
Synchronization

Synchronization (Part A)
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2System and Device Programming – Stefano Quer

Objectives

 To synchronize threads (and processes) in
Windows we must understand

 The various Windows synchronization mechanisms

 Volatile Variables

 Interlocked functions

 Critical Sections

 Mutexes

 Semaphores

 Events

 How to differentiate synchronization object
features

 How to select among them

File locking, WFSO and
WFMO are simple form of

synchronization

kernel objects
(they have HANDLEs).
They can be used for

inter-process synchronization

3System and Device Programming – Stefano Quer

Volatile variables

 When a variable is modified, a thread may hold
its value in a register

 If the variable is not copied back to memory the
change is not visible to other threads

 The ANSI C volatile quantifier ensures that

 The variable will be always fetched from memory
before use

 The variable will be always stored to memory after
modification

 Volatile variables must be declare as

 volative DWORD var;

i++;


register = i
register++
i = registerInterlocked functions

need volatile variables

4System and Device Programming – Stefano Quer

Volatile variables

 The volatile quantifier

 Informs the compiler that the variable can change
at any time

 Tells the compiler the variable must be

 Fetched from memory every time

 Stored into memory after it is modified

 This has 2 implications

 Can negatively effect performance

 Memory? Hug? Which memory?

5System and Device Programming – Stefano Quer

Volatile variables

 Unfortunately, even if a variable is volatile a
processor may hold its value into the cache
memory

 In multi-core architectures each core has its own
cache (level 1 and level 2) memory

 Each thead may copy the variable into its own
cache before committing it into the main memory

 There is no assurance that the new value (even
if the object is volatile) will be visible to
threads running on other cores

6System and Device Programming – Stefano Quer

Volatile variables

 This behavior may alter the order in which
different processor may modify it

 To ensure that changes are visible by all
processors we must use "memory fences" (or
"memory barriers")

 A memory fence assures that the value is moved to
main memory

 A memory fence assures cache coherence

 All the following synchronization functions may act
as memory fences

 Obviously there is a cost, as moving data between
main and memory, cache memory, and cores is
expensive (hundreds of cycles)

7System and Device Programming – Stefano Quer

Interlocked Functions

 If we simply need to manipulate signed numbers,
interlocked functions will suffice

 Limited to increment or decrement variables

 Can not directly solve general mutual exclusion
problems

 Operations take place in the user space

 No kernel call

 Easy to use

 No deadlock risk

 Faster than any other alternative

 Variables need to be volatile

i++, i--

i= j*k+23
vet[i]=val

8System and Device Programming – Stefano Quer

Interlocked Functions

LONG InterlockedIncrement (LONG volatile *lpAddend) ;
LONG InterlockedIncrement64 (LONGLONG volatile *lpAddend);

LONG InterlockedDecrement (LONG volatile *lpAddend) ;
LONG InterlockedDecrement64 (LONGLONG volatile *lpAddend);

 They increment (decrement) the volatile variable
in an atomic way

 Notice that the resulting value may be changed
(by another T or P) before it is used

There are 32-bit and 64-bit versions of interlocked functions.
64-bit integer access is not atomic on 32-bit systems

Signed volatile object

Interlocked... (vi);
... use variable vi ...

9System and Device Programming – Stefano Quer

Interlocked Functions

 Other interlocked functions

 InterlockedExchange

 Stores a variable into another and return the original
value

 InterlockedExchangeAdd

 Adds the second operand to the first

 InterlockedCompareExchange

 InterlockedAnd

 InterlockedOr

 InterlockedXor

 InterlockedCompare64Exchange128

With 8, 16, 32 and 64-bit versions

See Hart, end of Chapter 8

10System and Device Programming – Stefano Quer

Critical Sections

 Critical sections (CSs) can only be used to
synchronize Ts within a (unique, single) process

 They are not kernel objects

 Thus, among synch objects, are often the most
efficient one

 “Fast mutexes”

 Apply them to as many application scenarios as
possible

 Critical section objects are

 Initialized, not created

 Deleted, not closed

11System and Device Programming – Stefano Quer

Critical Sections

 Threads enter and leave critical sections

 Only 1 thread at a time can be in a critical code
section

 There is no handle

 There is a CRITICAL_SECTION type

12System and Device Programming – Stefano Quer

Critical Sections

CRITICAL_SECTION CriticalSection;

VOID InitializeCriticalSection (
LPCRITICAL_SECTION lpcsCriticalSection

) ;

VOID DeleteCriticalSection (
LPCRITICAL_SECTION lpcsCriticalSection

);

Object definition

Object initialization
InitializeCriticalSection (&CriticalSection);

Object deletion
DeleteCriticalSection (&CriticalSection);

13System and Device Programming – Stefano Quer

Critical Sections

VOID EnterCriticalSection (
LPCRITICAL_SECTION lpcsCriticalSection

);

BOOL TryEnterCriticalSection (
LPCRITICAL_SECTION lpcsCriticalSection

);

VOID LeaveCriticalSection (
LPCRITICAL_SECTION lpcsCriticalSection

);

Blocks a thread if another
thread is in (“owns”) the section

Use this API to avoid
blocking. TRUE is returned

when the CS can be entered

The waiting thread unblocks when the
“owning” thread executes LeaveCriticalSection

A thread must leave a
CS once for every

time it entered

A thread can enter a CS more
than once (“recursive”)

14System and Device Programming – Stefano Quer

Critical Sections and _finally

 Always be certain to leave a CS

 How can we make sure a thread leaves a critical
section?

 Use a try and _finally block

 Even if someone later modifies your code

 This technique also works with file locks and the
other synchronization objects discussed next

CRITICAL_SECTION cs;
...

InitializeCriticalSection (&cs);
...

EnterCriticalSection (&cs);
_try { ... }
_finally { LeaveCriticalSection (&cs); }

See C++ section for
further details

15System and Device Programming – Stefano Quer

Example

CRITICAL_SECTION csM, csN;
volatile DWORD M = 0, N = 0;
ICS (&csM); ICS (&csN);

...
DWORD ThreadFunc (...) {

ECS (&csM); ECS (&csN);
M = ++N; N = M - 2;
LCS (&csN); LCS (&csM);

...

ECS (&csN); ECS (&csM);
M = N--; N = M + 2;
LCS (&csN); LCS (&csM);

}

CRITICAL_SECTION cs1, cs2;
volatile DWORD N = 0;
ICS (&cs1); ICS (&cs2);

...
DWORD ThreadFunc (...) {

ECS (&cs1);
N = N - 2;
LCS (&cs1);

...

ECS (&cs2);
N = N + 2;
LCS (&cs2);

}

ECS  EnterCriticalSection

LCS  LeaveCriticalSection

ICS  InitializeCriticalSection

This thread code section
does not guarantee ME

How would you fix it?

16System and Device Programming – Stefano Quer

Example

CRITICAL_SECTION cs1, cs2;
volatile DWORD N = 0, M = 0;
ICS (&cs1); ICS (&cs2);

...
DWORD ThreadFunc (...) {

ECS (&cs1); ECS (&cs2);
N = N - 2; M = M + 2;
LCS (&cs1); LCS (&cs2);

...

ECS (&cs2); ECS (&cs1);
N = N + 2; M = M – 2;
LCS (&cs2); LCS (&cs1);

}
How would you fix it?

HRU = Hierarchical Resource Usage

ECS  EnterCriticalSection

LCS  LeaveCriticalSection

ICS  InitializeCriticalSection

This thread code section
can cause a deadlock

17System and Device Programming – Stefano Quer

Critical Sections

 CSs test the lock in user-space

 Fast, there is no kernel call

 Threads wait in kernel space

 Almost always faster than mutexes

 Factors include number of threads, number of
processors, and amount of thread contention

18System and Device Programming – Stefano Quer

Critical Sections and Spin Locks

 When a CS is owned by a thread and another
thread executes the CS the original thread

 Enters the kernel

 Blocks until the CS is released

 Even if CS are fast, the entire process may be
quite time consuming

19System and Device Programming – Stefano Quer

Critical Sections and Spin Locks

 Sometimes, it may be beneficial (faster) to use
spin-lock variants

 InitializeCriticalSectionAndSpinCount

 SetCriticalSectionSpinCount

 Etc.

 They should be used

 On multi-core machines (only)

 When there is high contention among Ts on the CS

 The CS is hold for only few instructions

20System and Device Programming – Stefano Quer

Mutexes

 Mutex (mutual exclusion) objects

 Can be named and have HANDLEs

 They are kernel objects

 They can be used for interprocess synchronization

 They are owned by a thread rather than a process

 Mutexes are recursive

 A thread can acquire a specific mutex several
times without blocking but it must release the
mutex the same number of times

 This feature can be convenient, for example, with
nested transactions

21System and Device Programming – Stefano Quer

Mutexes

 A mutex can be checked (polled) to avoid blocking

 A mutex becomes “abandoned” if its owning
thread terminates

 Abandoned mutex are automatically signaled

 This feature (not present with CSs) allow safer use
of mutexes

 Mutex are

 Created (with CreateMutex)

 Waited for (with WFSO or WFMO)

 Released (with ReleaseMutex)

Already introduced with
thread essentials

22System and Device Programming – Stefano Quer

Mutexes

 It returns a new mutex handle

 A NULL value indicates a failure

 Parameters

 lpsa

 Security attributes (already describe in other API
calls)

 Usually NULL

HANDLE CreateMutex(
LPSECURITY_ATTRIBUTES lpsa,
BOOL fInitialOwner,
LPCTSTR lpszMutexName

);

23System and Device Programming – Stefano Quer

Mutexes

 fInitialOwner is a flag

 If it is TRUE, it gives the calling thread immediate
ownership of the new mutex

 It is ignored if the mutex already exists

 lpszMutexName is the mutex name

 It points to a null-terminated pathname

 Pathnames are case sensitive

 Mutexes are unnamed if the parameter is NULL

HANDLE CreateMutex(
LPSECURITY_ATTRIBUTES lpsa,
BOOL fInitialOwner,
LPCTSTR lpszMutexName

);

24System and Device Programming – Stefano Quer

Mutexes

 It frees a mutex that the calling thread owns

 Fails if the T does not own it

 If a mutex is abandoned, a wait will return
WAIT_ABANDONED_0

 This is one of the possible return value for the API
WaitForMultipleObjects

BOOL ReleaseMutex (HANDLE hMutex);

25System and Device Programming – Stefano Quer

Mutex Naming

 A mutex can be named if it is to be used by more
than one process

 Mutexes, semaphores, events, memory mapped
objects, waitable timers, all processes share the
same name space

 Pay attention to name collisions

 Name objects carefully

 Don’t name a mutex used in a single process

26System and Device Programming – Stefano Quer

Mutexes

 It opens an exiting named mutex

 It allow synch among Ts in different Ps

 A CreateMutex in one P must precede an
OpenMutex in another P

 Alernatively, all Ps can use CreateMutex

 CreateMutex will fail if one mutex has already been
created

HANDLE OpenMutex(
DWORD desiredAccess,
BOOL inheritHandle,
LPCTSTR lpszMutexName

);

Google the system
call for more details

27System and Device Programming – Stefano Quer

Mutex Naming

 Process interaction with a named mutex

 Same name space as used for mem maps, …

...
H = OpenMutex (... “mutexName” ...);

...
H = CreateMutex (... “mutexName” ...);

PROCESS2

PROCESS1

28System and Device Programming – Stefano Quer

Semaphores

 A semaphore combines event and mutex
behavior

 Can be emulated with one of each and a counter

 Semaphores maintain a count

 No ownership concept

 The semaphore object is

 Signaled when the count is greater than zero

 Not signaled when the count is zero

See next section

29System and Device Programming – Stefano Quer

Semaphores

 A semaphore must be

 Created

 Waited for

● Ts (Ps) wait in the normal way, using one of the wait
functions (WaitForsingleObject or WaitForMultipleObjects)

● It is just possible to decrement the count by one

 Released

● When a waiting thread is released, the semaphore’s
count is incremented by one

● It is possible to increment the counter by any value up to
the maximum value

● Any thread can release

o Not restricted to the thread that “acquired” the semaphore

30System and Device Programming – Stefano Quer

Semaphores

 It returns the semaphore handle

 Parameters

 lpsa

 Usually NULL for us

 cSemInitial

 Is the initial value for the semaphore

HANDLE CreateSemaphore (
LPSECURITY_ATTRIBUTES lpsa,
LONG cSemInitial,
LONG cSemMax,
LPCTSTR lpszSemName

);

31System and Device Programming – Stefano Quer

Semaphores

 cSemMax is the maximum value for the semaphore

 It must be

● 0 <= cSemInitial <= cSemMax

 lpszSemName is the semaphore name

 Often NULL, we manipulate it using its handle

HANDLE CreateSemaphore (
LPSECURITY_ATTRIBUTES lpsa,
LONG cSemInitial,
LONG cSemMax,
LPCTSTR lpszSemName

);

32System and Device Programming – Stefano Quer

Semaphores

 A release operation can increase the counter by
any value

 Notice that any wait decrease the counter by one
only

 Parameters

 hSemaphore is the semaphore handle

BOOL ReleaseSemaphore (
HANDLE hSemaphore,
LONG cReleaseCount,
LPLONG lpPreviousCount

);

33System and Device Programming – Stefano Quer

Semaphores

 cRealeaseCount is the increment value

 It must be greater than zero

 If it would cause the semaphore count to exceed the
maximum, the call will return FALSE and the count
will remain unchanged

 lpPreviousCount is the previous value of the
counter

 The pointer can be NULL if you do not need this
value

BOOL ReleaseSemaphore (
HANDLE hSemaphore,
LONG cReleaseCount,
LPLONG lpPreviousCount

);

34System and Device Programming – Stefano Quer

Example

 Solution

 Treat the loop on WFSO as a critical section,
guarded by a CS (e.g., ECS & LCS) or a mutex

 A multiple wait semaphore can be created with an
event, mutex, and counter

WaitForSingleObject (hSem, INFINITE);
WaitForSingleObject (hSem, INFINITE);
...
ReleaseSemaphore (hSem, 2, &previousCount);

This is a potential
deadlock in a

thread function

Notice again that there is no “atomic” wait for
multiple semaphore units, but it is possible to release

multiple units atomically.

35System and Device Programming – Stefano Quer

Exercise

 Write a C application able to manage bank
accounts with the following specs

 All bank accounts, with their current balaces, are
defined in an ACCOUNT binary file

 All operations done on these bank accounts are
defined in an OPERATION binary file

ACCOUNT

1 100000 Romano Antonio 1250
2 150000 Fabrizi Aldo 2245
3 200000 Verdi Giacomo 11115
4 250000 Rossi Luigi 13630

OPERATION

1 100000 Romano Antonio +50
3 200000 Verdi Giacomo +115
1 100000 Romano Antonio +250
1 100000 Romano Antonio -55
3 200000 Verdi Giacomo -1015

id, bank account
number, last anf first

name, balance

id, bank account
number, …, bank

withdrawal or deposit

36System and Device Programming – Stefano Quer

Exercise

 The application

 Receives N parameters on the command line

 The first parameter is the name of an ACCOUNT file

 All other parameters indicate the name of
OPERATION files

 Opens the ACCOUNT file, and then run one thread
for each OPERATION file

 Each thread reads one OPERATION file and it
performs on the ACCOUNT file the set of
operations specified in that file

 When all OPERATION files have been managed the
program must display the final balance for all bank
accounts in the ACCOUNT file

Report 4 solutions:
lock, critical section,

mutexes, semaphores

37System and Device Programming – Stefano Quer

Solution

 The presented implementation

 Includes 4 different solutions, each one adopting a
different synchronization mechanism

 Set the corresponding flag to true (1) to enable the
corresponding solution

 Includes two main data structures

 The first one to read from file

#define FL 1 // File Locking
#define CS 0 // Critical Sections
#define MT 0 // Mutexes
#define SE 0 // Semaphores

#typedef struct files {
...

};

38System and Device Programming – Stefano Quer

Solution

 The second one as a thread parameter

 The main program

 Open the ACCOUNT file

 Create all threads

 Initialize synch primitives

 Wait for all threads

typedef struct threads {
LPTSTR nameAccount;
HANDLE hAccount;
LPTSTR nameOperation;

} threads_t;

File Locking: Threads
share filename and have

different file handles

Other synch strategies:
Threads share the same

file handle

Local OPERATION file
name

39System and Device Programming – Stefano Quer

Solution

 Each thread function

 If file locking is used, open the "unique" ACCOUNT
file

 Open its "personal" OPERATION file

 Cycle through the following opeartions

● Read the next operation from the OPERATION file

● Protect the correct record within the ACCOUNT file

● Apdate balance (critical section)

● Unprotect that record

