
Synchronization

Synchronization (Part A)
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2System and Device Programming – Stefano Quer

Objectives

 To synchronize threads (and processes) in
Windows we must understand

 The various Windows synchronization mechanisms

 Volatile Variables

 Interlocked functions

 Critical Sections

 Mutexes

 Semaphores

 Events

 How to differentiate synchronization object
features

 How to select among them

File locking, WFSO and
WFMO are simple form of

synchronization

kernel objects
(they have HANDLEs).
They can be used for

inter-process synchronization

3System and Device Programming – Stefano Quer

Volatile variables

 When a variable is modified, a thread may hold
its value in a register

 If the variable is not copied back to memory the
change is not visible to other threads

 The ANSI C volatile quantifier ensures that

 The variable will be always fetched from memory
before use

 The variable will be always stored to memory after
modification

 Volatile variables must be declare as

 volative DWORD var;

i++;

register = i
register++
i = registerInterlocked functions

need volatile variables

4System and Device Programming – Stefano Quer

Volatile variables

 The volatile quantifier

 Informs the compiler that the variable can change
at any time

 Tells the compiler the variable must be

 Fetched from memory every time

 Stored into memory after it is modified

 This has 2 implications

 Can negatively effect performance

 Memory? Hug? Which memory?

5System and Device Programming – Stefano Quer

Volatile variables

 Unfortunately, even if a variable is volatile a
processor may hold its value into the cache
memory

 In multi-core architectures each core has its own
cache (level 1 and level 2) memory

 Each thead may copy the variable into its own
cache before committing it into the main memory

 There is no assurance that the new value (even
if the object is volatile) will be visible to
threads running on other cores

6System and Device Programming – Stefano Quer

Volatile variables

 This behavior may alter the order in which
different processor may modify it

 To ensure that changes are visible by all
processors we must use "memory fences" (or
"memory barriers")

 A memory fence assures that the value is moved to
main memory

 A memory fence assures cache coherence

 All the following synchronization functions may act
as memory fences

 Obviously there is a cost, as moving data between
main and memory, cache memory, and cores is
expensive (hundreds of cycles)

7System and Device Programming – Stefano Quer

Interlocked Functions

 If we simply need to manipulate signed numbers,
interlocked functions will suffice

 Limited to increment or decrement variables

 Can not directly solve general mutual exclusion
problems

 Operations take place in the user space

 No kernel call

 Easy to use

 No deadlock risk

 Faster than any other alternative

 Variables need to be volatile

i++, i--

i= j*k+23
vet[i]=val

8System and Device Programming – Stefano Quer

Interlocked Functions

LONG InterlockedIncrement (LONG volatile *lpAddend) ;
LONG InterlockedIncrement64 (LONGLONG volatile *lpAddend);

LONG InterlockedDecrement (LONG volatile *lpAddend) ;
LONG InterlockedDecrement64 (LONGLONG volatile *lpAddend);

 They increment (decrement) the volatile variable
in an atomic way

 Notice that the resulting value may be changed
(by another T or P) before it is used

There are 32-bit and 64-bit versions of interlocked functions.
64-bit integer access is not atomic on 32-bit systems

Signed volatile object

Interlocked... (vi);
... use variable vi ...

9System and Device Programming – Stefano Quer

Interlocked Functions

 Other interlocked functions

 InterlockedExchange

 Stores a variable into another and return the original
value

 InterlockedExchangeAdd

 Adds the second operand to the first

 InterlockedCompareExchange

 InterlockedAnd

 InterlockedOr

 InterlockedXor

 InterlockedCompare64Exchange128

With 8, 16, 32 and 64-bit versions

See Hart, end of Chapter 8

10System and Device Programming – Stefano Quer

Critical Sections

 Critical sections (CSs) can only be used to
synchronize Ts within a (unique, single) process

 They are not kernel objects

 Thus, among synch objects, are often the most
efficient one

 “Fast mutexes”

 Apply them to as many application scenarios as
possible

 Critical section objects are

 Initialized, not created

 Deleted, not closed

11System and Device Programming – Stefano Quer

Critical Sections

 Threads enter and leave critical sections

 Only 1 thread at a time can be in a critical code
section

 There is no handle

 There is a CRITICAL_SECTION type

12System and Device Programming – Stefano Quer

Critical Sections

CRITICAL_SECTION CriticalSection;

VOID InitializeCriticalSection (
LPCRITICAL_SECTION lpcsCriticalSection

) ;

VOID DeleteCriticalSection (
LPCRITICAL_SECTION lpcsCriticalSection

);

Object definition

Object initialization
InitializeCriticalSection (&CriticalSection);

Object deletion
DeleteCriticalSection (&CriticalSection);

13System and Device Programming – Stefano Quer

Critical Sections

VOID EnterCriticalSection (
LPCRITICAL_SECTION lpcsCriticalSection

);

BOOL TryEnterCriticalSection (
LPCRITICAL_SECTION lpcsCriticalSection

);

VOID LeaveCriticalSection (
LPCRITICAL_SECTION lpcsCriticalSection

);

Blocks a thread if another
thread is in (“owns”) the section

Use this API to avoid
blocking. TRUE is returned

when the CS can be entered

The waiting thread unblocks when the
“owning” thread executes LeaveCriticalSection

A thread must leave a
CS once for every

time it entered

A thread can enter a CS more
than once (“recursive”)

14System and Device Programming – Stefano Quer

Critical Sections and _finally

 Always be certain to leave a CS

 How can we make sure a thread leaves a critical
section?

 Use a try and _finally block

 Even if someone later modifies your code

 This technique also works with file locks and the
other synchronization objects discussed next

CRITICAL_SECTION cs;
...

InitializeCriticalSection (&cs);
...

EnterCriticalSection (&cs);
_try { ... }
_finally { LeaveCriticalSection (&cs); }

See C++ section for
further details

15System and Device Programming – Stefano Quer

Example

CRITICAL_SECTION csM, csN;
volatile DWORD M = 0, N = 0;
ICS (&csM); ICS (&csN);

...
DWORD ThreadFunc (...) {

ECS (&csM); ECS (&csN);
M = ++N; N = M - 2;
LCS (&csN); LCS (&csM);

...

ECS (&csN); ECS (&csM);
M = N--; N = M + 2;
LCS (&csN); LCS (&csM);

}

CRITICAL_SECTION cs1, cs2;
volatile DWORD N = 0;
ICS (&cs1); ICS (&cs2);

...
DWORD ThreadFunc (...) {

ECS (&cs1);
N = N - 2;
LCS (&cs1);

...

ECS (&cs2);
N = N + 2;
LCS (&cs2);

}

ECS EnterCriticalSection

LCS LeaveCriticalSection

ICS InitializeCriticalSection

This thread code section
does not guarantee ME

How would you fix it?

16System and Device Programming – Stefano Quer

Example

CRITICAL_SECTION cs1, cs2;
volatile DWORD N = 0, M = 0;
ICS (&cs1); ICS (&cs2);

...
DWORD ThreadFunc (...) {

ECS (&cs1); ECS (&cs2);
N = N - 2; M = M + 2;
LCS (&cs1); LCS (&cs2);

...

ECS (&cs2); ECS (&cs1);
N = N + 2; M = M – 2;
LCS (&cs2); LCS (&cs1);

}
How would you fix it?

HRU = Hierarchical Resource Usage

ECS EnterCriticalSection

LCS LeaveCriticalSection

ICS InitializeCriticalSection

This thread code section
can cause a deadlock

17System and Device Programming – Stefano Quer

Critical Sections

 CSs test the lock in user-space

 Fast, there is no kernel call

 Threads wait in kernel space

 Almost always faster than mutexes

 Factors include number of threads, number of
processors, and amount of thread contention

18System and Device Programming – Stefano Quer

Critical Sections and Spin Locks

 When a CS is owned by a thread and another
thread executes the CS the original thread

 Enters the kernel

 Blocks until the CS is released

 Even if CS are fast, the entire process may be
quite time consuming

19System and Device Programming – Stefano Quer

Critical Sections and Spin Locks

 Sometimes, it may be beneficial (faster) to use
spin-lock variants

 InitializeCriticalSectionAndSpinCount

 SetCriticalSectionSpinCount

 Etc.

 They should be used

 On multi-core machines (only)

 When there is high contention among Ts on the CS

 The CS is hold for only few instructions

20System and Device Programming – Stefano Quer

Mutexes

 Mutex (mutual exclusion) objects

 Can be named and have HANDLEs

 They are kernel objects

 They can be used for interprocess synchronization

 They are owned by a thread rather than a process

 Mutexes are recursive

 A thread can acquire a specific mutex several
times without blocking but it must release the
mutex the same number of times

 This feature can be convenient, for example, with
nested transactions

21System and Device Programming – Stefano Quer

Mutexes

 A mutex can be checked (polled) to avoid blocking

 A mutex becomes “abandoned” if its owning
thread terminates

 Abandoned mutex are automatically signaled

 This feature (not present with CSs) allow safer use
of mutexes

 Mutex are

 Created (with CreateMutex)

 Waited for (with WFSO or WFMO)

 Released (with ReleaseMutex)

Already introduced with
thread essentials

22System and Device Programming – Stefano Quer

Mutexes

 It returns a new mutex handle

 A NULL value indicates a failure

 Parameters

 lpsa

 Security attributes (already describe in other API
calls)

 Usually NULL

HANDLE CreateMutex(
LPSECURITY_ATTRIBUTES lpsa,
BOOL fInitialOwner,
LPCTSTR lpszMutexName

);

23System and Device Programming – Stefano Quer

Mutexes

 fInitialOwner is a flag

 If it is TRUE, it gives the calling thread immediate
ownership of the new mutex

 It is ignored if the mutex already exists

 lpszMutexName is the mutex name

 It points to a null-terminated pathname

 Pathnames are case sensitive

 Mutexes are unnamed if the parameter is NULL

HANDLE CreateMutex(
LPSECURITY_ATTRIBUTES lpsa,
BOOL fInitialOwner,
LPCTSTR lpszMutexName

);

24System and Device Programming – Stefano Quer

Mutexes

 It frees a mutex that the calling thread owns

 Fails if the T does not own it

 If a mutex is abandoned, a wait will return
WAIT_ABANDONED_0

 This is one of the possible return value for the API
WaitForMultipleObjects

BOOL ReleaseMutex (HANDLE hMutex);

25System and Device Programming – Stefano Quer

Mutex Naming

 A mutex can be named if it is to be used by more
than one process

 Mutexes, semaphores, events, memory mapped
objects, waitable timers, all processes share the
same name space

 Pay attention to name collisions

 Name objects carefully

 Don’t name a mutex used in a single process

26System and Device Programming – Stefano Quer

Mutexes

 It opens an exiting named mutex

 It allow synch among Ts in different Ps

 A CreateMutex in one P must precede an
OpenMutex in another P

 Alernatively, all Ps can use CreateMutex

 CreateMutex will fail if one mutex has already been
created

HANDLE OpenMutex(
DWORD desiredAccess,
BOOL inheritHandle,
LPCTSTR lpszMutexName

);

Google the system
call for more details

27System and Device Programming – Stefano Quer

Mutex Naming

 Process interaction with a named mutex

 Same name space as used for mem maps, …

...
H = OpenMutex (... “mutexName” ...);

...
H = CreateMutex (... “mutexName” ...);

PROCESS2

PROCESS1

28System and Device Programming – Stefano Quer

Semaphores

 A semaphore combines event and mutex
behavior

 Can be emulated with one of each and a counter

 Semaphores maintain a count

 No ownership concept

 The semaphore object is

 Signaled when the count is greater than zero

 Not signaled when the count is zero

See next section

29System and Device Programming – Stefano Quer

Semaphores

 A semaphore must be

 Created

 Waited for

● Ts (Ps) wait in the normal way, using one of the wait
functions (WaitForsingleObject or WaitForMultipleObjects)

● It is just possible to decrement the count by one

 Released

● When a waiting thread is released, the semaphore’s
count is incremented by one

● It is possible to increment the counter by any value up to
the maximum value

● Any thread can release

o Not restricted to the thread that “acquired” the semaphore

30System and Device Programming – Stefano Quer

Semaphores

 It returns the semaphore handle

 Parameters

 lpsa

 Usually NULL for us

 cSemInitial

 Is the initial value for the semaphore

HANDLE CreateSemaphore (
LPSECURITY_ATTRIBUTES lpsa,
LONG cSemInitial,
LONG cSemMax,
LPCTSTR lpszSemName

);

31System and Device Programming – Stefano Quer

Semaphores

 cSemMax is the maximum value for the semaphore

 It must be

● 0 <= cSemInitial <= cSemMax

 lpszSemName is the semaphore name

 Often NULL, we manipulate it using its handle

HANDLE CreateSemaphore (
LPSECURITY_ATTRIBUTES lpsa,
LONG cSemInitial,
LONG cSemMax,
LPCTSTR lpszSemName

);

32System and Device Programming – Stefano Quer

Semaphores

 A release operation can increase the counter by
any value

 Notice that any wait decrease the counter by one
only

 Parameters

 hSemaphore is the semaphore handle

BOOL ReleaseSemaphore (
HANDLE hSemaphore,
LONG cReleaseCount,
LPLONG lpPreviousCount

);

33System and Device Programming – Stefano Quer

Semaphores

 cRealeaseCount is the increment value

 It must be greater than zero

 If it would cause the semaphore count to exceed the
maximum, the call will return FALSE and the count
will remain unchanged

 lpPreviousCount is the previous value of the
counter

 The pointer can be NULL if you do not need this
value

BOOL ReleaseSemaphore (
HANDLE hSemaphore,
LONG cReleaseCount,
LPLONG lpPreviousCount

);

34System and Device Programming – Stefano Quer

Example

 Solution

 Treat the loop on WFSO as a critical section,
guarded by a CS (e.g., ECS & LCS) or a mutex

 A multiple wait semaphore can be created with an
event, mutex, and counter

WaitForSingleObject (hSem, INFINITE);
WaitForSingleObject (hSem, INFINITE);
...
ReleaseSemaphore (hSem, 2, &previousCount);

This is a potential
deadlock in a

thread function

Notice again that there is no “atomic” wait for
multiple semaphore units, but it is possible to release

multiple units atomically.

35System and Device Programming – Stefano Quer

Exercise

 Write a C application able to manage bank
accounts with the following specs

 All bank accounts, with their current balaces, are
defined in an ACCOUNT binary file

 All operations done on these bank accounts are
defined in an OPERATION binary file

ACCOUNT

1 100000 Romano Antonio 1250
2 150000 Fabrizi Aldo 2245
3 200000 Verdi Giacomo 11115
4 250000 Rossi Luigi 13630

OPERATION

1 100000 Romano Antonio +50
3 200000 Verdi Giacomo +115
1 100000 Romano Antonio +250
1 100000 Romano Antonio -55
3 200000 Verdi Giacomo -1015

id, bank account
number, last anf first

name, balance

id, bank account
number, …, bank

withdrawal or deposit

36System and Device Programming – Stefano Quer

Exercise

 The application

 Receives N parameters on the command line

 The first parameter is the name of an ACCOUNT file

 All other parameters indicate the name of
OPERATION files

 Opens the ACCOUNT file, and then run one thread
for each OPERATION file

 Each thread reads one OPERATION file and it
performs on the ACCOUNT file the set of
operations specified in that file

 When all OPERATION files have been managed the
program must display the final balance for all bank
accounts in the ACCOUNT file

Report 4 solutions:
lock, critical section,

mutexes, semaphores

37System and Device Programming – Stefano Quer

Solution

 The presented implementation

 Includes 4 different solutions, each one adopting a
different synchronization mechanism

 Set the corresponding flag to true (1) to enable the
corresponding solution

 Includes two main data structures

 The first one to read from file

#define FL 1 // File Locking
#define CS 0 // Critical Sections
#define MT 0 // Mutexes
#define SE 0 // Semaphores

#typedef struct files {
...

};

38System and Device Programming – Stefano Quer

Solution

 The second one as a thread parameter

 The main program

 Open the ACCOUNT file

 Create all threads

 Initialize synch primitives

 Wait for all threads

typedef struct threads {
LPTSTR nameAccount;
HANDLE hAccount;
LPTSTR nameOperation;

} threads_t;

File Locking: Threads
share filename and have

different file handles

Other synch strategies:
Threads share the same

file handle

Local OPERATION file
name

39System and Device Programming – Stefano Quer

Solution

 Each thread function

 If file locking is used, open the "unique" ACCOUNT
file

 Open its "personal" OPERATION file

 Cycle through the following opeartions

● Read the next operation from the OPERATION file

● Protect the correct record within the ACCOUNT file

● Apdate balance (critical section)

● Unprotect that record

