
Threads

Thread Essentials
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino



2System and Device Programming – Stefano Quer

Objectives

 Upon completion of this unit you will be able to 
run and control threads

 Run and end threads

 CreateThread, _beginthreadex, ExitThread, 
TerminateThread

 Wait for threads

 WaitForSingleObject (WFSO), 
WaitForMultipleObjects (WFMO)

 Other thread control functions

 GetCurrentThread, GetCurrentThreadId, 

 SuspendThread, ResumeThread, etc.



3System and Device Programming – Stefano Quer

 This function allows you to run a thread and it 
specifies

 The thread’s start address within the process’s code

 A pointer to a thread argument

 Each thread has a permanent ThreadId and it is 
usually accessed by a HANDLE

HANDLE CreateThread (
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddr,
LPVOID lpThreadParm,
DWORD dwCreationFlags,
LPDWORD lpThreadId

);

Create Thread



4System and Device Programming – Stefano Quer

 Return value

 The handle of the thread, if success

 A NULL handle, otherwise

HANDLE CreateThread (
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddr,
LPVOID lpThreadParm,
DWORD dwCreationFlags,
LPDWORD lpThreadId

);

Create Thread

int pthread_create (
pthread_t *tid,
const pthread_attr_t *attr,
void *(*startRoutine)(void *),
void *arg

);

POSIX

Windows API



5System and Device Programming – Stefano Quer

 Parameters

 lpsa

 Security attributes structure

 Often equal to NULL

 dwStackSize

 Byte size for the new thread’s stack

 Use zero to default to the primary thread’s stack 
size (often 1 MB)

Create Thread

HANDLE CreateThread (
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddr,
LPVOID lpThreadParm,
DWORD dwCreationFlags,
LPDWORD lpThreadId

);



6System and Device Programming – Stefano Quer

HANDLE CreateThread (
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddr,
LPVOID lpThreadParm,
DWORD dwCreationFlags,
LPDWORD lpThreadId

);

 lpStartAddr

 Points to the function (within the calling process) 
to be executed

 The function accepts a single pointer argument and 
returns a 32-bit DWORD exit code

 lpThreadParm

 The pointer passed as the thread argument

 The thread can interpret the argument as a poiner 
to a structure

Create Thread



7System and Device Programming – Stefano Quer

 dwCreationFlags

 If zero, the thread is immediately ready to run

 If CREATE_SUSPENDED, the new thread will be in 
the suspended state, requiring a ResumeThread
function call to move the thread to the ready state

 lpThreadId

 Points to a DWORD that receives the new thread’s 
identifier

 It can be

NULL

Create Thread

HANDLE CreateThread (
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddr,
LPVOID lpThreadParm,
DWORD dwCreationFlags,
LPDWORD lpThreadId

);

.NET and Java separate thread creation 
from thread start. Pthreads does not



8System and Device Programming – Stefano Quer

 Prototype of the thread function

 It receives a single argument (long poiner to void)

 It returns a DWORD value

DWORD WINAPI ThreadFunction (LPVOID);

Thread Function



9System and Device Programming – Stefano Quer

 ExitThread is the preferred technique to exit a 
thread in C language

 The thread’s stack is deallocated on termination

 All handles referring the thread are signaled

 A thread

 Will remain in the system until the last handle to it is 
closed (using CloseHandle)

 Only after Closehandle the thread will be deleted

 Any other thread can retrieve its exit code exitCode

 See GetExitCodeThread for details

VOID ExitThread (DWORD exitCode);

Exit Thread



10System and Device Programming – Stefano Quer

Exit Thread

 A common alternative for a thread to exit, is to 
return from the thread function

 The exit code exitCode can be returned with return

 When the last thread in a process terminates, so 
does the process itself

 You can terminate a different thread with 
TerminateThread, but this is

 Dangerous

 Thread’s resources may not be deallocated (e.g., 
handler not called)

 Better to let the thread terminate itself



11System and Device Programming – Stefano Quer

Example

HANDLE *threadH;
thread_t *threadD;
DWORD *threadId;

... Allocate thread, threadD, threadId ...

for (i=0; i<N; i++) {
threadD[i]. ... = ...;
threadH[i] = CreateThread (NULL, 0,
(LPTHREAD_START_ROUTINE) threadFunction,
&threadD[i], 0, &threadId[i]);

if (threadH[i] == NULL) {
ExitProcess(0);

}
}

... Wait for threads ...

for (i=0; i<N; i++) {
CloseHandle (threadH[i]);

}

Run threads

Close handles

Wait for threads

It can be NULL

Parameters embedded 
into a C structure

Array of handles



12System and Device Programming – Stefano Quer

Example

DWORD WINAPI threadFunction (LPVOID lpParam) {
thread_t *data;

data = (thread_t *) lpParam;

... Thread body ...

ExitThread (0);
}

Thread function

Data type 
conversion (cast)

Can be captured by 
GetExitCodeThread



13System and Device Programming – Stefano Quer

Create Thread

 Nearly all programs (and thread functions) use 
the C library

 C and C++ make available functions

 _beginthreadex

 _endthreadex

 They have the same parameters as CreateThread
and ExitThread

 Please remind to include
 #include <process.h>



14System and Device Programming – Stefano Quer

 Functions WaitForSingleObject (WFSO) and 
WaitForMultipleObjecs (WFMO) allow to wait for 
thread termination

 These functions, are general purpose

 They wait for many different types of objects

 Wait for one or more handles to become “signaled”

 The handle/handles can represent processes, 
threads, semaphores, etc.

 The meaning of “signaled“ varies among object 
types

 It is possible to specify an optional timeout period

Wait for Threads



15System and Device Programming – Stefano Quer

 Functions WFSO awaits for a single object

 A single handle, hObject, to wait for

 A timeout limit (dwTimeOut) to indicate the 
timeout in milliseconds

 Zero means that the function returns immediately 
after testing the state of the specified objects

 INFINITE indicates no timeout

● Wait forever for an “object” to terminate

Wait for Threads

DWORD WaitForSingleObject (
HANDLE hObject,
DWORD dwTimeOut

);



16System and Device Programming – Stefano Quer

 Functions WFMO awaits for multiple objects

 The set of handles in the array lpHandles of 
nCount size

 The handles do not need to be of the same type 
(e.g., processes, threads, etc.)

 The number of objects nCount should not exceed 
MAXIMUM_WAIT_OBJECTS (i.e., usually 64)

 If the parameter fWaitAll if TRUE, WFMO waits for 
all objects to be signaled rather than only one

DWORD WaitForMultipleObjects (
DWORD nCount,
LPHANDLE lpHandles,
BOOL fWaitAll,
DWORD dwTimeOut

);

Wait for Threads



17System and Device Programming – Stefano Quer

Wait for Threads

 WFSO and WFMO have the following possible 
return values

 WAIT_OBJECT_0

 For WFSO (or WFMO) the (a) single handle is signaled

 For WFMO, all handles are signaled when fWaitAll is 
TRUE

 WAIT_OBJECT_0 + n (where 0 ≤ n < nCount)

 With WFMO it is possible to determine which handle 
was signaled by subtracting WAIT_OBJECT_0 from the 
return value

DWORD WaitForSingleObject (HANDLE hObject, DWORD dwTimeOut);

DWORD WaitForMultipleObjects (DWORD nCount,
LPHANDLE lpHandles, BOOL fWaitAll, DWORD dwTimeOut);



18System and Device Programming – Stefano Quer

Wait for Threads

 WAIT_TIMEOUT

 The timeout period elapsed before the wait could be 
satisfied by a signal

 WAIT_FAILED

 The call to WFSO or WFMO failed

 WAIT_ABANDONED_0

 Not possible with processes or threads, used for 
mutex handles

DWORD WaitForSingleObject (HANDLE hObject,
DWORD dwTimeOut);

DWORD WaitForMultipleObjects (DWORD cObjects,
LPHANDLE lphObjects, BOOL fWaitAll, DWORD dwTimeOut);



19System and Device Programming – Stefano Quer

Example

for (i=0; i<N; i++) {
WaitForSingleObject (threadH[i], INFINITE);
CloseHandle (threadH[i]);

}

Wait for threads
one at a time

WaitForMultipleObjects (N, threadH, TRUE, INFINITE);
for (i=0; i<N; i++) {

CloseHandle (threadH[i]);
}

Wait for threads
all togheter

Forcing an order in the waiting
process may be inefficient

Can wait for at most
MAXIMUM_WAIT_OBJECTS

object



20System and Device Programming – Stefano Quer

Example

 File sorting (through sort and merge)

Laboratory 04
Exercise 01

File 1
File 1
sorted

Thread 1

File 2
File 2
sorted

Thread 2

File n
File n
sorted

Thread n

…

File 
1+2

sorted

Main
Thread

File 
1+2+3
sorted

Main
Thread

…

WFSO
Or

WFMO



21System and Device Programming – Stefano Quer

Example

 File sorting (through sort and merge)

Laboratory 04
Exercise 02

File 1
File 1
sorted

Thread 1

File i
File i

sorted

Thread i

File n
File n
sorted

Thread n

…
File 
1+i

sorted

Merge
Thread

File 
1+i+n
sorted

Merge
Thread

…

…

WFMO

WFMO



22System and Device Programming – Stefano Quer

Example

 How can we use WFMO to

 Wait for more than MAXIMUM_WAIT_OBJECTS

handles?

 Wait (and act) for a single thread within a large 
group of threads



23System and Device Programming – Stefano Quer

Example

WaitForMultipleObjects (N, threadH, TRUE, INFINITE);

for (i=0; i<N; i+=MAXIMUM_WAIT_OBJECTS) {
WaitForMultipleObjects (

min (MAXIMUM_WAIT_OBJECTS, N-i),
&threadH[i], TRUE, INFINITE);

}

Usually 64

Reamining 
Threads

Wait for a large 
number of threads

Wait for all
(within the same goup)

Then move to the next group

Wait for all threads in a group,
then move into the next group

MAXIMUM_WAIT_OBJECTS



24System and Device Programming – Stefano Quer

Example

while (N > 0) {
INDEX = WaitForMultipleObjects (

min (MAXIMUM_WAIT_OBJECTS, N),
threadH, FALSE, INFINITE);

index = (int) INDEX - (int) WAIT_OBJECT_0;
CloseHandle (threadH[index]);
...
threadH[index] = threadH[N-1];
... Free threadData[index] ...
threadData[index] = threadData[N-1];
N--;

}

Wait for a single thread within the first 
group, then re-arrange the groups

Wait for a 
single thread

Re-arrange groups
(handles and data)

MAXIMUM_WAIT_OBJECTS



25System and Device Programming – Stefano Quer

 A terminated thread will exist until the last 
handle to it is closed (by Closehandle)

 Any other thread can retrieve its exit code

 The code will be returned into lpExitCode

 The value STILL_ACTIVE will be returned is the 
thread is still running

BOOL GetExitCodeThread (
HANDLE lThread,
LPDWORD lpExitCode

);

Thread Identifiers



26System and Device Programming – Stefano Quer

 These functions are use to obain

 GetCurrent Thread the thread handles

 GetCurrentTheradId the thread identifiers

 GetTheradId the thread’s ID from its handle

HANDLE GetCurrentThread (VOID);

DWORD GetCurrentThreadId (VOID);

DWORD GetThreadId (HANDLE threadHandle);

Thread Identifiers



27System and Device Programming – Stefano Quer

 Every thread has a suspend count

 A thread can execute only if this count is zero

 A thread can be created in the suspended state

 One thread can

 Increment the suspend count of another thread 
(resume)

 Decrement the suspend count of another thread 
(suspend)

DWORD ResumeThread (HANDLE hThread);

DWORD SuspendThread (HANDLE hThread);

Resume & Suspend Threads



28System and Device Programming – Stefano Quer

 Return value

 Both functions return previous suspend count

 The value 0xFFFFFFFF, in case of failure

 Useful in preventing “race conditions”

 Do not allow threads to start until initialization is 
complete

 Unsafe for general synchronization

Resume & Suspend Threads



29System and Device Programming – Stefano Quer

 Change or determine a thread’s priority

 For itself

 For another process, security permitting

 Thread priorities are relative to the process base 
priority (the priority class)

 See SetPriorityClass and GetPriorityClass for 
further details

DWORD SetThreadPriority (
HANDLE hThread, DWORD dwPriority);

DWORD GetThreadPriority (HANDLE hThread);

Thread’s Priority



30System and Device Programming – Stefano Quer

Thread’s Priority

 Use constant values as dwPriority

 THREAD_PRIORITY_LOWEST, 
THREAD_PRIORITY_BELOW_NORMAL, etc.

 Modify the priority with cautions

 Use high thread priorities with caution

 Avoid real time priorities for user processes

 User threads may preempt executive threads

 Assure fairness

 All threads should run eventually

 Real time priorities may prevent fairness

● “Priority inversion”

● “Thread starvation”


