFile; :
while (pIn < pInFile + fileSize.QuadPart) { ;rypt file]
*pOut = (*pln + shift) % 256;
pin++; pOut++;
}
UnmapViewOfFile (pOutFile);
UnmapViewOfFile (pInFile); ! Clean and }
CloseHandle (hOutMap); close

CloseHandle (hInMap);
CloseHandle (hin);
CloseHandle (hOut);

return;

System and Device Programming - Stefano Quer 19

% Solution 5
» Use an asynchronous file update model
(Perform 4 Read 1

in "parallel"
Initiate 4 reads %\ P)

while (all records have been encoded) {

WaitForMultipleObjects (
If (ReadCompleted)

8

);

Wait for 1 out of 8 events

UpdateRecord (i);

% Encrypti(ﬁ

4 ReadFile + 4 WriteFile

|

Initiate Write (Record [i]);
else

Initiate Read (Record [i + 4]);
n_record++;

1 Next write]
ﬁ Next read]

System and Device Programming - Stefano Quer 20

.

:)
#Read in "parallel”
/#include w) \
%[Selected experimentally J

#define MAX_OVRLP 4 to optimize performace
#define REC_SIZE 8192

int _tmain (int argc, LPTSTR argVv[]) {
HANDLE hinputFile, hOutputFile;
DWORD shift, nIn[MAX_OVRLP], nOutf[MAX_OVRLP], ic, i;
OVERLAPPEDoverLapIn[MAX_ OVRLP], overLapOut[MAX_ OVRLP J;
HANDLE hEvents[2][MAX_OVRLP];
CHAR bufferfMAX_OVRLP][REC_SIZE], cShift;
LARGE_INTEGER curPosIn, curPosOut, fileSize;
LONGLONG nRecords, iWalits;

K shift = _ttoi(argv[1]); <(Cipher shift] /

System and Device Programming - Stefano Quer 21

|

/ OpenIandO
files

hinputFile = CreateFile (argv[2], GENERIC_ READ,
0, NULL, OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL);
hOutputFile = CreateFile (argv[3], GENERIC WRITE,
0, NULL, CREATE_ALWAYS, FILE_FLAG_OVERLAPPED, NULL);
if (hinputFile==INVALID_HANDLE_VALUE ||
hOutputFile==INVALID_HANDLE_VALUE) {

Compute number of
} records (including
reamining bytes)

GetFileSizeEx (hinputFile, &fileSize);
nRecords = (fileSize.QuadPart + REC _SIZE — 1) / REC_SIZE;

(S /

System and Device Programming - Stefano Quer

22

|

e

For each buffer

curPosIn.QuadPart =0;
for (ic=0; ic<MAX_OVRLP; ic++) {
hEvents[O][ic] = overLapln[ic].hEvent =
CreateEvent (NULL, TRUE, FALSE, NULL);
hEvents[1][ic] = overLapOut[ic].hEvent =
CreateEvent (NULL, TRUE, FALSE, NULL);
overLapln[ic].Offset = curPosIn.LowPart;
overLaplinlic].OffsetHigh = curPosin.HighPart;
If (curPosIn.QuadPart < fileSize.QuadPart) {
ReadFile (hlnputFile, buffer[ic], REC_SIZE,
&ninJic], &overLapln[ic]);

}
curPoslIn.QuadPart += (LONGLONG)REC_SIZE;

N

Create manual-
reset unsignaled
events

Assign these
events to the ov
data structure

Initiate a read on
each buffer

System and Device Programming - Stefano Quer 23

{ While read and write
f operations are running ——

N (until the end of file) Wait for a read or a
IWaits = 0; write to complete

while (iWaits < 2 * nRecords) {
ic = WaitForMultipleObjects (2 * MAX_ OVRLP,
hEvents[0], FALSE, INFINITE) - WAIT_OBJECT _0;
IWalits++;
if ic < MAX_OVRLP) {
rRecord | GetOverlappedResult (hinputFile, &overLapinlic],
Position &nlin[ic], FALSE); Reset event
() ResetEvent (hEvents[0][ic]): before next
curPosIn.LowPart = overLapln[ic].Offset; WEMO
{ curPosIn.HighPart = overLapln]ic].OffsetHigh;
curPosOut.QuadPart = curPosIn.QuadPart;
Record overLapOut[ic].Offset = curPosOut.LowPart;

Position | overLapOut[ic].OffsetHigh = curPosOut.HighPart;
(out)

If a read completed

Set record Prc_)cess record and stgrt a
Position into ov write in the same position

System and Device Programming - Stefano Quer 24

|

/7 for (i=0; i<nin[ic]; i++) Encrypt the record W
buffer[ic][i] = (buffer[ic][i] + Shift) % 256;
WriteFile (hOutputFile, buffer[ic], nin[ic], Write it

&nOut[ic], &overLapOut[ic])
curPosiIn.QuadPart += REC_SIZE * (LONGLONG) (MAX_OVRLP);
overLapln[ic].Offset = curPosIn.LowPart;

overLaplinlic].OffsetHigh = curPosin.HighPart; Prepare
} else overlapped
if ic <2* MAX_OVRLP) { for next

ic -= MAX_OVRLP: If a write completed read

GetOverlappedResult (hOutputFile, &overLapOut[ic],
&nOutfic], FALSE)) {
ResetEvent (hEvents[1][ic]); Start a new read
curPosiIn.LowPart = overLapln[ic].Offset;
curPosin.HighPart = overLapln[ic].OffsetHigh;

(S /

System and Device Programming - Stefano Quer 25

/ if (curPosIn.QuadPart < fileSize.QuadPart) { \
ReadFile (hinputFile, buffer[ic], REC_SIZE,
&ninlic], &overLapln[ic));

}
No read and no write
} }else {... Error ...} ﬁ WEMO error J

for (ic =0;ic < MAX_OVRLP; ic++) {
CloseHandle (hEvents[O][ic]);
CloseHandle (hEvents[1][ic]);

}
CloseHandle (hinputFile); Close handles and quit
CloseHandle (hOutputFile);

return O;

System and Device Programming - Stefano Quer 26

a

From J. Hart (2010)
Chapter 14

640MB file ‘
E¥ Command Prompt ==

=

Bare C:\UWSP4_Examples\run8>randfile 100800868 large.txt
encryptlon C:\USP4_Examples\run8>timep cci 2 large.txt large_cc.txt
Real Time: 00:00:41:663
User Time: 00:00:13:696
Sys Time: 00:00:26:052

Memory C:\WSP4_Examples\run8>timep cciMM 2 large.txt large_ccMM.txt
mapped Real Time: A0:008:12:683

) User Time: 00:008:11:575
f”eS Sys Time: 00:06:00:780

C:\USP4_Examples\run8>timep cciOU 2 large.txt large_ccOU.txt
Real Time: 8B:808:17:378
User Time: 00:88:13:993
Asynchronous Sys Time: 00:00:02:995

I/C) C:\USP4_Examples\run8>timep cciOlU -2 large_ccOU.txt large_dcypt.txt
Real Time: 8B:80:15:348
User Time: 0AB:080:13:1064
Sys Time: 00:00:82:059

C:\WSP4_Examples\run8>comp large_cc.txt large_ccOU.txt i
Comparing large_cc.txt and large_ccOU.txt... Decryonn

File Checking Files compare OK
Compare more files (¥/N> 7 n

C:\UWSP4_Examples\run8>comp large.txt large_dcypt.txt
Comparing large.txt and large_dcypt.txt...
Files compare OK

Compare more files (¥/N> 7 n

C:\USP4_Examples\run8>_

