Managing main memory

Memory Mapping
Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

System and Device Programming - Stefano Quer 2

Memory Management

<+ Windows provides memory-mapped files to
» Associate a process’s address space with a file

> Allow the OS to manage all data movement between
the file and memory while the user just cope with

memory address space Process’s
: : Memor
> Permit the programmer to File Soace,

manipulate data structures

without file I/O functions ——
= ReadFile, WriteFile, @ *pA

SetFilePointer, etc.
Section 2
@ *pB

System and Device Programming - Stefano Quer - 3

Memory Management

% The advantages to mapping the virtual memory
space directly to normal files include

> Applications can be significantly faster

= The program can maintain dynamic data structures
conveniently in permanent files
= Memory-based algorithms can process file data

e In-memory algorithms (string processing, sorts,
search trees) can directly process data

e The file may be much larger than the available
physical memory

» There is no need to manage buffers and the file
data they contain

» Multiple processes can share memory, and the file
views will be coherent

System and Device Programming - Stefano Quer 4

<+ Memory-mapped file used inside a single
process

LOpen a file Create a file
mapping ob]ect

/fH = CreateFile (...);

mH = CreateFileMapping (fH, ...); N\
pA = MapViewOfFile (mH, .) Mapping two sections
pB = MapViewOfFile (mH, . } of the file into two
while () { main memory
pB->Data = pA->Data,; } segmets referenced
PA++; pB++; ... S by pA and pB Y
}

UnmapViewOfFile (pA);
UnmapViewOfFile (pB);
CloseHandle (mH);

CloseHandle (fH);
% (fH)

Manage file through
main memory

/

Clean and close J

System and Device Programming - Stefano Quer: 5

<+ Memory-mapped file used inside a single

process
Mapping
Process's
_ Memory
/fH = CreateFile (...); N File Space
mH = CreateFileMapping (fH, ...);
pA = MapViewOfFile (mH, ...);
pB = MapViewOfFile (mH, ...); } [j> : @ pA
while () { Section 1
pB->Data = pA->Data,;
pPA++; pB++; ...
}
UnmapViewOfFile (pA); Section 2
UnmapViewOfFile (pB); @ pB
CloseHandle (mH);
CloseHandle (fH);

0

System and Device Programming - Stefano Quer 6

<+ Memory-mapped file used to share data between
two processes

4 P N P N
fH = CreateFile (...); L 2
mH = CreateFileMapping (fH, ...); mH = OpenFileMapping (fH, ...);

p = MapViewOfFile (mH, ...); p = MapViewOfFile (mH, ...);

*p = 10; N\ v =p;)
UnmapViewOfFile (p); UnmapViewOfFile (p);

CloseHandle (mH); CloseHandle (mH);

- AN /

Virtual Address Space of P, Virtual Address Space of P,
Y.
Write 10 to address 2004 <// File Read 10 from address 1032
—> 0.

System and Device Programming - Stefano Quer 7

CreateFileMapping

" HANDLE CreateFileMapping (A
HANDLE hFile,
LPSECURITY_ATTRIBUTES Ipsa,
DWORD dwProtect,

DWORD dwMaximumSizeHigh,

DWORD dwMaximumSizelLow, It does not really
LPCTSTR IpMapName perform the mapping
K); / J
-

% Given a part of a file (eventually an entire file)
CreateFileMapping returns a mapping object

+»» Return value

> A file mapping handle, on success
» NULL, on failure

System and Device Programming - Stefano Quer 8

CreateFileMapping

++ Parameters

> hFile

= Handle of an already opened file

= The protection flags must be compatible with
dwProtect

> |Ipsa
= |PSECURITY_ATTRIBUTES
= Often NULL

" HANDLE CreateFileMapping (b
HANDLE hFile,
LPSECURITY_ATTRIBUTES Ipsa,
DWORD dwProtect,

DWORD dwMaximumSizeHigh,
DWORD dwMaximumsSizelLow,
LPCTSTR IpMapName

System and Device Programming - Stefano Quer 9

CreateFileMapping

» dwProtect

= How you can access the mapped file

e PAGE_READONLY
o Pages in the mapped region are read only

e PAGE_READWRITE

o Full access if hFile has both GENERIC _READ and
GENERIC_WRITE access

e PAGE_WRITECOPY

o When you change mapped memory, a copy is written to
the paging file

~ [HANDLE CreateFileMapping (A
not to the original HANDLE hFile,

file LPSECURITY_ ATTRIBUTES Ipsa,
DWORD dwProtect,

DWORD dwMaximumSizeHigh,
DWORD dwMaximumSizeLow,
LPCTSTR IpMapName

System and Device Programming - Stefano Quer 10

Two 32bit fields CreateFileMapping
32 LSBs and 32 MSBs

» dwMaximumSizeHigh and dwMaximumSizelLow
= Specify the size of the mapping object
= The value 0 is used to specify the current file size

= Use 0 (actual file size) if the file in going to be
extended

> IpMapName

= Names the mapping object, allowing other
processes to share the object

= Case sensitive " HANDLE CreateFileMapping (h
HANDLE hFile,
= Often NULL, but not LPSECURITY ATTRIBUTES Ipsa,
when used DWORD dwProtect,
b FileM : DWORD dwMaximumSizeHigh,
y openriieMapping DWORD dwMaximumSizeLow,

LPCTSTR IpMapName

System and Device Programming - Stefano Quer 11

OpenFileMapping

% It is possible to obtain a file mapping handle for
an existing named mapping

% To do that, specify the mapping object’s name

» This name comes from a previous call to
CreateFileMapping

%+ Two processes can share memory by sharing a
file mapping

» First, a process creates the named mapping uising
CreateFileMapping
» Subsequently, another processes open this
mapping with the name using OpenFileMapping
= The open will fail if the named object does not exist

System and Device Programming - Stefano Quer 12

OpenFileMapping

~

" HANDLE OpenFileMapping (
DWORD dwDesiredAccess,
BOOL binheritHandle,
LPCTSTR IpNameP

);

" J

+» Parameters

» dwDesiredAccess
= The access rights to the mapped region
= See MapViewOfFile for the possible values

» blInheritHandle

= If TRUE, specifies whether the handle can be
inherited by a sub-process (created with
CreateProcess)

= If FALSE, cannot be inherited

System and Device Programming - Stefano Quer 13

OpenFileMapping

> IpNameP
= s that name created by CreateFileMapping
% Return value

> A file mapping handle, on success
» NULL, on failure

% D
HANDLE OpenFileMapping (
DWORD dwDesiredAccess,
BOOL binheritHandle,
LPCTSTR IpNameP

);

o J

System and Device Programming - Stefano Quer 14

MapViewOfFile

< Once a mapping object has been created

» The next step is to map a file into the process'’s
virtual address space

> A pointer to the allocated block (or file-view) is
returned
= The main difference from a standard memory
allocation operation lies in the fact that the allocated

block is backed by a user-specified file rather than
the paging file

» Note

= The mapping view does not expand if the file size
InCreases

= Growing files need to be re-mapped

System and Device Programming - Stefano Quer 15

MapViewOfFile

" LPVOID MapViewOfFile () 4
HANDLE hMapObject, SIZE_T is either a
DWORD dwAccess, DWORD (on _WIN32) or a
DWORD dwOffsetHigh,] DWOdRDLONGh(on _WIINﬁ;‘I)

[nt mpi
DWORD dwOffsetLow, epending on the comprier flag)
SIZE_T dwNumberOfByteToMap J
\);

2+ Return value

» The starting address of the block (file view), on
success

» NULL, on failure

System and Device Programming - Stefano Quer 16

MapViewOfFile

++ Parameters

» hMapObject

= Identifies a file-mapping object (from
CreateFileMapping or OpenFileMapping)

» dwAccess

= Is the file acces rights and must be compatible with
the mapping object’s access
e FILE_MAP_WRITE
e FILE_MAP_READ
o FILE_MAP_ALL_ACCESS [LpvoID MapviewofFile()

(or of the previous flags) HANDLE hMapObject,
DWORD dwAccess,

DWORD dwOffsetHigh,
DWORD dwOffsetLow,
SIZE_T dwNumberOfByteToMap

System and Device Programming - Stefano Quer 4

MapViewOfFile

» dwOffsetHigh and dwOffsetLow
= |s the starting location of the mapped file region
= Must be a multiple of 64K
= Zero offset to map from beginning of file

> dWNUmbrOfByteToMap ~..ommmremers™

= |s the size in bytes of the mapped region
e SIZE_T is is defined as either a 32-bit (DWORD)

64-bit (DWORDLONG) unsigned integer

o Itis helps to enable source code portability

= Zero indicates the entire file (Lpvold MapvieworFilel b

e The map size is limited by BCV'\(')D;[')E:VTIA:ECCZQECL

the 32-bit address (DWORD) | DWORD dwOffsetHigh,
i i i DWORD dwOffsetLow,
in a 32-bit build SIZE_T dwNumberOfByteToMap

System and Device Programming - Stefano Quer 18

UnmapViewOfFile

BOOL UnmapViewOfFile (
LPVOID IpBaseAdress

);

.

% Just as it is necessary to release the memory
allocated, it is necessary to release file views

» Use UnampViewOfFile to release a file view

% Use CloseHandle to finally destroy mapping
handles

» For both OpenFileMapping and CreateFileMapping

System and Device Programming - Stefano Quer 19

File-Mapping Limitations

% Coherency

» Processes that share a file through shared memory
will have a coherent view of the file
= If one process changes a mapped memory location,
the other process will obtain that new value when it

accesses the corresponding area of the file in its
mapped memory

» On the other hand, a process accessing a file
through mapping and another process accessing it
through conventional file I/O will not have
coherent views of the file

= Tt is not a good idea to access a mapped file with
ReadFile and WriteFile at the same time

System and Device Programming - Stefano Quer 20

File-Mapping Limitations

< Large files
» With 32-bit operating systems

= |Large files (greater than 4GB) cannot be mapped
entirely into virtual memory space

= When dealing with large files, you must create code
that carefully maps and unmaps file regions as you
need them

» With 64-bit build very large files can be mapped
< An existing file mapping cannot be expanded

> The maximum size must be known when the
mapping is created

System and Device Programming - Stefano Quer 21

% There are several problems in which two or more
synchronization primitives have to be used
together

< Example
» Two processes with several threads
» They want to work on a shared memory
= They may use a memory mapped file

» They need to protect their own R/W activity
= They may use a mutex for the critical section

» The writer (producer) need a strategy to let the
reader (consumer) know when he has done

= They may use an event

System and Device Programming - Stefano Quer

22

[

eH=CreateEvent(...);
mH=CreateMutex(...);
fmH=CreateFileMapping(...);
WaitForSingleObject(mH);
ptr=MapViewOfFile(fmH...);
... write to shared memory
SetEvent(eH);
UnmapViewOfFile(fmH);
ReleaseMutex(mH);
CloseHandle(...);

5)

Local Mutex
(for CS)

Local Mutex
(for CS)

Create a new file
mapping

Open an existing
file mapping

¢ P,

eH=CreateEvent(...); j

mH=CreateMutex(...);

fmH=0penFileMapping(...);

WaitForMultipleObjects(
[eH,mH],WAIT_ALL,...);

ptr=MapViewOfFile(fmH...);

... Read shared memory

UnmapViewOfFile(fmH);

ReleaseMutex(mH);

CloseHandle(...);

System and Device Programming - Stefano Q,i 3 23

“ Preliminaries
» An advantage of memory mapping is the ability to

use convenient memory-based algorithms to
process files

» Sorting data in memory, for instance, is much
easier than sorting records in a file

% Specification
» Write a program to sort a file with fixed-length

records

= Assumes an 8-byte sort key at the start of each
record

= Restrict the progam to deal with fix-size records

':,z

System and Device Programming - Stefan i 24

» Use the C library function gsort to sort the file

= This requires a programmer-defined record
comparison function (keyCompare)

< Logic
> Create the file mapping on a temporary copy of
the input file
» Create a single view of the file
> Sort the file
» Print the results to standard output

System and Device Programming - Stefano Quer 25

/#include \

#define DATALEN 56 }

#define KEY_SIZE 8 Definitions of the record
structure in the sort file

typedef struct RECORD {
TCHAR key[KEY_SIZE];

~
TCHAR data[DATALEN]; : Compare twr? records of
RECORD: generic cl aracters.
} RECORD; The key position and length

are global variables)

#define RECSIZE sizeof(RECORD)
typedef RECORD *LPRECORD;

int KeyCompare (LPCTSTR pKeyl, LPCTSTR pKey?2) {
return _tcsncmp (pKeyl, pKey2, KEY SIZE);

Q X
{ See tchar.h: #define _tcsncpy strncpy |

System and Device Programming - Stefano Quer 26

‘ The file name is
the first argument
AN Copy the input file to a

g _tmain (int argc, LPTSTR argv[]) { temp output file that

L will be sorted. Do not
Bl e alter the input file.
_stprintf_s (tempFile, MAX_PATH, T ("%s.tmp"), argv[1)); |
] CopyFile (argv[1], tempFile, TRUE);
2/ (argvi1] .) Open the file
T (use the
s temporary copy)
hFile = CreateFile (tempFile, GENERIC READ
_J | GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0, NULL);
if (hFile ==INVALID HANDLE_VALUE)
T Add space for "\0’
g o _ L If the file is too
GetFileSizeEx (hFile, &fileSize); large, catch that
_ fileSize.QuadPart += sizeof(TCHAR); when it is mapped

if (fileSize.HighPart > 0)
\S\ ... This file is too large to map on a Win32 system ... j

System and Device Programming - Stefano Quer -

Map file | dwProtect parameter]

L

hMap = CreateFileMapping (hFile, NULL, PAGE_READWRITE,
fileSize.HighPart, fileSize.LowPart, NULL);

| if (hMap == NULL) ... error ... wﬂ parameter]

pFile = MapViewOfFile (hMap, FILE_MAP_ALL ACCESS, 0, 0,
if (pFile == NULL) ... error ...

[Map from 0
[Sort \

gsort (pFile, (SIZE_T)fileSize.QuadPart / RECSIZE,
RECSIZE, KeyCompare);

Entire file

[#records

[Record size _
Comparison

function

J

System and Device Programming - Stefano Quer 28

e Add '\0’
(if no other “\0’ exist)
pTFile = (LPTSTR) pFile; —
pTFile[fileSize.QuadPart/sizeof(TCHAR)] = _T(\0";

termination

_tprintf (_T("%s"), pFile); Add string }

UnmapViewOfFile (pFile);
CloseHandle (hMap);

CloseHandle (hFile);
DeleteFile (tempFile); Clean and close]

return (1);

Print output file
(as a unique string)

