
Managing main memory

Memory Mapping
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2System and Device Programming – Stefano Quer

Memory Management

 Windows provides memory-mapped files to

 Associate a process’s address space with a file

 Allow the OS to manage all data movement between
the file and memory while the user just cope with
memory address space

 Permit the programmer to

manipulate data structures

without file I/O functions

 ReadFile, WriteFile,

SetFilePointer, etc.

Section 1

Section 2

…

File

*pA

*pB

Process’s
Memory
Space

3System and Device Programming – Stefano Quer

Memory Management

 The advantages to mapping the virtual memory
space directly to normal files include

 Applications can be significantly faster

 The program can maintain dynamic data structures
conveniently in permanent files

 Memory-based algorithms can process file data

● In-memory algorithms (string processing, sorts,
search trees) can directly process data

● The file may be much larger than the available
physical memory

 There is no need to manage buffers and the file
data they contain

 Multiple processes can share memory, and the file
views will be coherent

4System and Device Programming – Stefano Quer

fH = CreateFile (...);
mH = CreateFileMapping (fH, ...);
pA = MapViewOfFile (mH, ...);
pB = MapViewOfFile (mH, ...);
while () {

pB->Data = pA->Data;
pA++; pB++; ...

}
UnmapViewOfFile (pA);
UnmapViewOfFile (pB);
CloseHandle (mH);
CloseHandle (fH);

Logic

 Memory-mapped file used inside a single
process

Open a file Create a file
mapping object

Mapping two sections
of the file into two

main memory
segmets referenced

by pA and pB

Manage file through
main memory

Clean and close

5System and Device Programming – Stefano Quer

Logic

 Memory-mapped file used inside a single
process

Section 1

Section 2

…

File

pA

pB

Process’s
Memory
SpacefH = CreateFile (...);

mH = CreateFileMapping (fH, ...);
pA = MapViewOfFile (mH, ...);
pB = MapViewOfFile (mH, ...);
while () {

pB->Data = pA->Data;
pA++; pB++; ...

}
UnmapViewOfFile (pA);
UnmapViewOfFile (pB);
CloseHandle (mH);
CloseHandle (fH);

Mapping

6System and Device Programming – Stefano Quer

Virtual Address Space of P2

Read 10 from address 1032

Logic

 Memory-mapped file used to share data between
two processes

fH = CreateFile (...);
mH = CreateFileMapping (fH, ...);
p = MapViewOfFile (mH, ...);

*p = 10;

UnmapViewOfFile (p);
CloseHandle (mH);

mH = OpenFileMapping (fH, ...);
p = MapViewOfFile (mH, ...);

v = *p;

UnmapViewOfFile (p);
CloseHandle (mH);

P1 P2

Virtual Address Space of P1

Write 10 to address 2004 File

…10…

7System and Device Programming – Stefano Quer

CreateFileMapping

 Given a part of a file (eventually an entire file)
CreateFileMapping returns a mapping object

 Return value

 A file mapping handle, on success

 NULL, on failure

HANDLE CreateFileMapping (
HANDLE hFile,
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwProtect,
DWORD dwMaximumSizeHigh,
DWORD dwMaximumSizeLow,
LPCTSTR lpMapName

);

It does not really
perform the mapping

8System and Device Programming – Stefano Quer

CreateFileMapping

 Parameters

 hFile

 Handle of an already opened file

 The protection flags must be compatible with
dwProtect

 lpsa

 LPSECURITY_ATTRIBUTES

 Often NULL
HANDLE CreateFileMapping (

HANDLE hFile,
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwProtect,
DWORD dwMaximumSizeHigh,
DWORD dwMaximumSizeLow,
LPCTSTR lpMapName

);

9System and Device Programming – Stefano Quer

CreateFileMapping

 dwProtect

 How you can access the mapped file

● PAGE_READONLY

o Pages in the mapped region are read only

● PAGE_READWRITE

o Full access if hFile has both GENERIC_READ and
GENERIC_WRITE access

● PAGE_WRITECOPY

o When you change mapped memory, a copy is written to
the paging file
not to the original
file

HANDLE CreateFileMapping (
HANDLE hFile,
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwProtect,
DWORD dwMaximumSizeHigh,
DWORD dwMaximumSizeLow,
LPCTSTR lpMapName

);

10System and Device Programming – Stefano Quer

CreateFileMapping

 dwMaximumSizeHigh and dwMaximumSizeLow

 Specify the size of the mapping object

 The value 0 is used to specify the current file size

 Use 0 (actual file size) if the file in going to be
extended

 lpMapName

 Names the mapping object, allowing other
processes to share the object

 Case sensitive

 Often NULL, but not

when used

by openFileMapping

HANDLE CreateFileMapping (
HANDLE hFile,
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwProtect,
DWORD dwMaximumSizeHigh,
DWORD dwMaximumSizeLow,
LPCTSTR lpMapName

);

Two 32bit fields
32 LSBs and 32 MSBs

11System and Device Programming – Stefano Quer

OpenFileMapping

 It is possible to obtain a file mapping handle for
an existing named mapping

 To do that, specify the mapping object’s name

 This name comes from a previous call to
CreateFileMapping

 Two processes can share memory by sharing a
file mapping

 First, a process creates the named mapping uising
CreateFileMapping

 Subsequently, another processes open this
mapping with the name using OpenFileMapping

 The open will fail if the named object does not exist

12System and Device Programming – Stefano Quer

OpenFileMapping

 Parameters

 dwDesiredAccess

 The access rights to the mapped region

 See MapViewOfFile for the possible values

 bInheritHandle

 If TRUE, specifies whether the handle can be
inherited by a sub-process (created with
CreateProcess)

 If FALSE, cannot be inherited

HANDLE OpenFileMapping (
DWORD dwDesiredAccess,
BOOL bInheritHandle,
LPCTSTR lpNameP

);

13System and Device Programming – Stefano Quer

OpenFileMapping

 lpNameP

 Is that name created by CreateFileMapping

 Return value

 A file mapping handle, on success

 NULL, on failure

HANDLE OpenFileMapping (
DWORD dwDesiredAccess,
BOOL bInheritHandle,
LPCTSTR lpNameP

);

14System and Device Programming – Stefano Quer

MapViewOfFile

 Once a mapping object has been created

 The next step is to map a file into the process’s
virtual address space

 A pointer to the allocated block (or file-view) is
returned

 The main difference from a standard memory
allocation operation lies in the fact that the allocated
block is backed by a user-specified file rather than
the paging file

 Note

 The mapping view does not expand if the file size
increases

 Growing files need to be re-mapped

15System and Device Programming – Stefano Quer

MapViewOfFile

 Return value

 The starting address of the block (file view), on
success

 NULL, on failure

LPVOID MapViewOfFile (
HANDLE hMapObject,
DWORD dwAccess,
DWORD dwOffsetHigh,
DWORD dwOffsetLow,
SIZE_T dwNumberOfByteToMap

);

SIZE_T is either a
DWORD (on _WIN32) or a

DWORDLONG (on _WIN64)
depending on the compiler flag

16System and Device Programming – Stefano Quer

MapViewOfFile

 Parameters

 hMapObject

 Identifies a file-mapping object (from
CreateFileMapping or OpenFileMapping)

 dwAccess

 Is the file acces rights and must be compatible with
the mapping object’s access

● FILE_MAP_WRITE

● FILE_MAP_READ

● FILE_MAP_ALL_ACCESS

(or of the previous flags)

LPVOID MapViewOfFile(
HANDLE hMapObject,
DWORD dwAccess,
DWORD dwOffsetHigh,
DWORD dwOffsetLow,
SIZE_T dwNumberOfByteToMap

);

17System and Device Programming – Stefano Quer

MapViewOfFile

 dwOffsetHigh and dwOffsetLow

 Is the starting location of the mapped file region

 Must be a multiple of 64K

 Zero offset to map from beginning of file

 dwNumbrOfByteToMap

 Is the size in bytes of the mapped region

● SIZE_T is is defined as either a 32-bit (DWORD)

64-bit (DWORDLONG) unsigned integer

o It is helps to enable source code portability

 Zero indicates the entire file

● The map size is limited by

the 32-bit address (DWORD)

in a 32-bit build

…

LPVOID MapViewOfFile(
HANDLE hMapObject,
DWORD dwAccess,
DWORD dwOffsetHigh,
DWORD dwOffsetLow,
SIZE_T dwNumberOfByteToMap

);

18System and Device Programming – Stefano Quer

UnmapViewOfFile

 Just as it is necessary to release the memory
allocated, it is necessary to release file views

 Use UnampViewOfFile to release a file view

 Use CloseHandle to finally destroy mapping
handles

 For both OpenFileMapping and CreateFileMapping

BOOL UnmapViewOfFile (
LPVOID lpBaseAdress

);

19System and Device Programming – Stefano Quer

File-Mapping Limitations

 Coherency

 Processes that share a file through shared memory
will have a coherent view of the file

 If one process changes a mapped memory location,
the other process will obtain that new value when it
accesses the corresponding area of the file in its
mapped memory

 On the other hand, a process accessing a file
through mapping and another process accessing it
through conventional file I/O will not have
coherent views of the file

 It is not a good idea to access a mapped file with
ReadFile and WriteFile at the same time

20System and Device Programming – Stefano Quer

File-Mapping Limitations

 Large files

 With 32-bit operating systems

 Large files (greater than 4GB) cannot be mapped
entirely into virtual memory space

 When dealing with large files, you must create code
that carefully maps and unmaps file regions as you
need them

 With 64-bit build very large files can be mapped

 An existing file mapping cannot be expanded

 The maximum size must be known when the
mapping is created

21System and Device Programming – Stefano Quer

Example

 There are several problems in which two or more
synchronization primitives have to be used
together

 Example

 Two processes with several threads

 They want to work on a shared memory

 They may use a memory mapped file

 They need to protect their own R/W activity

 They may use a mutex for the critical section

 The writer (producer) need a strategy to let the
reader (consumer) know when he has done

 They may use an event

22System and Device Programming – Stefano Quer

Example

eH=CreateEvent(...);

mH=CreateMutex(...);

fmH=CreateFileMapping(...);

WaitForSingleObject(mH);

ptr=MapViewOfFile(fmH...);

... write to shared memory

SetEvent(eH);

UnmapViewOfFile(fmH);

ReleaseMutex(mH);

CloseHandle(...);

eH=CreateEvent(...);

mH=CreateMutex(...);

fmH=OpenFileMapping(...);

WaitForMultipleObjects(

[eH,mH],WAIT_ALL,...);

ptr=MapViewOfFile(fmH...);

... Read shared memory

UnmapViewOfFile(fmH);

ReleaseMutex(mH);

CloseHandle(...);

Pj

Pi

Local Mutex
(for CS)

Create a new file
mapping

Open an existing
file mapping

Local Mutex
(for CS)

23System and Device Programming – Stefano Quer

Exercise

 Preliminaries

 An advantage of memory mapping is the ability to
use convenient memory-based algorithms to
process files

 Sorting data in memory, for instance, is much
easier than sorting records in a file

 Specification

 Write a program to sort a file with fixed-length
records

 Assumes an 8-byte sort key at the start of each
record

 Restrict the progam to deal with fix-size records

24System and Device Programming – Stefano Quer

Exercise

 Use the C library function qsort to sort the file

 This requires a programmer-defined record
comparison function (keyCompare)

 Logic

 Create the file mapping on a temporary copy of
the input file

 Create a single view of the file

 Sort the file

 Print the results to standard output

25System and Device Programming – Stefano Quer

Solution

#include ...

#define DATALEN 56

#define KEY_SIZE 8

typedef struct _RECORD {

TCHAR key[KEY_SIZE];

TCHAR data[DATALEN];

} RECORD;

#define RECSIZE sizeof(RECORD)

typedef RECORD *LPRECORD;

int KeyCompare (LPCTSTR pKey1, LPCTSTR pKey2) {

return _tcsncmp (pKey1, pKey2, KEY_SIZE);

}

Definitions of the record
structure in the sort file

Compare two records of
generic characters.

The key position and length
are global variables

See tchar.h: #define _tcsncpy strncpy

26System and Device Programming – Stefano Quer

Solution

int _tmain (int argc, LPTSTR argv[]) {

... Definitions ...

_stprintf_s (tempFile, MAX_PATH, _T ("%s.tmp"), argv[1]);

CopyFile (argv[1], tempFile, TRUE);

hFile = CreateFile (tempFile, GENERIC_READ

| GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0, NULL);

if (hFile ==INVALID_HANDLE_VALUE)

...

GetFileSizeEx (hFile, &fileSize);

fileSize.QuadPart += sizeof(TCHAR);

if (fileSize.HighPart > 0)

... This file is too large to map on a Win32 system ...

Open the file
(use the

temporary copy)

Copy the input file to a
temp output file that
will be sorted. Do not

alter the input file.

If the file is too
large, catch that

when it is mapped

Add space for ‘\0’

The file name is
the first argument

27System and Device Programming – Stefano Quer

Solution

hMap = CreateFileMapping (hFile, NULL, PAGE_READWRITE,

fileSize.HighPart, fileSize.LowPart, NULL);

if (hMap == NULL) ... error ...

pFile = MapViewOfFile (hMap, FILE_MAP_ALL_ACCESS, 0, 0, 0);

if (pFile == NULL) ... error ...

qsort (pFile, (SIZE_T)fileSize.QuadPart / RECSIZE,

RECSIZE, KeyCompare);

Sort

Map file dwProtect parameter

dwProtect parameter

Map from 0 Entire file

#records

Record size
Comparison

function

28System and Device Programming – Stefano Quer

Solution

pTFile = (LPTSTR) pFile;

pTFile[fileSize.QuadPart/sizeof(TCHAR)] = _T('\0');

_tprintf (_T("%s"), pFile);

UnmapViewOfFile (pFile);

CloseHandle (hMap);

CloseHandle (hFile);

DeleteFile (tempFile);

return (1);

}

Print output file
(as a unique string)

Clean and close

Add ‘\0’
(if no other ‘\0’ exist)

Add string
termination

