
Managing main memory

Memory Mapping
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2System and Device Programming – Stefano Quer

Memory Management

 Windows provides memory-mapped files to

 Associate a process’s address space with a file

 Allow the OS to manage all data movement between
the file and memory while the user just cope with
memory address space

 Permit the programmer to

manipulate data structures

without file I/O functions

 ReadFile, WriteFile,

SetFilePointer, etc.

Section 1

Section 2

…

File

*pA

*pB

Process’s
Memory
Space

3System and Device Programming – Stefano Quer

Memory Management

 The advantages to mapping the virtual memory
space directly to normal files include

 Applications can be significantly faster

 The program can maintain dynamic data structures
conveniently in permanent files

 Memory-based algorithms can process file data

● In-memory algorithms (string processing, sorts,
search trees) can directly process data

● The file may be much larger than the available
physical memory

 There is no need to manage buffers and the file
data they contain

 Multiple processes can share memory, and the file
views will be coherent

4System and Device Programming – Stefano Quer

fH = CreateFile (...);
mH = CreateFileMapping (fH, ...);
pA = MapViewOfFile (mH, ...);
pB = MapViewOfFile (mH, ...);
while () {

pB->Data = pA->Data;
pA++; pB++; ...

}
UnmapViewOfFile (pA);
UnmapViewOfFile (pB);
CloseHandle (mH);
CloseHandle (fH);

Logic

 Memory-mapped file used inside a single
process

Open a file Create a file
mapping object

Mapping two sections
of the file into two

main memory
segmets referenced

by pA and pB

Manage file through
main memory

Clean and close

5System and Device Programming – Stefano Quer

Logic

 Memory-mapped file used inside a single
process

Section 1

Section 2

…

File

pA

pB

Process’s
Memory
SpacefH = CreateFile (...);

mH = CreateFileMapping (fH, ...);
pA = MapViewOfFile (mH, ...);
pB = MapViewOfFile (mH, ...);
while () {

pB->Data = pA->Data;
pA++; pB++; ...

}
UnmapViewOfFile (pA);
UnmapViewOfFile (pB);
CloseHandle (mH);
CloseHandle (fH);

Mapping

6System and Device Programming – Stefano Quer

Virtual Address Space of P2

Read 10 from address 1032

Logic

 Memory-mapped file used to share data between
two processes

fH = CreateFile (...);
mH = CreateFileMapping (fH, ...);
p = MapViewOfFile (mH, ...);

*p = 10;

UnmapViewOfFile (p);
CloseHandle (mH);

mH = OpenFileMapping (fH, ...);
p = MapViewOfFile (mH, ...);

v = *p;

UnmapViewOfFile (p);
CloseHandle (mH);

P1 P2

Virtual Address Space of P1

Write 10 to address 2004 File

…10…

7System and Device Programming – Stefano Quer

CreateFileMapping

 Given a part of a file (eventually an entire file)
CreateFileMapping returns a mapping object

 Return value

 A file mapping handle, on success

 NULL, on failure

HANDLE CreateFileMapping (
HANDLE hFile,
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwProtect,
DWORD dwMaximumSizeHigh,
DWORD dwMaximumSizeLow,
LPCTSTR lpMapName

);

It does not really
perform the mapping

8System and Device Programming – Stefano Quer

CreateFileMapping

 Parameters

 hFile

 Handle of an already opened file

 The protection flags must be compatible with
dwProtect

 lpsa

 LPSECURITY_ATTRIBUTES

 Often NULL
HANDLE CreateFileMapping (

HANDLE hFile,
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwProtect,
DWORD dwMaximumSizeHigh,
DWORD dwMaximumSizeLow,
LPCTSTR lpMapName

);

9System and Device Programming – Stefano Quer

CreateFileMapping

 dwProtect

 How you can access the mapped file

● PAGE_READONLY

o Pages in the mapped region are read only

● PAGE_READWRITE

o Full access if hFile has both GENERIC_READ and
GENERIC_WRITE access

● PAGE_WRITECOPY

o When you change mapped memory, a copy is written to
the paging file
not to the original
file

HANDLE CreateFileMapping (
HANDLE hFile,
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwProtect,
DWORD dwMaximumSizeHigh,
DWORD dwMaximumSizeLow,
LPCTSTR lpMapName

);

10System and Device Programming – Stefano Quer

CreateFileMapping

 dwMaximumSizeHigh and dwMaximumSizeLow

 Specify the size of the mapping object

 The value 0 is used to specify the current file size

 Use 0 (actual file size) if the file in going to be
extended

 lpMapName

 Names the mapping object, allowing other
processes to share the object

 Case sensitive

 Often NULL, but not

when used

by openFileMapping

HANDLE CreateFileMapping (
HANDLE hFile,
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwProtect,
DWORD dwMaximumSizeHigh,
DWORD dwMaximumSizeLow,
LPCTSTR lpMapName

);

Two 32bit fields
32 LSBs and 32 MSBs

11System and Device Programming – Stefano Quer

OpenFileMapping

 It is possible to obtain a file mapping handle for
an existing named mapping

 To do that, specify the mapping object’s name

 This name comes from a previous call to
CreateFileMapping

 Two processes can share memory by sharing a
file mapping

 First, a process creates the named mapping uising
CreateFileMapping

 Subsequently, another processes open this
mapping with the name using OpenFileMapping

 The open will fail if the named object does not exist

12System and Device Programming – Stefano Quer

OpenFileMapping

 Parameters

 dwDesiredAccess

 The access rights to the mapped region

 See MapViewOfFile for the possible values

 bInheritHandle

 If TRUE, specifies whether the handle can be
inherited by a sub-process (created with
CreateProcess)

 If FALSE, cannot be inherited

HANDLE OpenFileMapping (
DWORD dwDesiredAccess,
BOOL bInheritHandle,
LPCTSTR lpNameP

);

13System and Device Programming – Stefano Quer

OpenFileMapping

 lpNameP

 Is that name created by CreateFileMapping

 Return value

 A file mapping handle, on success

 NULL, on failure

HANDLE OpenFileMapping (
DWORD dwDesiredAccess,
BOOL bInheritHandle,
LPCTSTR lpNameP

);

14System and Device Programming – Stefano Quer

MapViewOfFile

 Once a mapping object has been created

 The next step is to map a file into the process’s
virtual address space

 A pointer to the allocated block (or file-view) is
returned

 The main difference from a standard memory
allocation operation lies in the fact that the allocated
block is backed by a user-specified file rather than
the paging file

 Note

 The mapping view does not expand if the file size
increases

 Growing files need to be re-mapped

15System and Device Programming – Stefano Quer

MapViewOfFile

 Return value

 The starting address of the block (file view), on
success

 NULL, on failure

LPVOID MapViewOfFile (
HANDLE hMapObject,
DWORD dwAccess,
DWORD dwOffsetHigh,
DWORD dwOffsetLow,
SIZE_T dwNumberOfByteToMap

);

SIZE_T is either a
DWORD (on _WIN32) or a

DWORDLONG (on _WIN64)
depending on the compiler flag

16System and Device Programming – Stefano Quer

MapViewOfFile

 Parameters

 hMapObject

 Identifies a file-mapping object (from
CreateFileMapping or OpenFileMapping)

 dwAccess

 Is the file acces rights and must be compatible with
the mapping object’s access

● FILE_MAP_WRITE

● FILE_MAP_READ

● FILE_MAP_ALL_ACCESS

(or of the previous flags)

LPVOID MapViewOfFile(
HANDLE hMapObject,
DWORD dwAccess,
DWORD dwOffsetHigh,
DWORD dwOffsetLow,
SIZE_T dwNumberOfByteToMap

);

17System and Device Programming – Stefano Quer

MapViewOfFile

 dwOffsetHigh and dwOffsetLow

 Is the starting location of the mapped file region

 Must be a multiple of 64K

 Zero offset to map from beginning of file

 dwNumbrOfByteToMap

 Is the size in bytes of the mapped region

● SIZE_T is is defined as either a 32-bit (DWORD)

64-bit (DWORDLONG) unsigned integer

o It is helps to enable source code portability

 Zero indicates the entire file

● The map size is limited by

the 32-bit address (DWORD)

in a 32-bit build

…

LPVOID MapViewOfFile(
HANDLE hMapObject,
DWORD dwAccess,
DWORD dwOffsetHigh,
DWORD dwOffsetLow,
SIZE_T dwNumberOfByteToMap

);

18System and Device Programming – Stefano Quer

UnmapViewOfFile

 Just as it is necessary to release the memory
allocated, it is necessary to release file views

 Use UnampViewOfFile to release a file view

 Use CloseHandle to finally destroy mapping
handles

 For both OpenFileMapping and CreateFileMapping

BOOL UnmapViewOfFile (
LPVOID lpBaseAdress

);

19System and Device Programming – Stefano Quer

File-Mapping Limitations

 Coherency

 Processes that share a file through shared memory
will have a coherent view of the file

 If one process changes a mapped memory location,
the other process will obtain that new value when it
accesses the corresponding area of the file in its
mapped memory

 On the other hand, a process accessing a file
through mapping and another process accessing it
through conventional file I/O will not have
coherent views of the file

 It is not a good idea to access a mapped file with
ReadFile and WriteFile at the same time

20System and Device Programming – Stefano Quer

File-Mapping Limitations

 Large files

 With 32-bit operating systems

 Large files (greater than 4GB) cannot be mapped
entirely into virtual memory space

 When dealing with large files, you must create code
that carefully maps and unmaps file regions as you
need them

 With 64-bit build very large files can be mapped

 An existing file mapping cannot be expanded

 The maximum size must be known when the
mapping is created

21System and Device Programming – Stefano Quer

Example

 There are several problems in which two or more
synchronization primitives have to be used
together

 Example

 Two processes with several threads

 They want to work on a shared memory

 They may use a memory mapped file

 They need to protect their own R/W activity

 They may use a mutex for the critical section

 The writer (producer) need a strategy to let the
reader (consumer) know when he has done

 They may use an event

22System and Device Programming – Stefano Quer

Example

eH=CreateEvent(...);

mH=CreateMutex(...);

fmH=CreateFileMapping(...);

WaitForSingleObject(mH);

ptr=MapViewOfFile(fmH...);

... write to shared memory

SetEvent(eH);

UnmapViewOfFile(fmH);

ReleaseMutex(mH);

CloseHandle(...);

eH=CreateEvent(...);

mH=CreateMutex(...);

fmH=OpenFileMapping(...);

WaitForMultipleObjects(

[eH,mH],WAIT_ALL,...);

ptr=MapViewOfFile(fmH...);

... Read shared memory

UnmapViewOfFile(fmH);

ReleaseMutex(mH);

CloseHandle(...);

Pj

Pi

Local Mutex
(for CS)

Create a new file
mapping

Open an existing
file mapping

Local Mutex
(for CS)

23System and Device Programming – Stefano Quer

Exercise

 Preliminaries

 An advantage of memory mapping is the ability to
use convenient memory-based algorithms to
process files

 Sorting data in memory, for instance, is much
easier than sorting records in a file

 Specification

 Write a program to sort a file with fixed-length
records

 Assumes an 8-byte sort key at the start of each
record

 Restrict the progam to deal with fix-size records

24System and Device Programming – Stefano Quer

Exercise

 Use the C library function qsort to sort the file

 This requires a programmer-defined record
comparison function (keyCompare)

 Logic

 Create the file mapping on a temporary copy of
the input file

 Create a single view of the file

 Sort the file

 Print the results to standard output

25System and Device Programming – Stefano Quer

Solution

#include ...

#define DATALEN 56

#define KEY_SIZE 8

typedef struct _RECORD {

TCHAR key[KEY_SIZE];

TCHAR data[DATALEN];

} RECORD;

#define RECSIZE sizeof(RECORD)

typedef RECORD *LPRECORD;

int KeyCompare (LPCTSTR pKey1, LPCTSTR pKey2) {

return _tcsncmp (pKey1, pKey2, KEY_SIZE);

}

Definitions of the record
structure in the sort file

Compare two records of
generic characters.

The key position and length
are global variables

See tchar.h: #define _tcsncpy strncpy

26System and Device Programming – Stefano Quer

Solution

int _tmain (int argc, LPTSTR argv[]) {

... Definitions ...

_stprintf_s (tempFile, MAX_PATH, _T ("%s.tmp"), argv[1]);

CopyFile (argv[1], tempFile, TRUE);

hFile = CreateFile (tempFile, GENERIC_READ

| GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0, NULL);

if (hFile ==INVALID_HANDLE_VALUE)

...

GetFileSizeEx (hFile, &fileSize);

fileSize.QuadPart += sizeof(TCHAR);

if (fileSize.HighPart > 0)

... This file is too large to map on a Win32 system ...

Open the file
(use the

temporary copy)

Copy the input file to a
temp output file that
will be sorted. Do not

alter the input file.

If the file is too
large, catch that

when it is mapped

Add space for ‘\0’

The file name is
the first argument

27System and Device Programming – Stefano Quer

Solution

hMap = CreateFileMapping (hFile, NULL, PAGE_READWRITE,

fileSize.HighPart, fileSize.LowPart, NULL);

if (hMap == NULL) ... error ...

pFile = MapViewOfFile (hMap, FILE_MAP_ALL_ACCESS, 0, 0, 0);

if (pFile == NULL) ... error ...

qsort (pFile, (SIZE_T)fileSize.QuadPart / RECSIZE,

RECSIZE, KeyCompare);

Sort

Map file dwProtect parameter

dwProtect parameter

Map from 0 Entire file

#records

Record size
Comparison

function

28System and Device Programming – Stefano Quer

Solution

pTFile = (LPTSTR) pFile;

pTFile[fileSize.QuadPart/sizeof(TCHAR)] = _T('\0');

_tprintf (_T("%s"), pFile);

UnmapViewOfFile (pFile);

CloseHandle (hMap);

CloseHandle (hFile);

DeleteFile (tempFile);

return (1);

}

Print output file
(as a unique string)

Clean and close

Add ‘\0’
(if no other ‘\0’ exist)

Add string
termination

