
Asynchronous I/O

Asynchronous I/O
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2System and Device Programming – Stefano Quer

Synchronous I/O

 All previously analyzed I/O operations are thread-
synchronous

 I/O is blocking and the thread waits until the I/O
operation completes

 Unfortunately, I/O operations are inherently
slow compared to other processing

 Delays may be caused by

 Hardware device, e.g., track and sector seek time
on random access, etc.

 Relatively slow data transfer rate between a physical
device and the system memory

 Network transfer using file servers, storage area
networks, etc.

3System and Device Programming – Stefano Quer

Asynchronous I/O

 Threads can perform asynchronous I/O

 A thread can continue without waiting for an I/O
operation to complete

 Windows’ OS has three methods for performing
asynchronous I/O

 Each technique has its own advantages and unique
characteristics

 The choice is often a matter of individual
preference

4System and Device Programming – Stefano Quer

Asynchronous I/O

 Multithread I/O

 Each thread within a process (or in different
processes) may perform normal synchronous I/O

● Each thread is responsible for a sequence of one or
more synchronous, blocking I/O operations

● Each thread should have its own file or pipe handle

 Other threads can continue execution

 This is the most general technique

1

5System and Device Programming – Stefano Quer

Asynchronous I/O

 Overlapped I/O with waiting

 A thread continues execution after issuing a read,
write, or another I/O operation

 When the thread requires the I/O results before
continuing it awaits on either the I/O handle or a
specified event

 Extended (or alertable) I/O with completion
routines

 The system invokes a specified “completion routine”
callback funtion within the thread when the I/O
operation completes

 Extended I/O require extended I/O functions (such
as ReadFileEx and WriteFileEx)

2

The one we focus on

3

6System and Device Programming – Stefano Quer

Overlapped I/O

 Overlapped I/O with waiting uses the overlapped
data structure to implement aysncronous functions

 First, specify the FILE_FLAG_OVERLAPPED flag as
part of fdwAttrsAndFlags for CreateFile

 It specifies that the file is to be used only in
overlapped mode

 Then, use the overlapped data structure with

 ReadFile and WriteFile

 Use the file handle

or the overlapped

event to wait for

type def struct _OVERLAPPED {
DWORD Internal;
DWORD InternalHigh;
DWORD Offset;
DWORD OffsetHigh;
HANDLE hEvent;

] OVERLAPPED;Used for asynchronous I/O

Use the
handle for
single, the
event for
multiple
I/O calls

7System and Device Programming – Stefano Quer

I/O Functions

 ReadFile and WriteFile can potentially block while
the operation completes but with the overlapped
data structure they are asynchronous

 I/O operations do not block

 The system returns immediately from a call to
ReadFile and WriteFile

 The returned function value is not useful to
indicate success or failure

 A FALSE value in return does not necessarily indicate
a failure, because

 The I/O operation is most likely not yet complete

● In this case GetLastError will return the value
ERROR_IO_PENDING

8System and Device Programming – Stefano Quer

I/O Functions

 The returned number of bytes transferred is also
not useful

 The program may issue multiple reads or writes on
a single file handle

 The user must be able to wait on (or synchronize
with) each I/O operation singularly

● In case of multiple outstanding operations on a single
handle, the user must be able to determine which
operation completed

● I/O operations do not necessarily complete in the
same order as they were issued

● The handle’s file pointer is meaningless

● The event within the overlapped data stucture must
be used

The handle
is the same

The ov data
structure
differs

9System and Device Programming – Stefano Quer

GetOverlappedResult

 After waiting on a synchronization object

 GetOverlappedResult allows you to determine how
many bytes were transferred

 Parameter

 The handle and the lpOverlapped structure
combine to indicate the specific I/O operation

BOOL GetOverlappedResult (
HANDLE hFile,
LPOVERLAPPED lpOverlapped,
LPWORD lpcbTransfer,
BOOL fWait

);

Be certain lpOverlapped is
unchanged from when it was used
with the overlapped I/O operation

10System and Device Programming – Stefano Quer

GetOverlappedResult

 lpcbTransfer

 The actual number of bytes transferred

 fWait

 If TRUE, it specifies that GetOverlappedResult will
wait until the specified operation completes

 Otherwise, it will return immediately

 Return value

 TRUE, only if the operation has completed

BOOL GetOverlappedResult (
HANDLE hFile,
LPOVERLAPPED lpoOverlapped,
LPWORD lpcbTransfer,
BOOL fWait

);

11System and Device Programming – Stefano Quer

OVERLAPPED ov = { 0, 0, 0, 0, NULL };
HANDLE hF;
DWORD nREAD;
record_t r;
. . .
hF = CreateFile (..., FILE_FLAG_OVERLAPPED, ...);
ReadFile (hF, &r, sizeof(record_t), &nR, &ov);
...
Perform other processing
nR is probably not valid
...
WaitForSingleObject (hF, INFINITE);
GetOverlappedResult (hF, &ov, &nR, FALSE);

Example

Get ReadFile result

Synchronization on a file
handle (single I/O op)

Wait-for the
operation to end
on the file handle

#Bytes read

Overlapped I/O
is simple when there is
only one outstanding

operation

12System and Device Programming – Stefano Quer

Example

 Perform the following file

encryption

 Caesar’s cipher (circa 50 BC)

 pgrm_name shift input_file output_file

Input
File

Output
File

outByte =

(inByte + shift) % 256;

Overlapped I/O is more
complex when there is

more than one
outstanding operation

Synchronization on the
event (multiple I/O op)

A B C D E F …

…shift

input_file output_file

DWORD shift;

13System and Device Programming – Stefano Quer

Solution 1 & 2

 Solution 1

 Sequential, byte by byte

 Solution 2

 Sequential, record by record

while (ReadFile (hIn, buffer, BUF_SIZE, &nIn, NULL)

&& nIn > 0 && WriteOK) {

for (iCopy=0; iCopy<nIn; iCopy++) {

buffer[iCopy] = (buffer[iCopy] + shift) % 256;

}

writeOK = WriteFile (hOut, buffer, nIn, &nOut, NULL);

}

Encryption

Selected experimentally
to optimize performace

14System and Device Programming – Stefano Quer

Solution 3A

 Solution 3A

 Parallel, with N threads

 Let the threads run freely (dynamic partition)

● More contention

DWORD shift;

Output
File

outByte =

(inByte + shift) % 256;

The faster
thread gets
next record

Thread 1

Thread 1

Thread 3

Thread 2

Thread 1

Thread 2

…

Input File

15System and Device Programming – Stefano Quer

Solution 3B

 Solution 3B

 Parallel, with N threads

 Assign to each thread 1/N of the file (static partition)

● Efficiency is limited by the slower thread

Output
File

Each one gets
its own part of

the file

Thread 1

Thread 1

…

Thread 2

Thread 2

…

Thread 3

Input File

Thread 1

Thread 2

Thread 3

Thread 1

Thread 2

Thread 3

…

Input File

Partition
scheme 1

Partition
scheme 2

16System and Device Programming – Stefano Quer

Solution 4

 Solution 4

 Use memory mapped files

#include ...

VOID caesarCipher (LPCTSTR fIn, LPCTSTR fOut, DWORD shift) {

BOOL complete = FALSE;

HANDLE hIn = INVALID_HANDLE_VALUE;

HANDLE hOut = INVALID_HANDLE_VALUE;

HANDLE hInMap = NULL, hOutMap = NULL;

LPTSTR pIn = NULL, pInFile = NULL;

LPTSTR pOut = NULL, pOutFile = NULL;

LARGE_INTEGER fileSize;

Encryption
constant

Header inclusion

Variable
definitions

Input file Output file

17System and Device Programming – Stefano Quer

Solution 4

hIn = CreateFile (fIn, GENERIC_READ, 0, NULL,

OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

GetFileSizeEx (hIn, &fileSize);

if (fileSize.HighPart > 0)

... This file is too large to map on a Win32 system ...

hInMap = CreateFileMapping (hIn, NULL, PAGE_READONLY,

0, 0, NULL);

pInFile = MapViewOfFile (hInMap, FILE_MAP_READ, 0, 0, 0);

hOut = CreateFile (fOut, GENERIC_READ | GENERIC_WRITE,

0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

hOutMap = CreateFileMapping (hOut, NULL, PAGE_READWRITE,

fileSize.HighPart, fileSize.LowPart, NULL);

pOutFile = MapViewOfFile (hOutMap, FILE_MAP_WRITE, 0, 0,

(SIZE_T)fileSize.QuadPart);

Open and
map entire
input file

Open and map
entire output file

To avoid problems with large file it is
possible to map one block at a time

18System and Device Programming – Stefano Quer

Solution 4

pIn = pInFile;

pOut = pOutFile;

while (pIn < pInFile + fileSize.QuadPart) {

*pOut = (*pIn + shift) % 256;

pIn++; pOut++;

}

UnmapViewOfFile (pOutFile);

UnmapViewOfFile (pInFile);

CloseHandle (hOutMap);

CloseHandle (hInMap);

CloseHandle (hIn);

CloseHandle (hOut);

return;

}

Encrypt file

Clean and
close

19System and Device Programming – Stefano Quer

Solution 5

 Solution 5

 Use an asynchronous file update model

Initiate 4 reads

while (all records have been encoded) {

WaitForMultipleObjects (8, ...);

if (ReadCompleted)

UpdateRecord (i);

Initiate Write (Record [i]);

else

Initiate Read (Record [i + 4]);

n_record++;

}

Encryption

Wait for 1 out of 8 events
4 ReadFile + 4 WriteFile

Perform 4 Read
in "parallel"

Next write

Next read

20System and Device Programming – Stefano Quer

Solution 5

#include ...

#define MAX_OVRLP 4

#define REC_SIZE 8192

int _tmain (int argc, LPTSTR argv[]) {

HANDLE hInputFile, hOutputFile;

DWORD shift, nIn[MAX_OVRLP], nOut[MAX_OVRLP], ic, i;

OVERLAPPED overLapIn[MAX_OVRLP], overLapOut[MAX_OVRLP];

HANDLE hEvents[2][MAX_OVRLP];

CHAR buffer[MAX_OVRLP][REC_SIZE], cShift;

LARGE_INTEGER curPosIn, curPosOut, fileSize;

LONGLONG nRecords, iWaits;

shift = _ttoi(argv[1]);

Selected experimentally
to optimize performace

#Read in "parallel"

Cipher shift

21System and Device Programming – Stefano Quer

Solution 5

hInputFile = CreateFile (argv[2], GENERIC_READ,

0, NULL, OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL);

hOutputFile = CreateFile (argv[3], GENERIC_WRITE,

0, NULL, CREATE_ALWAYS, FILE_FLAG_OVERLAPPED, NULL);

if (hInputFile==INVALID_HANDLE_VALUE ||

hOutputFile==INVALID_HANDLE_VALUE) {

...

}

GetFileSizeEx (hInputFile, &fileSize);

nRecords = (fileSize.QuadPart + REC_SIZE – 1) / REC_SIZE;

Open I and O
files

Compute number of
records (including
reamining bytes)

22System and Device Programming – Stefano Quer

Solution 5

curPosIn.QuadPart = 0;

for (ic=0; ic<MAX_OVRLP; ic++) {

hEvents[0][ic] = overLapIn[ic].hEvent =

CreateEvent (NULL, TRUE, FALSE, NULL);

hEvents[1][ic] = overLapOut[ic].hEvent =

CreateEvent (NULL, TRUE, FALSE, NULL);

overLapIn[ic].Offset = curPosIn.LowPart;

overLapIn[ic].OffsetHigh = curPosIn.HighPart;

if (curPosIn.QuadPart < fileSize.QuadPart) {

ReadFile (hInputFile, buffer[ic], REC_SIZE,

&nIn[ic], &overLapIn[ic]);

}

curPosIn.QuadPart += (LONGLONG)REC_SIZE;

}

For each buffer

Create manual-
reset unsignaled

events

Initiate a read on
each buffer

Assign these
events to the ov
data structure

23System and Device Programming – Stefano Quer

Solution 5

iWaits = 0;

while (iWaits < 2 * nRecords) {

ic = WaitForMultipleObjects (2 * MAX_OVRLP,

hEvents[0], FALSE, INFINITE) - WAIT_OBJECT_0;

iWaits++;

if (ic < MAX_OVRLP) {

GetOverlappedResult (hInputFile, &overLapIn[ic],

&nIn[ic], FALSE);

ResetEvent (hEvents[0][ic]);

curPosIn.LowPart = overLapIn[ic].Offset;

curPosIn.HighPart = overLapIn[ic].OffsetHigh;

curPosOut.QuadPart = curPosIn.QuadPart;

overLapOut[ic].Offset = curPosOut.LowPart;

overLapOut[ic].OffsetHigh = curPosOut.HighPart;

While read and write
operations are running
(until the end of file) Wait for a read or a

write to complete

If a read completed

Reset event
before next

WFMO

Process record and start a
write in the same position

Record
Position

(in)

Record
Position
(out)

Set record
Position into ov

24System and Device Programming – Stefano Quer

Solution 5

for (i=0; i<nIn[ic]; i++)

buffer[ic][i] = (buffer[ic][i] + Shift) % 256;

WriteFile (hOutputFile, buffer[ic], nIn[ic],

&nOut[ic], &overLapOut[ic])

curPosIn.QuadPart += REC_SIZE * (LONGLONG) (MAX_OVRLP);

overLapIn[ic].Offset = curPosIn.LowPart;

overLapIn[ic].OffsetHigh = curPosIn.HighPart;

} else

if (ic < 2 * MAX_OVRLP) {

ic -= MAX_OVRLP;

GetOverlappedResult (hOutputFile, &overLapOut[ic],

&nOut[ic], FALSE)) {

ResetEvent (hEvents[1][ic]);

curPosIn.LowPart = overLapIn[ic].Offset;

curPosIn.HighPart = overLapIn[ic].OffsetHigh;

Encrypt the record

Write it

Prepare
overlapped

for next
readIf a write completed

Start a new read

25System and Device Programming – Stefano Quer

Solution 5

if (curPosIn.QuadPart < fileSize.QuadPart) {

ReadFile (hInputFile, buffer[ic], REC_SIZE,

&nIn[ic], &overLapIn[ic]);

}

} else { ... Error ... }

}

for (ic = 0; ic < MAX_OVRLP; ic++) {

CloseHandle (hEvents[0][ic]);

CloseHandle (hEvents[1][ic]);

}

CloseHandle (hInputFile);

CloseHandle (hOutputFile);

return 0;

}

No read and no write
WFMO error

Close handles and quit

26System and Device Programming – Stefano Quer

PerformaceFrom J. Hart (2010)
Chapter 14

Bare
encryption

Memory
mapped

files

Asynchronous
I/O

640MB file

Decryption

File Checking

