Synchronization

Synchronization (Part A)
Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

System and Device Programming - Stefano Quer 2

Objectives

% To synchronize threads (and processes) in
Windows we must understand

» The various Windows synchronization mechanisms
= Volatile Variables
= Interlocked functions
= Critical Sections

= Mutexes kernel objects R

- mabhor (they have HANDLES).
Semaphores They can be used for

= Events inter-process synchronization)

» How to differentiate synchronization object
features

» How to select among them

WFMO are simple form of

File locking, WFSO and
synchronization

System and Device Programming - Stefano Quer 3

VLI BV ERE L E DI ES

<+ When a variable is modified, a thread may hold
its value in a register
> If the variable is not copied back to memory the
change is not visible to other threads
» The ANSI C volatile quantifier ensures that

= The variable will be always fetched from memory
before use

= The variable will be always stored to memory after
modification >
> Volatile variables must be declare as i+;r;
= volative DWORD var, register = |

register++
Interlocked functions _ 1 = register /
need volatile variables

System and Device Programming - Stefano Quer 4

VLI BV ERE L E DI ES

% The volatile quantifier

» Informs the compiler that the variable can change
at any time
> Tells the compiler the variable must be
= Fetched from memory every time
= Stored into memory after it is modified
» This has 2 implications
= Can negatively effect performance
= Memory? Hug? Which memory?

System and Device Programming - Stefano Quer 5

Volatile variables

< Unfortunately, even if a variable is volatile a
processor may hold its value into the cache
memory

» In multi-core architectures each core has its own
cache (level 1 and level 2) memory

» Each thead may copy the variable into its own
cache before committing it into the main memory

» There is no assurance that the new value (even
if the object is volatile) will be visible to
threads running on other cores

System and Device Programming - Stefano Quer 6

VLI BV ERE L E DI ES

<+ This behavior may alter the order in which
different processor may modify it
» To ensure that changes are visible by all

processors we must use "memory fences" (or
"memory barriers")

= A memory fence assures that the value is moved to
main memory

= A memory fence assures cache coherence
> All the following synchronization functions may act
as memory fences

= Obviously there is a cost, as moving data between
main and memory, cache memory, and cores is
expensive (hundreds of cycles)

System and Device Programming - Stefano Quer 7

Interlocked Functions

< If we simply need to manipulate signed numbers,

interlocked functions will suffice P

» Limited to increment or decrement variables
= Can not directly solve general mutual exclusion

problems R
= j*
» Operations take place in the user space vef][i]=val]

= No kernel call
= Easy to use

= No deadlock risk
= Faster than any other alternative

> Variables need to be volatile

System and Device Programming - Stefano Quer 8

Signed volatile object

C)

LONG Interlockedincrement (LONG volatile *IpAddend) :
LONG InterlockedIincrement64 (LONGLONG volatile *IpAddend);

LONG InterlockedDecrement (LONG volatile *IpAddend) ;
LONG InterlockedDecrement64 (LONGLONG volatile *IpAddend);

&)

There are 32-bit and 64-bit versions of interlocked functions.
64-bit integer access is not atomic on 32-bit systems

% They increment (decrement) the volatile variable
In an atomic way

> Notice that the resulting value may be changed
(by another T or P) before it is used

| Interlocked... (vi);
(... use variable vi ...

System and Device Programming - Stefano Quer 9

Interlocked Functions

< Other interlocked functions S8 Ll Gl OGRS ¢ }
» InterlockedExchange

= Stores a variable into another and return the original
value

> InterlockedExchangeAdd
= Adds the second operand to the first

» InterlockedCompareExchange

> InterlockedAnd
> InterlockedOr With 8, 16, 32 and 64-bit versions J
> InterlockedXor

» InterlockedCompare64Exchangel128

System and Device Programming - Stefano Quer - 10

Critical Sections

% Critical sections (CSs) can only be used to
synchronize Ts within a (unique, single) process

» They are not kernel objects

» Thus, among synch objects, are often the most
efficient one

= “Fast mutexes”

> Apply them to as many application scenarios as
possible

% Critical section objects are
» Initialized, not created
> Deleted, not closed

':,z

System and Device Programming - Stefano Quer 11

Critical Sections

2 Threads enter and leave critical sections

» Only 1 thread at a time can be in a critical code
section

» There is no handle
> There is a CRITICAL_SECTION type

System and Device Programming - Stefano Quer 12

Critical Sections

/ Object definition]
CRITICAL SECTION CriticalSection: /(J

Object initialization
InitializeCriticalSection (&CriticalSection);

VOID InitializeCriticalSection (
LPCRITICAL_SECTION IpcsCiriticalSection

);

Object deletion
DeleteCriticalSection (&CriticalSection);

VOID DeleteCriticalSection (
LPCRITICAL_SECTION IpcsCiriticalSection

Ik
¥ %

System and Device Programming - Stefano Quer

A thread can enter a CS more

13

Critical Sections

than once (“recursive”)

VOID EnterCriticalSection (
LPCRITICAL_SECTION IpcsCiriticalSection

);

BOOL TryEnterCriticalSection (
LPCRITICAL_SECTION IpcsCiriticalSection

Blocks a thread if another
thread is in (“owns”) the section

Use this API to avoid
blocking. TRUE is returned
when the CS can be entered

);
The waiting thread unblocks when the
“owning” thread executes LeaveCiriticalSection

VOID LeaveCriticalSection (
LPCRITICAL_SECTION IpcsCiriticalSection

);

\ A thread must leave a w J

time it entered

L CS once for every

System and Device Programming - Stefano Quer 14

Critical Sections and _finally

< Always be certain to leave a CS
» How can we make sure a thread leaves a critical

section? /J See C++ section for J
> Use a try and _finally block L IUlETErEEElE
= Even if someone later modifies your code

= This technique also works with file locks and the
other synchronization objects discussed next

(CRITICAL_SECTION CS; :
InitializeCriticalSection (&cs);
EnterCriticalSection (&cs);
_try{...}

K_finaIIy{ LeaveCriticalSection (&cs); } P

System and Device Programming - Stefano Quer I35

This thread code section

does not guarantee ME

CRITICAL_SECTION cs1, csz;
volatile DWORD N = 0; - _
ICS (&csl): ICS (&cs2): ICS - InitializeCriticalSection

@) 2

DWORD ThreadFunc (...) {
ECS (&csl);
N =N- 2
LCS (&csl);

ECS - EnterCriticalSection]

S

LCS - LeaveCriticalSection]

ECS (&cs?2);
N=N +2;
LCS (&cs2);

/
L How would you fix it?]

=

System and Device Programming - Stefano Quer 16

This thread code section

can cause a deadlock
7 i
CRITICAL_SECTION cs1, csz;

volatiie DWORD N =0, M = 0; - |
ICS (&csl); ICS (&cs2); ICS - InitializeCriticalSection

DWORD ThreadFunc (...) {
ECS (&csl); ECS (&cs2);
N =N-2,M=M+2;
LCS (&csl); LCS (&cs2);

ECS - EnterCriticalSection]

S

LCS - LeaveCriticalSection J

ECS (&cs2); ECS (&csl);
N=N +2;,M=M- 2;
LCS (&cs?2); LCS (&csl);

=

\r How would you fix it? J

HRU = Hierarchical Resource Usage

System and Device Programming - Stefano Quer 74

Critical Sections

% CSs test the lock in user-space
» Fast, there is no kernel call
» Threads wait in kernel space
< Almost always faster than mutexes

» Factors include number of threads, number of
processors, and amount of thread contention

System and Device Programming - Stefano Quer 18

Critical Sections and Spin Locks

< When a CS is owned by a thread and another
thread executes the CS the original thread

» Enters the kernel
> Blocks until the CS is released

% Even if CS are fast, the entire process may be
quite time consuming

System and Device Programming - Stefano Quer 19

Critical Sections and Spin Locks

<+ Sometimes, it may be beneficial (faster) to use
spin-lock variants

> InitializeCriticalSectionAndSpinCount
» SetCriticalSectionSpinCount
» Etc.
» They should be used
» On multi-core machines (only)
» When there is high contention among Ts on the CS
» The CS is hold for only few instructions

System and Device Programming - Stefano Q,i 3 20

<+ Mutex (mutual exclusion) objects
» Can be named and have HANDLEs
» They are kernel objects
» They can be used for interprocess synchronization
» They are owned by a thread rather than a process

» Mutexes are recursive

= A thread can acquire a specific mutex several
times without blocking but it must release the
mutex the same number of times

= This feature can be convenient, for example, with
nested transactions

System and Device Programming - Stefano Quer 21

» A mutex can be checked (polled) to avoid blocking

» A mutex becomes “abandoned” if its owning
thread terminates

= Abandoned mutex are automatically signaled

= This feature (not present with CSs) allow safer use
of mutexes

< Mutex are Already introduced with 1
> Created (with CreateMutex) 2 thread essentials
» Waited for (with WFSO or WFMO)
> Released (with ReleaseMutex)

System and Device Programming - Stefano Quer - 22

4)
HANDLE CreateMutex(

LPSECURITY_ATTRIBUTES Ipsa,
BOOL fInitialOwner,
LPCTSTR IpszMutexName

);

. J

*» It returns a new mutex handle
» A NULL value indicates a failure

+» Parameters

> |Ipsa

= Security attributes (already describe in other API
calls)

= Usually NULL

System and Device Programming - Stefano Quer 23

> fInitialOwner is a flag

= If it is TRUE, it gives the calling thread immediate
ownership of the new mutex

= Tt is ignored if the mutex already exists
> IpszMutexName is the mutex name
= It points to a null-terminated pathname

» Pathnames are case sensitive
= Mutexes are unnamed if the parameter is NULL

" HANDLE CreateMutex(
LPSECURITY_ATTRIBUTES Ipsa,
BOOL fInitialOwner,

LPCTSTR IpszMutexName

) ,

System and Device Programming - Stefano Quer 24

BOOL ReleaseMutex (HANDLE hMutex);

% It frees a mutex that the calling thread owns
> Fails if the T does not own it

% If @ mutex is abandoned, a wait will return
WAIT_ABANDONED 0

» This is one of the possible return value for the API
WaitForMultipleObjects

System and Device Programming - Stefano Quer 25

< A mutex can be named if it is to be used by more
than one process

» Mutexes, semaphores, events, memory mapped
objects, waitable timers, all processes share the
same name space

» Pay attention to name collisions
= Name objects carefully

< Don’t name a mutex used in a single process

System and Device Programming - Stefano Quer 26

-
HANDLE OpenMutex(Google the system
DWORD desiredAccess, call for more details
BOOL inheritHandle,
LPCTSTR IpszMutexName J
k)’

< It opens an exiting named mutex
» It allow synch among Ts in different Ps

» A CreateMutex in one P must precede an
OpenMutex in another P
> Alernatively, all Ps can use CreateMutex

= CreateMutex will fail if one mutex has already been
created

System and Device Programming - Stefano Quer 2

**» Process interaction with a named mutex
> Same name space as used for mem maps, ...

PROCESS, |

H = CreateMutex (... “mutexName” ...);

& J

)

H = OpenMutex (... “mutexName” ...);

PROCESS, |

- J

System and Device Programming - Stefano Quer 28

Semaphores

See next section

% A semaphore combines event and mutex
behavior
» Can be emulated with one of each and a counter
» Semaphores maintain a count
= No ownership concept

» The semaphore object is
= Signaled when the count is greater than zero
= Not signaled when the count is zero

&

System and Device Programming - Stefano Qi er 29

Semaphores

» A semaphore must be

= Created

= Waited for

e Ts (Ps) wait in the normal way, using one of the wait
functions (WaitForsingleObject or WaitForMultipleObjects)

e It is just possible to decrement the count by one

= Released

e When a waiting thread is released, the semaphore’s
count is incremented by one

e It is possible to increment the counter by any value up to
the maximum value

e Any thread can release
o Not restricted to the thread that “acquired” the semaphore

System and Device Programming - Stefano Quer 30

C D
HANDLE CreateSemaphore (

LPSECURITY_ATTRIBUTES Ipsa,
LONG cSeminitial,

LONG cSemMax,

LPCTSTR IpszSemName

);

- J

% It returns the semaphore handle

*» Parameters
> |Ipsa
= Usually NULL for us

» cSemlnitial
= Is the initial value for the semaphore

System and Device Programming - Stefano Quer 31

Semaphores

» cSemMax is the maximum value for the semaphore

= Tt must be
e 0 <= cSemlnitial <= cSemMax

> IpszSemName is the semaphore name
= Often NULL, we manipulate it using its handle

" HANDLE CreateSemaphore (
LPSECURITY_ATTRIBUTES Ipsa,
LONG cSeminitial,

LONG cSemMax,
LPCTSTR IpszSemName

System and Device Programming - Stefano Quer 5%

4)
BOOL ReleaseSemaphore (

HANDLE hSemaphore,

LONG cReleaseCount,

LPLONG IpPreviousCount
);

(S J

% A release operation can increase the counter by
any value

» Notice that any wait decrease the counter by one
only

*» Parameters
» hSemaphore is the semaphore handle

System and Device Programming - Stefano Quer 33

Semaphores

> CRealeaseCount is the increment value
= Tt must be greater than zero

= If it would cause the semaphore count to exceed the
maximum, the call will return FALSE and the count
will remain unchanged

> IpPreviousCount is the previous value of the
counter

= The pointer can be NULL if you do not need this
value

a)

BOOL ReleaseSemaphore (
HANDLE hSemaphore,
LONG cReleaseCount,
LPLONG IpPreviousCount

)i

(. J

System and Device Programming - Stefano Quer 34

Notice again that there is no “atomic” wait for
multiple semaphore units, but it is possible to release
multiple units atomically.

\
f T\ A
WaitForSingleObject (hSem, INFINITE);
WaitForSingleObject (hSem, INFINITE);

ReleaseSemaphore (hSem, 2, &previousCount);

g \ -),

This is a potential
deadlock in a

%+ Solution thread function

» Treat the loop on WFSO as a critical section,
guarded by a CS (e.g., ECS & LCS) or a mutex

» A multiple wait semaphore can be created with an
event, mutex, and counter

System and Device Programming - Stefano Quer 35

% Write a C application able to manage bank
accounts with the following specs

> All bank accounts, with their current balaces, are
defined in an ACCOUNT binary file

> All operations done on these bank accounts are
defined in an OPERATION binary file

f id, bank account p (id, bank account
number, last anf first OPERATION< number, ..., bank
_

f ACCOU NTA\ name, balance withdrawal or deposit

1 100000 Romano Antonio +50

1 100000 Romano Antonio 1250 3 200000 Verdi Giacomo +115
2 150000 Fabrizi Aldo 2245 1 100000 Romano Antonio +250
3 200000 Verdi Giacomo 11115 1 100000 Romano Antonio -55
4 250000 Rossi Luigi 13630 3 200000 Verdi Giacomo -1015

G J _ J

System and Device Programming - Stefano Quer 36

Report 4 solutions:
lock, critical section,
mutexes, semaphores

% The application
» Receives N parameters on the command line

= The first parameter is the name of an ACCOUNT file

= All other parameters indicate the name of
OPERATION files

» Opens the ACCOUNT file, and then run one thread
for each OPERATION file

» Each thread reads one OPERATION file and it
performs on the ACCOUNT file the set of
operations specified in that file

» When all OPERATION files have been managed the
program must display the final balance for all bank
accounts in the ACCOUNT file

System and Device Programming - Stefano Quer - S

% The presented implementation

» Includes 4 different solutions, each one adopting a
different synchronization mechanism

= Set the corresponding flag to true (1) to enable the
corresponding solution

4 N\

#define FL 1 // File Locking
#define CS 0 // Critical Sections
#define MT O // Mutexes
#define SE O // Semaphores

(G J

» Includes two main data structures
= The first one to read from file

#typedef struct files {

5

s

System and Device Programming - Stefano Quer 38

= The second one as a thread parameter
" File Locking: Threads

p
typedef struct threads { share filename and have
LPTSTR nameAccount: different file handles)

HANDLE hAccount; -~
LPTSTR nameOperation; \[Other synch strategies:

Threads share the same

} threads_t; \ file handle)
_ v

T~
Local OPERATION file
[A name }
» The main program

= Open the ACCOUNT file
= Create all threads

= Tnitialize synch primitives
= Wait for all threads

&

System and Device Programming - Stefano Q er - o5

Solution

> Each thread function

= If file locking is used, open the "unique" ACCOUNT
file
= Open its "personal” OPERATION file
= Cycle through the following opeartions
e Read the next operation from the OPERATION file
e Protect the correct record within the ACCOUNT file
e Apdate balance (critical section)
e Unprotect that record

