
Asynchronous I/O

Asynchronous I/O
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2System and Device Programming – Stefano Quer

Synchronous I/O

 All previously analyzed I/O operations are thread-
synchronous

 I/O is blocking and the thread waits until the I/O
operation completes

 Unfortunately, I/O operations are inherently
slow compared to other processing

 Delays may be caused by

 Hardware device, e.g., track and sector seek time
on random access, etc.

 Relatively slow data transfer rate between a physical
device and the system memory

 Network transfer using file servers, storage area
networks, etc.

3System and Device Programming – Stefano Quer

Asynchronous I/O

 Threads can perform asynchronous I/O

 A thread can continue without waiting for an I/O
operation to complete

 Windows’ OS has three methods for performing
asynchronous I/O

 Each technique has its own advantages and unique
characteristics

 The choice is often a matter of individual
preference

4System and Device Programming – Stefano Quer

Asynchronous I/O

 Multithread I/O

 Each thread within a process (or in different
processes) may perform normal synchronous I/O

● Each thread is responsible for a sequence of one or
more synchronous, blocking I/O operations

● Each thread should have its own file or pipe handle

 Other threads can continue execution

 This is the most general technique

1

5System and Device Programming – Stefano Quer

Asynchronous I/O

 Overlapped I/O with waiting

 A thread continues execution after issuing a read,
write, or another I/O operation

 When the thread requires the I/O results before
continuing it awaits on either the I/O handle or a
specified event

 Extended (or alertable) I/O with completion
routines

 The system invokes a specified “completion routine”
callback funtion within the thread when the I/O
operation completes

 Extended I/O require extended I/O functions (such
as ReadFileEx and WriteFileEx)

2

The one we focus on

3

6System and Device Programming – Stefano Quer

Overlapped I/O

 Overlapped I/O with waiting uses the overlapped
data structure to implement aysncronous functions

 First, specify the FILE_FLAG_OVERLAPPED flag as
part of fdwAttrsAndFlags for CreateFile

 It specifies that the file is to be used only in
overlapped mode

 Then, use the overlapped data structure with

 ReadFile and WriteFile

 Use the file handle

or the overlapped

event to wait for

type def struct _OVERLAPPED {
DWORD Internal;
DWORD InternalHigh;
DWORD Offset;
DWORD OffsetHigh;
HANDLE hEvent;

] OVERLAPPED;Used for asynchronous I/O

Use the
handle for
single, the
event for
multiple
I/O calls

7System and Device Programming – Stefano Quer

I/O Functions

 ReadFile and WriteFile can potentially block while
the operation completes but with the overlapped
data structure they are asynchronous

 I/O operations do not block

 The system returns immediately from a call to
ReadFile and WriteFile

 The returned function value is not useful to
indicate success or failure

 A FALSE value in return does not necessarily indicate
a failure, because

 The I/O operation is most likely not yet complete

● In this case GetLastError will return the value
ERROR_IO_PENDING

8System and Device Programming – Stefano Quer

I/O Functions

 The returned number of bytes transferred is also
not useful

 The program may issue multiple reads or writes on
a single file handle

 The user must be able to wait on (or synchronize
with) each I/O operation singularly

● In case of multiple outstanding operations on a single
handle, the user must be able to determine which
operation completed

● I/O operations do not necessarily complete in the
same order as they were issued

● The handle’s file pointer is meaningless

● The event within the overlapped data stucture must
be used

The handle
is the same

The ov data
structure
differs

9System and Device Programming – Stefano Quer

GetOverlappedResult

 After waiting on a synchronization object

 GetOverlappedResult allows you to determine how
many bytes were transferred

 Parameter

 The handle and the lpOverlapped structure
combine to indicate the specific I/O operation

BOOL GetOverlappedResult (
HANDLE hFile,
LPOVERLAPPED lpOverlapped,
LPWORD lpcbTransfer,
BOOL fWait

);

Be certain lpOverlapped is
unchanged from when it was used
with the overlapped I/O operation

10System and Device Programming – Stefano Quer

GetOverlappedResult

 lpcbTransfer

 The actual number of bytes transferred

 fWait

 If TRUE, it specifies that GetOverlappedResult will
wait until the specified operation completes

 Otherwise, it will return immediately

 Return value

 TRUE, only if the operation has completed

BOOL GetOverlappedResult (
HANDLE hFile,
LPOVERLAPPED lpoOverlapped,
LPWORD lpcbTransfer,
BOOL fWait

);

11System and Device Programming – Stefano Quer

OVERLAPPED ov = { 0, 0, 0, 0, NULL };
HANDLE hF;
DWORD nREAD;
record_t r;
. . .
hF = CreateFile (..., FILE_FLAG_OVERLAPPED, ...);
ReadFile (hF, &r, sizeof(record_t), &nR, &ov);
...
Perform other processing
nR is probably not valid
...
WaitForSingleObject (hF, INFINITE);
GetOverlappedResult (hF, &ov, &nR, FALSE);

Example

Get ReadFile result

Synchronization on a file
handle (single I/O op)

Wait-for the
operation to end
on the file handle

#Bytes read

Overlapped I/O
is simple when there is
only one outstanding

operation

12System and Device Programming – Stefano Quer

Example

 Perform the following file

encryption

 Caesar’s cipher (circa 50 BC)

 pgrm_name shift input_file output_file

Input
File

Output
File

outByte =

(inByte + shift) % 256;

Overlapped I/O is more
complex when there is

more than one
outstanding operation

Synchronization on the
event (multiple I/O op)

A B C D E F …

…shift

input_file output_file

DWORD shift;

13System and Device Programming – Stefano Quer

Solution 1 & 2

 Solution 1

 Sequential, byte by byte

 Solution 2

 Sequential, record by record

while (ReadFile (hIn, buffer, BUF_SIZE, &nIn, NULL)

&& nIn > 0 && WriteOK) {

for (iCopy=0; iCopy<nIn; iCopy++) {

buffer[iCopy] = (buffer[iCopy] + shift) % 256;

}

writeOK = WriteFile (hOut, buffer, nIn, &nOut, NULL);

}

Encryption

Selected experimentally
to optimize performace

14System and Device Programming – Stefano Quer

Solution 3A

 Solution 3A

 Parallel, with N threads

 Let the threads run freely (dynamic partition)

● More contention

DWORD shift;

Output
File

outByte =

(inByte + shift) % 256;

The faster
thread gets
next record

Thread 1

Thread 1

Thread 3

Thread 2

Thread 1

Thread 2

…

Input File

15System and Device Programming – Stefano Quer

Solution 3B

 Solution 3B

 Parallel, with N threads

 Assign to each thread 1/N of the file (static partition)

● Efficiency is limited by the slower thread

Output
File

Each one gets
its own part of

the file

Thread 1

Thread 1

…

Thread 2

Thread 2

…

Thread 3

Input File

Thread 1

Thread 2

Thread 3

Thread 1

Thread 2

Thread 3

…

Input File

Partition
scheme 1

Partition
scheme 2

16System and Device Programming – Stefano Quer

Solution 4

 Solution 4

 Use memory mapped files

#include ...

VOID caesarCipher (LPCTSTR fIn, LPCTSTR fOut, DWORD shift) {

BOOL complete = FALSE;

HANDLE hIn = INVALID_HANDLE_VALUE;

HANDLE hOut = INVALID_HANDLE_VALUE;

HANDLE hInMap = NULL, hOutMap = NULL;

LPTSTR pIn = NULL, pInFile = NULL;

LPTSTR pOut = NULL, pOutFile = NULL;

LARGE_INTEGER fileSize;

Encryption
constant

Header inclusion

Variable
definitions

Input file Output file

17System and Device Programming – Stefano Quer

Solution 4

hIn = CreateFile (fIn, GENERIC_READ, 0, NULL,

OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

GetFileSizeEx (hIn, &fileSize);

if (fileSize.HighPart > 0)

... This file is too large to map on a Win32 system ...

hInMap = CreateFileMapping (hIn, NULL, PAGE_READONLY,

0, 0, NULL);

pInFile = MapViewOfFile (hInMap, FILE_MAP_READ, 0, 0, 0);

hOut = CreateFile (fOut, GENERIC_READ | GENERIC_WRITE,

0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

hOutMap = CreateFileMapping (hOut, NULL, PAGE_READWRITE,

fileSize.HighPart, fileSize.LowPart, NULL);

pOutFile = MapViewOfFile (hOutMap, FILE_MAP_WRITE, 0, 0,

(SIZE_T)fileSize.QuadPart);

Open and
map entire
input file

Open and map
entire output file

To avoid problems with large file it is
possible to map one block at a time

18System and Device Programming – Stefano Quer

Solution 4

pIn = pInFile;

pOut = pOutFile;

while (pIn < pInFile + fileSize.QuadPart) {

*pOut = (*pIn + shift) % 256;

pIn++; pOut++;

}

UnmapViewOfFile (pOutFile);

UnmapViewOfFile (pInFile);

CloseHandle (hOutMap);

CloseHandle (hInMap);

CloseHandle (hIn);

CloseHandle (hOut);

return;

}

Encrypt file

Clean and
close

19System and Device Programming – Stefano Quer

Solution 5

 Solution 5

 Use an asynchronous file update model

Initiate 4 reads

while (all records have been encoded) {

WaitForMultipleObjects (8, ...);

if (ReadCompleted)

UpdateRecord (i);

Initiate Write (Record [i]);

else

Initiate Read (Record [i + 4]);

n_record++;

}

Encryption

Wait for 1 out of 8 events
4 ReadFile + 4 WriteFile

Perform 4 Read
in "parallel"

Next write

Next read

20System and Device Programming – Stefano Quer

Solution 5

#include ...

#define MAX_OVRLP 4

#define REC_SIZE 8192

int _tmain (int argc, LPTSTR argv[]) {

HANDLE hInputFile, hOutputFile;

DWORD shift, nIn[MAX_OVRLP], nOut[MAX_OVRLP], ic, i;

OVERLAPPED overLapIn[MAX_OVRLP], overLapOut[MAX_OVRLP];

HANDLE hEvents[2][MAX_OVRLP];

CHAR buffer[MAX_OVRLP][REC_SIZE], cShift;

LARGE_INTEGER curPosIn, curPosOut, fileSize;

LONGLONG nRecords, iWaits;

shift = _ttoi(argv[1]);

Selected experimentally
to optimize performace

#Read in "parallel"

Cipher shift

21System and Device Programming – Stefano Quer

Solution 5

hInputFile = CreateFile (argv[2], GENERIC_READ,

0, NULL, OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL);

hOutputFile = CreateFile (argv[3], GENERIC_WRITE,

0, NULL, CREATE_ALWAYS, FILE_FLAG_OVERLAPPED, NULL);

if (hInputFile==INVALID_HANDLE_VALUE ||

hOutputFile==INVALID_HANDLE_VALUE) {

...

}

GetFileSizeEx (hInputFile, &fileSize);

nRecords = (fileSize.QuadPart + REC_SIZE – 1) / REC_SIZE;

Open I and O
files

Compute number of
records (including
reamining bytes)

22System and Device Programming – Stefano Quer

Solution 5

curPosIn.QuadPart = 0;

for (ic=0; ic<MAX_OVRLP; ic++) {

hEvents[0][ic] = overLapIn[ic].hEvent =

CreateEvent (NULL, TRUE, FALSE, NULL);

hEvents[1][ic] = overLapOut[ic].hEvent =

CreateEvent (NULL, TRUE, FALSE, NULL);

overLapIn[ic].Offset = curPosIn.LowPart;

overLapIn[ic].OffsetHigh = curPosIn.HighPart;

if (curPosIn.QuadPart < fileSize.QuadPart) {

ReadFile (hInputFile, buffer[ic], REC_SIZE,

&nIn[ic], &overLapIn[ic]);

}

curPosIn.QuadPart += (LONGLONG)REC_SIZE;

}

For each buffer

Create manual-
reset unsignaled

events

Initiate a read on
each buffer

Assign these
events to the ov
data structure

23System and Device Programming – Stefano Quer

Solution 5

iWaits = 0;

while (iWaits < 2 * nRecords) {

ic = WaitForMultipleObjects (2 * MAX_OVRLP,

hEvents[0], FALSE, INFINITE) - WAIT_OBJECT_0;

iWaits++;

if (ic < MAX_OVRLP) {

GetOverlappedResult (hInputFile, &overLapIn[ic],

&nIn[ic], FALSE);

ResetEvent (hEvents[0][ic]);

curPosIn.LowPart = overLapIn[ic].Offset;

curPosIn.HighPart = overLapIn[ic].OffsetHigh;

curPosOut.QuadPart = curPosIn.QuadPart;

overLapOut[ic].Offset = curPosOut.LowPart;

overLapOut[ic].OffsetHigh = curPosOut.HighPart;

While read and write
operations are running
(until the end of file) Wait for a read or a

write to complete

If a read completed

Reset event
before next

WFMO

Process record and start a
write in the same position

Record
Position

(in)

Record
Position
(out)

Set record
Position into ov

24System and Device Programming – Stefano Quer

Solution 5

for (i=0; i<nIn[ic]; i++)

buffer[ic][i] = (buffer[ic][i] + Shift) % 256;

WriteFile (hOutputFile, buffer[ic], nIn[ic],

&nOut[ic], &overLapOut[ic])

curPosIn.QuadPart += REC_SIZE * (LONGLONG) (MAX_OVRLP);

overLapIn[ic].Offset = curPosIn.LowPart;

overLapIn[ic].OffsetHigh = curPosIn.HighPart;

} else

if (ic < 2 * MAX_OVRLP) {

ic -= MAX_OVRLP;

GetOverlappedResult (hOutputFile, &overLapOut[ic],

&nOut[ic], FALSE)) {

ResetEvent (hEvents[1][ic]);

curPosIn.LowPart = overLapIn[ic].Offset;

curPosIn.HighPart = overLapIn[ic].OffsetHigh;

Encrypt the record

Write it

Prepare
overlapped

for next
readIf a write completed

Start a new read

25System and Device Programming – Stefano Quer

Solution 5

if (curPosIn.QuadPart < fileSize.QuadPart) {

ReadFile (hInputFile, buffer[ic], REC_SIZE,

&nIn[ic], &overLapIn[ic]);

}

} else { ... Error ... }

}

for (ic = 0; ic < MAX_OVRLP; ic++) {

CloseHandle (hEvents[0][ic]);

CloseHandle (hEvents[1][ic]);

}

CloseHandle (hInputFile);

CloseHandle (hOutputFile);

return 0;

}

No read and no write
WFMO error

Close handles and quit

26System and Device Programming – Stefano Quer

PerformaceFrom J. Hart (2010)
Chapter 14

Bare
encryption

Memory
mapped

files

Asynchronous
I/O

640MB file

Decryption

File Checking

