
Synchronization

Synchronization (Part B)
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2System and Device Programming – Stefano Quer

Objectives

 Windows advanced synchronization techniques
include

 Events

 Semaphore throttles

 Thread pools

Used with "lots" of threads,
when thread context
switching is very time

consuming

Chapters 8 and 9
of J. M. Hart

3System and Device Programming – Stefano Quer

Events

 Events are kernel synchronization objects

 They

 Are useful in sending a signal to a thread
indicating that a particular event has occurred

 Remind, UNIX signals and condition variables

 Have an additional capability with respect to
previous synch strategies as they can release
multiple threads from a wait simultaneously
when a single event is signaled

 Remind, UNIX condition variable broadcast

4System and Device Programming – Stefano Quer

Events

 Events objects must be

 Created using CreateEvent

 When they are created their type, either even or
pulse, is selected

 Signalled using PulseEvent or SetEvent

 Reset with Automatic or Manual Reset

 Waited-for using WFSO or WFMO

 Overall, there are four combinations with very
different behavior

5System and Device Programming – Stefano Quer

Events

Auto-Reset Manual-Reset

SetEvent

Exactly one thread is
released.
If none are currently
waiting on the event, the
next thread to wait will be
released.

All currently waiting threads
are released.
The event remains signaled
until it is explicitly reset by
some thread.

PulseEvent

Exactly one thread is
released, but only if a
thread is currently waiting
on the event.

All currently waiting threads
are released.
Then the event is
automatically reset.

1 T is released From 1 to n Ts
are released

Ts are released
in t=[0,∝]

Ts are released
in t=[0]

auto manual

1 N

6System and Device Programming – Stefano Quer

CreateEvent

 Create a new event object

 Parameters

 lpsa

 Often NULL

 fManualReset

 TRUE, for manual-reset event

 FALSE, otherwise (auto-reset event)

HANDLE CreateEvent (
LPSECURITY_ATTRIBUTES lpsa,
BOOL fManualReset,
BOOL fInitialState,
LPTCSTR eventName

);

7System and Device Programming – Stefano Quer

CreateEvent

 fInitialState

 The event is initially set to signaled if it is TRUE

 Often FALSE

 eventName

 Name of the even (named event)

 It is possible to use OpenEvent to open a named
event, possibly created by another process

HANDLE CreateEvent (
LPSECURITY_ATTRIBUTES lpsa,
BOOL fManualReset,
BOOL fInitialState,
LPTCSTR eventName

);

8System and Device Programming – Stefano Quer

SetEvent

 With SetEvent

 If the event is manual-reset, the event remains
signaled until some thread calls ResetEvent for
that event

 A ResetEvent put the event explicitly to the non-
signaled state

 Any number of waiting threads, or threads that
subsequently begin wait operations for the specified
event object by calling one of the wait function, can
be released while the object's state is signaled

BOOL SetEvent (HANDLE hEvent);

9System and Device Programming – Stefano Quer

SetEvent

 If the event is automatic-reset, the event object
remains signaled until a single waiting thread is
released

 When a thread is released the system
automatically sets the state to non-signaled

 If no threads are waiting, the event object's state
remains signaled until a thread is realeased

BOOL SetEvent (HANDLE hEvent);

10System and Device Programming – Stefano Quer

ResetEvent

 The ResetEvent function is used primarily for
manual-reset event objects

 Manual-reset event must be set explicitly to the
non-signaled state

 Auto-reset event objects do not need ResetEvent

 They are automatically changed from signaled to
non-signaled after a single waiting thread is released

 Return value

 Non-zero, if the function succeeds

 Zero, if the function fails

BOOL ResetEvent (HANDLE hEvent);

11System and Device Programming – Stefano Quer

PulseEvent

 PulseEvent allows you to release all threads
currently waiting on a manual-reset event

 The event is then automatically reset to the non-
signaled state after releasing the appropriate
number of waiting threads

 If no threads are waiting, or if no thread can be
released immediately, PulseEvent simply sets the
event object's state to non-signaled and returns

BOOL PulseEvent (HANDLE hEvent);

12System and Device Programming – Stefano Quer

PulseEvent

 Return value

 Non-zero, if the function succeeds

 Zero, if the function fails

BOOL PulseEvent (HANDLE hEvent);

13System and Device Programming – Stefano Quer

Wait for Events

 Events are waited for using the general functions
WFSO and WFMO

 Be careful when using WaitForMultipleObjects
to wait for all events to become signaled

 A waiting thread will be released only when all
events are simultaneously in the signaled state

 Unfortunately, some signaled events might be reset
before the thread is released

14System and Device Programming – Stefano Quer

Example

 Use an event object to prevent several threads
from reading from the same shared memory
buffer the same value

 More specifically

 A boss writing thread

 Writes a new data field into a buffer

 Sets the event object to the signaled state when it
has finished writing

 Several worker reader threads

 Wait for the data to be ready

 Only one of them, reads the data field from the
buffer

15System and Device Programming – Stefano Quer

Example

HANDLE writeEvent;
...
writeEvent = CreateEvent (
NULL, // default security attributes
TRUE, // manual-reset event
FALSE, // initial state is nonsignaled
TEXT("WriteEvent") // object name

);
if (writeEvent == NULL) {
printf("CreateEvent failed (%d)\n", GetLastError());
return;

}

... Create 1 Writer thread and n Reader threads ...

... Wait for all Threads ...

CloseHandle (writeEvent);

Main program

WriteToBuffer ReadFromBuffer

16System and Device Programming – Stefano Quer

Example

void WriteToBuffer (VOID) {
... Write to the shared buffer
if (!SetEvent(writeEvent)) {

printf("SetEvent failed (%d)\n", GetLastError());
return;

}
}

The event objects is used to
prevent several threads from

reading from the shared memory
buffer

1 Writer Thread

17System and Device Programming – Stefano Quer

Example

void ReadFromToBuffer (VOID) {
DWORD waitResult;

waitResult = WaitForSingleObject (writeEvent, INFINITE);
switch (waitResult) {
// Event object was signaled
case WAIT_OBJECT_0:
... Read from the shared buffer ...

// An error occurred
default:
printf("Wait error (%d)\n", GetLastError());
return;

}
...
return;

}

N Reader Threads

18System and Device Programming – Stefano Quer

Warnings

 There are numerous subtle problems using
events

 Setting an event that is already set has no effect

 There is no memory

 Multiple SetEvent may be lost

 Resetting an event that is already reset has no
effect

19System and Device Programming – Stefano Quer

Warnings

 PulseEvent is unreliable and should not be used

 The event may be lost

 A thread waiting on a synchronization object can be

● Momentarily removed from the wait state by a kernel-
mode APC (Asynchrnous Procedure Call)

o For example a completion notification

● Then returned to the wait state after the APC is
complete

 If the call to PulseEvent occurs during the time when
the thread has been removed from the wait state, the
thread will not be released because PulseEvent
releases only those threads that are waiting at the
moment it is called

 It exists mainly for backward compatibility

20System and Device Programming – Stefano Quer

Synch Primitives Comparison

CS Mutex Semaphore Event

Named,
Securable
Synchronization
Object

No Yes Yes Yes

Accessible from
Multiple Ps

No Yes Yes Yes

Synchronization ECS Wait Wait Wait

Release LCS Release or
owner
terminates

Any thread can
release

Set or
Pulse

Ownership One T at a
time.
Recursive

One T at a time.
Recursive

N/A N/A

Effect of Release One
waiting T
can enter

One waiting T
can gain
ownership after
last release

Multiple Ts can
proceed,
depending on
release count

One or several
waiting Ts will
proceed after a
Set or Pulse

21System and Device Programming – Stefano Quer

Semaphore Throttles

 Scenario

 N worker Ts contend for a shared resource

 They may use a CS, a mutex or a semaphore

 Performance degradation is severe when N
increases and contention is high

 Target

 Improve performance

 Retain the simplicity of the original approach

 “Semaphore throttles”

 Use a semaphore to fix the maximum amount of
running Ts

22System and Device Programming – Stefano Quer

Semaphore Throttles

 The boss T

 Creates a semaphore

 Sets the maximum value to a “reasonable number”

 Example: 4, 8, 16

 Its value depends on the number of core or processors

 It is a tunable value

 Worker Ts must get a semaphore unit before
working

 Wait on the semaphore throttles

 Then, wait on the CS or mutex or semaphore, etc.
(to access critical section areas)

23System and Device Programming – Stefano Quer

Semaphore Throttles

while (TRUE) {
WFSO (hSem, Infinite);
...
WFSO (hMutex, Infinite);
...
ReleaseMutex (hMutex);
...
ReleaseSemaphore (hSem, 1, NULL);

}

Worker loop WFSO = Wait For Single Object

Standard Critical Section

Semaphore Throttles

If the max count for hSem is 1 (at
most 1 worker T), hMutex is useless

24System and Device Programming – Stefano Quer

Semaphore Throttles

 Variations

 Some workers may acquire multiple units

 The idea is that workers than use more resources
wait more on the throttles

 Caution

 Pay attention to deadlock risks

 The boss T may tune dynamically the worker Ts
behavior

 Decreases or increases the number of active
workers

 By waiting or releasing semaphore units

 Anyhow, the maximum number of Ts allowed is set
once and only once at initialization

Set it to
be "large
enough"

25System and Device Programming – Stefano Quer

Thread Pools

 Thread pool concepts

 The user

 Initializes a “thread pool” queue

 Creates “work objects” (or “tasks”) rather than
threads

● Each task is a callback function (equivalent to a
thread function)

● Each callback function has a unique parameter

 Inserts tasks into the queue

Available from NT 6:
Windows 7, Vista, Server 2008, etc.

26System and Device Programming – Stefano Quer

Thread Pools

 Windows automatically

 Manages a small number of worker threads

● Windows may automatically adjust the number of
workers

 Assigns a task to a worker thread that will work on
the task

 When it completes it may be assigned to a new task

 Worker threads

 Can run concurrently on separate processors

 Invokes all callbacks without stopping

● There is no context switching

 Callback functions should not use ExitThread or
_endthreadex

● This call would terminate the worker thread

27System and Device Programming – Stefano Quer

Thread Pools

 Phases

 Define a new callback environment of type
TP_CALLBACK_ENVIRON

 InitializeThreadpoolEnvironment

 Initialization call to the environment

 CreateThreadPoolWork

 Creates a work objects

 SubmitThreadPoolWork

 Submit work objects to the thread pool

"Equivalent" to CreateThread
but we do not explicitly run threads, we just

submit task to the thread pool (queue)

28System and Device Programming – Stefano Quer

Thread Pools

 WaitForThreadpoolWorkCallbacks

 Block the boss (or calling) thread until all calls to the
work object complete

 CloseThreadpoolWork

 Replace CloseHandle "Equivalent" to
WFSO

29System and Device Programming – Stefano Quer

Thread Pools

 This function initializes a callback environment

 The structure TP_CALLBACK_ENVIRON defines the
callback environment to initialize

 This function must be called before using any the
API functions reported in the following pages

 There is no return value

void InitiazeTreadpooldEnvironment (
PTP_CALLBACK_ENVIRON pcbe

); To next function

30System and Device Programming – Stefano Quer

Thread Pools

 This system call is "equivalent" to CreateThread

 It creates a new work object within the callback
environment pcbe

 It must be called once for every task (i.e., thread)
we want to solve

PTP_WORK CreateThreadpoolWork (
PTP_WORK_CALLBACK pfnwk,
PVOID pv,
PTP_CALLBACK_ENVIRON pcbe

);

pwk

From previous function

To next function

31System and Device Programming – Stefano Quer

Thread Pools

 Parameters

 pfnwk is the callback function (the "thread"
function)

 pv is the parameter of this function

 pcbe is the enviroment

 Return value

 The task pwk, in case of success

 This work object is not ready to run yet as it must
be submitted to the thread pool

 NULL, in case

of failure

PTP_WORK CreateThreadpoolWork (
PTP_WORK_CALLBACK pfnwk,
PVOID pv,
PTP_CALLBACK_ENVIRON pcbe

);

32System and Device Programming – Stefano Quer

Thread Pools

 This system call submits a new work object pwk
to the thread pool

 pwk is the work object

 It was returned by function CreateThreadPoolWork

 The callback function associated with pwk will be
called once for every SubmitThreadpollWork call

 This call should never fail if pwk is valid as all
resources have been previously allocated

 The kernel decides which thread to use

VOID SubmitThreadpoolWork (
PTP_WORK pwk

);

From previous function

33System and Device Programming – Stefano Quer

Thread Pools

 This function allows the boss thread to wait for
all submitted work objects to be completed

 It is usually called by the boss thread once for
each submitted work objects

 It also allows the boss thread to cancel still
pending work objects

 This function does not have a timeout

 It is not possible to try-wait on the pool

VOID WaitForThreadpoolWorkCallbacks (
PTP_WORK pwk,
BOOL fCancelPendingCallbacks

);

34System and Device Programming – Stefano Quer

Thread Pools

 Parameters

 pwk is the work object

 It was returned by function CreateThreadPoolWork

 It fCancelPendingCallbacks is true it is possible
to cancel a work object

 Only work objects not yet started can be cancelled,
all others run to completion

VOID WaitForThreadpoolWorkCallbacks (
PTP_WORK pwk,
BOOL fCancelPendingCallbacks

);

35System and Device Programming – Stefano Quer

Thread Pools

 This function releases the specifies work object

 pwk is the work object

 It was returned by function CreateThreadPoolWork

 The work object is

 Freed immediately, if there are no outstanding
callbacks

 Freed asynchronously, after the outstanding
callbacks complete

 There is no return value

VOID CloseThreadpoolWork (
PTP_WORK pwk

);

36System and Device Programming – Stefano Quer

Thread function

 With thread pools the thread function assumes
the name of "callback " function

 Callback functios, as standard thread functions,
must have a pre-defined prototype

 Windows will call this function once for every
SubmitThreadpoolWork invocation

37System and Device Programming – Stefano Quer

Thread function

 Parameter

 Instance identifies a specific callback instance

 It may be passed on to other functions, such as
SetEventWhenCallbackReturns, …

 It provides Windows with specific information about
this instance that may help in the scheduling

● The instance may execute for a short or a long time

● Often, callback functions are expected to execute
quickly

VOID CALLBACK WorkCallback (
PTP_CALLBACK_INSTANCE Instance,
PVOID Context,
PTP_WORK pwk

);

38System and Device Programming – Stefano Quer

Thread function

 Context it the parameter of the function

 It was specified during the call to
CreateThreadpoolWork

 pwk is the work object

 It was returned by function CreateThreadPoolWork

VOID CALLBACK WorkCallback (
PTP_CALLBACK_INSTANCE Instance,
PVOID Context,
PTP_WORK pwk

);

39System and Device Programming – Stefano Quer

Example

TP_CALLBACK_ENVIRON cbe;
...
InitializeThreadpoolEnvironment (&cbe);

 Solve a concurrent problem using a thread pool
to run threads instead of running them explicitly

 Initialize the thread pool

 Submit work objects to the thread pool

 Wait for all tasks to be completed

 Clean-up the pool

Initialize the
environment

Define a new callback environment

40System and Device Programming – Stefano Quer

Example

for (i=0; i<nThread; i++) {
...
pThreadArg->objectNumber = i;
...
pWorkObjects[i] = CreateThreadpoolWork (

Worker, pThreadArg, &cbe);
if (pWorkObjects[i] == NULL)

... error ...
SubmitThreadpoolWork (pWorkObjects[i);

}

for (i=0; i<nThread; i++) {
WaitForThreadpoolWorkCallbacks (

pWorkObjects[i], FALSE);
CloseThreadpoolWork (pWorkObjects[i]);

}

Create work objects

Wait for thread and destroy
work objects

Submit work
to the pool

Main (boss thread)

Thread pool work
objects are running …

41System and Device Programming – Stefano Quer

Example

VOID CALLBACK Worker (
PTP_CALLBACK_INSTANCE Instance,
PVOID Context,
PTP_WORK Work)

{
THARG *threadArgs;

threadArgs = (THARG *)Context;
_tprintf (_T("Worker Thread Number: %d.\n"),

threadArgs->objectNumber);

...

return;
}

Thread callback function

