
Threads

Thread Essentials
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino



2System and Device Programming – Stefano Quer

Objectives

 Upon completion of this unit you will be able to 
run and control threads

 Run and end threads

 CreateThread, _beginthreadex, ExitThread, 
TerminateThread

 Wait for threads

 WaitForSingleObject (WFSO), 
WaitForMultipleObjects (WFMO)

 Other thread control functions

 GetCurrentThread, GetCurrentThreadId, 

 SuspendThread, ResumeThread, etc.



3System and Device Programming – Stefano Quer

 This function allows you to run a thread and it 
specifies

 The thread’s start address within the process’s code

 A pointer to a thread argument

 Each thread has a permanent ThreadId and it is 
usually accessed by a HANDLE

HANDLE CreateThread (
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddr,
LPVOID lpThreadParm,
DWORD dwCreationFlags,
LPDWORD lpThreadId

);

Create Thread



4System and Device Programming – Stefano Quer

 Return value

 The handle of the thread, if success

 A NULL handle, otherwise

HANDLE CreateThread (
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddr,
LPVOID lpThreadParm,
DWORD dwCreationFlags,
LPDWORD lpThreadId

);

Create Thread

int pthread_create (
pthread_t *tid,
const pthread_attr_t *attr,
void *(*startRoutine)(void *),
void *arg

);

POSIX

Windows API



5System and Device Programming – Stefano Quer

 Parameters

 lpsa

 Security attributes structure

 Often equal to NULL

 dwStackSize

 Byte size for the new thread’s stack

 Use zero to default to the primary thread’s stack 
size (often 1 MB)

Create Thread

HANDLE CreateThread (
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddr,
LPVOID lpThreadParm,
DWORD dwCreationFlags,
LPDWORD lpThreadId

);



6System and Device Programming – Stefano Quer

HANDLE CreateThread (
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddr,
LPVOID lpThreadParm,
DWORD dwCreationFlags,
LPDWORD lpThreadId

);

 lpStartAddr

 Points to the function (within the calling process) 
to be executed

 The function accepts a single pointer argument and 
returns a 32-bit DWORD exit code

 lpThreadParm

 The pointer passed as the thread argument

 The thread can interpret the argument as a poiner 
to a structure

Create Thread



7System and Device Programming – Stefano Quer

 dwCreationFlags

 If zero, the thread is immediately ready to run

 If CREATE_SUSPENDED, the new thread will be in 
the suspended state, requiring a ResumeThread
function call to move the thread to the ready state

 lpThreadId

 Points to a DWORD that receives the new thread’s 
identifier

 It can be

NULL

Create Thread

HANDLE CreateThread (
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddr,
LPVOID lpThreadParm,
DWORD dwCreationFlags,
LPDWORD lpThreadId

);

.NET and Java separate thread creation 
from thread start. Pthreads does not



8System and Device Programming – Stefano Quer

 Prototype of the thread function

 It receives a single argument (long poiner to void)

 It returns a DWORD value

DWORD WINAPI ThreadFunction (LPVOID);

Thread Function



9System and Device Programming – Stefano Quer

 ExitThread is the preferred technique to exit a 
thread in C language

 The thread’s stack is deallocated on termination

 All handles referring the thread are signaled

 A thread

 Will remain in the system until the last handle to it is 
closed (using CloseHandle)

 Only after Closehandle the thread will be deleted

 Any other thread can retrieve its exit code exitCode

 See GetExitCodeThread for details

VOID ExitThread (DWORD exitCode);

Exit Thread



10System and Device Programming – Stefano Quer

Exit Thread

 A common alternative for a thread to exit, is to 
return from the thread function

 The exit code exitCode can be returned with return

 When the last thread in a process terminates, so 
does the process itself

 You can terminate a different thread with 
TerminateThread, but this is

 Dangerous

 Thread’s resources may not be deallocated (e.g., 
handler not called)

 Better to let the thread terminate itself



11System and Device Programming – Stefano Quer

Example

HANDLE *threadH;
thread_t *threadD;
DWORD *threadId;

... Allocate thread, threadD, threadId ...

for (i=0; i<N; i++) {
threadD[i]. ... = ...;
threadH[i] = CreateThread (NULL, 0,
(LPTHREAD_START_ROUTINE) threadFunction,
&threadD[i], 0, &threadId[i]);

if (threadH[i] == NULL) {
ExitProcess(0);

}
}

... Wait for threads ...

for (i=0; i<N; i++) {
CloseHandle (threadH[i]);

}

Run threads

Close handles

Wait for threads

It can be NULL

Parameters embedded 
into a C structure

Array of handles



12System and Device Programming – Stefano Quer

Example

DWORD WINAPI threadFunction (LPVOID lpParam) {
thread_t *data;

data = (thread_t *) lpParam;

... Thread body ...

ExitThread (0);
}

Thread function

Data type 
conversion (cast)

Can be captured by 
GetExitCodeThread



13System and Device Programming – Stefano Quer

Create Thread

 Nearly all programs (and thread functions) use 
the C library

 C and C++ make available functions

 _beginthreadex

 _endthreadex

 They have the same parameters as CreateThread
and ExitThread

 Please remind to include
 #include <process.h>



14System and Device Programming – Stefano Quer

 Functions WaitForSingleObject (WFSO) and 
WaitForMultipleObjecs (WFMO) allow to wait for 
thread termination

 These functions, are general purpose

 They wait for many different types of objects

 Wait for one or more handles to become “signaled”

 The handle/handles can represent processes, 
threads, semaphores, etc.

 The meaning of “signaled“ varies among object 
types

 It is possible to specify an optional timeout period

Wait for Threads



15System and Device Programming – Stefano Quer

 Functions WFSO awaits for a single object

 A single handle, hObject, to wait for

 A timeout limit (dwTimeOut) to indicate the 
timeout in milliseconds

 Zero means that the function returns immediately 
after testing the state of the specified objects

 INFINITE indicates no timeout

● Wait forever for an “object” to terminate

Wait for Threads

DWORD WaitForSingleObject (
HANDLE hObject,
DWORD dwTimeOut

);



16System and Device Programming – Stefano Quer

 Functions WFMO awaits for multiple objects

 The set of handles in the array lpHandles of 
nCount size

 The handles do not need to be of the same type 
(e.g., processes, threads, etc.)

 The number of objects nCount should not exceed 
MAXIMUM_WAIT_OBJECTS (i.e., usually 64)

 If the parameter fWaitAll if TRUE, WFMO waits for 
all objects to be signaled rather than only one

DWORD WaitForMultipleObjects (
DWORD nCount,
LPHANDLE lpHandles,
BOOL fWaitAll,
DWORD dwTimeOut

);

Wait for Threads



17System and Device Programming – Stefano Quer

Wait for Threads

 WFSO and WFMO have the following possible 
return values

 WAIT_OBJECT_0

 For WFSO (or WFMO) the (a) single handle is signaled

 For WFMO, all handles are signaled when fWaitAll is 
TRUE

 WAIT_OBJECT_0 + n (where 0 ≤ n < nCount)

 With WFMO it is possible to determine which handle 
was signaled by subtracting WAIT_OBJECT_0 from the 
return value

DWORD WaitForSingleObject (HANDLE hObject, DWORD dwTimeOut);

DWORD WaitForMultipleObjects (DWORD nCount,
LPHANDLE lpHandles, BOOL fWaitAll, DWORD dwTimeOut);



18System and Device Programming – Stefano Quer

Wait for Threads

 WAIT_TIMEOUT

 The timeout period elapsed before the wait could be 
satisfied by a signal

 WAIT_FAILED

 The call to WFSO or WFMO failed

 WAIT_ABANDONED_0

 Not possible with processes or threads, used for 
mutex handles

DWORD WaitForSingleObject (HANDLE hObject,
DWORD dwTimeOut);

DWORD WaitForMultipleObjects (DWORD cObjects,
LPHANDLE lphObjects, BOOL fWaitAll, DWORD dwTimeOut);



19System and Device Programming – Stefano Quer

Example

for (i=0; i<N; i++) {
WaitForSingleObject (threadH[i], INFINITE);
CloseHandle (threadH[i]);

}

Wait for threads
one at a time

WaitForMultipleObjects (N, threadH, TRUE, INFINITE);
for (i=0; i<N; i++) {

CloseHandle (threadH[i]);
}

Wait for threads
all togheter

Forcing an order in the waiting
process may be inefficient

Can wait for at most
MAXIMUM_WAIT_OBJECTS

object



20System and Device Programming – Stefano Quer

Example

 File sorting (through sort and merge)

Laboratory 04
Exercise 01

File 1
File 1
sorted

Thread 1

File 2
File 2
sorted

Thread 2

File n
File n
sorted

Thread n

…

File 
1+2

sorted

Main
Thread

File 
1+2+3
sorted

Main
Thread

…

WFSO
Or

WFMO



21System and Device Programming – Stefano Quer

Example

 File sorting (through sort and merge)

Laboratory 04
Exercise 02

File 1
File 1
sorted

Thread 1

File i
File i

sorted

Thread i

File n
File n
sorted

Thread n

…
File 
1+i

sorted

Merge
Thread

File 
1+i+n
sorted

Merge
Thread

…

…

WFMO

WFMO



22System and Device Programming – Stefano Quer

Example

 How can we use WFMO to

 Wait for more than MAXIMUM_WAIT_OBJECTS

handles?

 Wait (and act) for a single thread within a large 
group of threads



23System and Device Programming – Stefano Quer

Example

WaitForMultipleObjects (N, threadH, TRUE, INFINITE);

for (i=0; i<N; i+=MAXIMUM_WAIT_OBJECTS) {
WaitForMultipleObjects (

min (MAXIMUM_WAIT_OBJECTS, N-i),
&threadH[i], TRUE, INFINITE);

}

Usually 64

Reamining 
Threads

Wait for a large 
number of threads

Wait for all
(within the same goup)

Then move to the next group

Wait for all threads in a group,
then move into the next group

MAXIMUM_WAIT_OBJECTS



24System and Device Programming – Stefano Quer

Example

while (N > 0) {
INDEX = WaitForMultipleObjects (

min (MAXIMUM_WAIT_OBJECTS, N),
threadH, FALSE, INFINITE);

index = (int) INDEX - (int) WAIT_OBJECT_0;
CloseHandle (threadH[index]);
...
threadH[index] = threadH[N-1];
... Free threadData[index] ...
threadData[index] = threadData[N-1];
N--;

}

Wait for a single thread within the first 
group, then re-arrange the groups

Wait for a 
single thread

Re-arrange groups
(handles and data)

MAXIMUM_WAIT_OBJECTS



25System and Device Programming – Stefano Quer

 A terminated thread will exist until the last 
handle to it is closed (by Closehandle)

 Any other thread can retrieve its exit code

 The code will be returned into lpExitCode

 The value STILL_ACTIVE will be returned is the 
thread is still running

BOOL GetExitCodeThread (
HANDLE lThread,
LPDWORD lpExitCode

);

Thread Identifiers



26System and Device Programming – Stefano Quer

 These functions are use to obain

 GetCurrent Thread the thread handles

 GetCurrentTheradId the thread identifiers

 GetTheradId the thread’s ID from its handle

HANDLE GetCurrentThread (VOID);

DWORD GetCurrentThreadId (VOID);

DWORD GetThreadId (HANDLE threadHandle);

Thread Identifiers



27System and Device Programming – Stefano Quer

 Every thread has a suspend count

 A thread can execute only if this count is zero

 A thread can be created in the suspended state

 One thread can

 Increment the suspend count of another thread 
(resume)

 Decrement the suspend count of another thread 
(suspend)

DWORD ResumeThread (HANDLE hThread);

DWORD SuspendThread (HANDLE hThread);

Resume & Suspend Threads



28System and Device Programming – Stefano Quer

 Return value

 Both functions return previous suspend count

 The value 0xFFFFFFFF, in case of failure

 Useful in preventing “race conditions”

 Do not allow threads to start until initialization is 
complete

 Unsafe for general synchronization

Resume & Suspend Threads



29System and Device Programming – Stefano Quer

 Change or determine a thread’s priority

 For itself

 For another process, security permitting

 Thread priorities are relative to the process base 
priority (the priority class)

 See SetPriorityClass and GetPriorityClass for 
further details

DWORD SetThreadPriority (
HANDLE hThread, DWORD dwPriority);

DWORD GetThreadPriority (HANDLE hThread);

Thread’s Priority



30System and Device Programming – Stefano Quer

Thread’s Priority

 Use constant values as dwPriority

 THREAD_PRIORITY_LOWEST, 
THREAD_PRIORITY_BELOW_NORMAL, etc.

 Modify the priority with cautions

 Use high thread priorities with caution

 Avoid real time priorities for user processes

 User threads may preempt executive threads

 Assure fairness

 All threads should run eventually

 Real time priorities may prevent fairness

● “Priority inversion”

● “Thread starvation”


