Threads

Thread Essentials
Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

System and Device Programming - Stefano Quer 2

Objectives

< Upon completion of this unit you will be able to
run and control threads

» Run and end threads

= CreateThread, _beginthreadex, ExitThread,
TerminateThread

» Wait for threads

= WaitForSingleObject (WFSO),
WaitForMultipleObjects (WFMO)

» Other thread control functions
= GetCurrentThread, GetCurrentThreadld,
= SuspendThread, ResumeThread, etc.

System and Device Programming - Stefano Quer 3

Create Thread

~

/I—IANDLE CreateThread (

LPSECURI TY_ATTRI BUTES | psa,

DWORD dwSt ackSi ze,

LPTHREAD START ROUTI NE | pSt art Addr,
LPVAO D | pThr eadPar m

DWORD dwCr eat i onFl ags,

LPDWORD | pThr eadl d

)

-)
%+ This function allows you to run a thread and it
specifies
» The thread’s start address within the process’s code

» A pointer to a thread argument

= Each thread has a permanent Threadld and it is
usually accessed by a HANDLE

System and Device Programming - Stefano Quer 4

Create Thread

% Return value
» The handle of the thread, if success
» A NULL handle, otherwise

"int pthread create (POSIX
pthread t *tid,

const pthread attr t *attr,

void *(*startRoutine)(void *),
void *arg

)

KI—IANDLE Creat eThread (Windows API\
LPSECURI TY _ATTRI BUTES | psa,

DWORD dwsSt ackSi ze,

LPTHREAD START RCOUTI NE | pSt art Addr,
LPVA D | pThr eadPar m

DWORD dwCr eat i onFl ags,

LPDWORD | pThr eadl d

System and Device Programming - Stefano Quer 5

Create Thread

“» Parameters
> |Ipsa
= Security attributes structure
= Often equal to NULL

» dwStackSize
= Byte size for the new thread’s stack

= Use zero to default to the primary thread’s stack
size (often 1 MB)

KHANDLE CreateThread (
LPSECURI TY _ATTRI BUTES | psa,
DWORD dwSt ackSi ze,
LPTHREAD START ROUTI NE | pSt art Addr,
LPVA D | pThr eadPar m
DWORD dwCr eat i onFl ags,
LPDWORD | pThr eadl d

System and Device Programming - Stefano Quer 6

Create Thread

> |pStartAddr

= Points to the function (within the calling process)
to be executed

= The function accepts a single pointer argument and
returns a 32-bit DWORD exit code

> IpThreadParm
= The pointer passed as the thread argument

= The thread can interpret the argument as a poiner

to a structure ~
HANDLE CreateThread (

LPSECURI TY _ATTRI BUTES | psa,

DWORD dwSt ackSi ze,

LPTHREAD START ROUTI NE | pSt art Addr,
LPVA D | pThr eadPar m

DWORD dwCr eat i onFl ags,

LPDWORD | pThr eadl d

System and Device Programming - Stefano Quer 74

.NET and Java separate thread creation Create Thread

from thread start. Pthreads does not

» dwCreationFlags
= If zero, the thread is immediately ready to run

= [f CREATE_SUSPENDED, the new thread will be in
the suspended state, requiring a ResumeThread
function call to move the thread to the ready state

> IpThreadld

= Points to a DWORD that receives the new thread’s
identifier

= [tcanbe ~
HANDLE CreateThread (
NULL LPSECURI TY_ATTRI BUTES | psa,
DWORD dwSt ackSi ze,
LPTHREAD START ROUTI NE | pSt ar t Addr,
LPVA D | pThr eadPar m
DWORD dwCr eat i onFl ags,
LPDWORD | pThr eadl d

System and Device Programming - Stefano Quer 8

Thread Function

DWORD W NAPI Thr eadFunction (LPVA D);

% Prototype of the thread function
> It receives a single argument (long poiner to void)
> It returns a DWORD value

System and Device Programming - Stefano Quer 9

Exit Thread

VO D Exit Thread (DWORD exi t Code) ;]

< ExitThread is the preferred technique to exit a
thread in C language
» The thread'’s stack is deallocated on termination
» All handles referring the thread are signaled

+ A thread

» Will remain in the system until the last handle to it is
closed (using CloseHandle)
= Only after Closehandle the thread will be deleted
» Any other thread can retrieve its exit code exitCode
= See GetExitCodeThread for details

System and Device Programming - Stefano Quer 10

Exit Thread

“ A common alternative for a thread to exit, is to
return from the thread function

> The exit code exitCode can be returned with return

<+ When the last thread in a process terminates, so
does the process itself

“+ You can terminate a different thread with
TerminateThread, but this is

» Dangerous

= Thread’s resources may not be deallocated (e.q.,
handler not called)

> Better to let the thread terminate itself

System and Device Programming - Stefano Quer

Array of handles

11

/ V Parameters embedded
HANDLE *t hr eadH; into a C structure

thread t *threadD
DWORD *t hr eadl d;

Al l ocate thread, threadD, threadld ...

(LPTHREAD START RQUTI NE) t hreadFuncti on,
& hreadD[i], 0, & hreadld[i]);

if (threadHi] == NULL) {
; Exi t Process(0); \/L It can be NULL }

Wait for threads ... T[Wait for threadsJ
for (1i=0; I<N 1++) {
Cl oseHandl e (threadHi]); t[Close handles J

&

}

for (i=0; i<N i++) { Run threads]
threadD[i]. ... = ...;
threadH i] = CreateThread (NULL, O,

N

/

System and Device Programming - Stefano Quer 12

Example

[Thread function J
Ve A\
DWORD W NAPI t hr eadFunction (LPVO D | pParan) { =
thread t *dat a;

data = (thread t *) | pParam
Data type
... Thread body ... conversion (cast)
Exit Thread (0);
}
N\ R J
Can be captured by
GetExitCodeThread

System and Device Programming - Stefano Quer 13

Create Thread

< Nearly all programs (and thread functions) use
the C library
% C and C++ make available functions
» _beginthreadex
> _endthreadex

% They have the same parameters as CreateThread
and ExitThread

+» Please remind to include
> #include <process.h>

System and Device Programming - Stefano Quer 14

Wait for Threads

% Functions WaitForSingleObject (WFSO) and
WaitForMultipleObjecs (WFMO) allow to wait for
thread termination

< These functions, are general purpose

» They wait for many different types of objects
= Wait for one or more handles to become “signaled”

= The handle/handles can represent processes,
threads, semaphores, etc.

= The meaning of “signaled" varies among object
types
» It is possible to specify an optional timeout period

System and Device Programming - Stefano Quer 15

Wait for Threads

4)

DWORD Wi t For Si ngl e(nj ect (
HANDLE hQbj ect,
DWORD dwTi nmeQut

)|

- J

% Functions WFSO awaits for a single object
> A single handle, hObject, to wait for
> A timeout limit (dwTimeOut) to indicate the
timeout in milliseconds

= Zero means that the function returns immediately
after testing the state of the specified objects

= INFINITE indicates no timeout
e Wait forever for an “object” to terminate

System and Device Programming - Stefano Quer 16

Wait for Threads

" DWORD Wi t For Mul ti pl eCbj ects ()
DWORD nCount,
LPHANDLE | pHandl es,
BOOL fWaitAll,
DWORD dwTi neQut
))

% Functions WFMO awaits for multiple objects

» The set of handles in the array IpHandles of
nCount size

» The handles do not need to be of the same type
(e.g., processes, threads, etc.)

= The number of objects nCount should not exceed
MAXIMUM_WAIT_OBJECTS (i.e., usually 64)

= If the parameter fWaitAll if TRUE, WFMO waits for
all objects to be signaled rather than only one

System and Device Programming - Stefano Quer: 4

Wait for Threads

< WFSO and WFMO have the following possible
return values

» WAIT_OBJECT_O
= For WFSO (or WFMO) the (a) single handle is signaled
= For WFMO, all handles are signaled when fWaitAll is
TRUE
» WAIT_OBJECT_0 + n (where 0 < n < nCount)

= With WFMO it is possible to determine which handle
was signaled by subtracting WAIT_OBJECT_0 from the
return value

i DWORD Wai t For Si ngl eObj ect (HANDLE hCbj ect, DWORD dwTi neCut) ;

DWORD Wai t For Mul ti pl eCbj ects (DWORD nCount,
LPHANDLE | pHandl es, BOOL fVaitAl |, DWORD dwTi neQut) ;

System and Device Programming - Stefano Quer 18

Wait for Threads

» WAIT_TIMEOUT

= The timeout period elapsed before the wait could be
satisfied by a signal

» WAIT_ FAILED
= The call to WFSO or WFMO failed

» WAIT_ABANDONED_O

= Not possible with processes or threads, used for
mutex handles

4)

DWORD Wai t For Si ngl eObj ect (HANDLE h(Obj ect,
DWORD dwTi neCut) ;

DWORD Wai t For Mul ti pl eCbj ects (DWORD cnj ect s,
LPHANDLE | phCbj ects, BOOL fVaitAl |, DWORD dwTi neQut) ;

S J

System and Device Programming - Stefano Quer 19

Wait for threads
[one atatimev]
~
(\)
for (1=0; i1<N;, I++) {
Wai t For Si ngl eObj ect (threadH 1], I NFIN TE);
Cl oseHandl e (threadHi1]);

} (Forcing an order in the waiting
N L process may be inefficient
Wait for threads
all togheter
\
(SN\)

Wai t ForMul ti pl eCbjects (N, threadH, TRUE, | NFI N TE);
for (i=0; i<N i++) {

Cl oseHandl e (threadHi]);
} (

Can wait for at most
MAXIMUM_WAIT_ OBIJECTS
object

-

N

System and Device Programming - Stefano Quer

Laboratory 04

Exercise 01

< File sorting (through sort and merge)

File 1

File 2

File n

Thread 1

N

Thread 2

N

Thread n

SN

File 1
sorted

File 2
sorted

File n
sorted

}

\

Main
Thread

=

WFSO

Or

WFMO

File
1+2
sorted

Main
Thread

N

20

Example

File
142+3
sorted

sl

System and Device Programming - Stefano Quer 21

Laboratory 04 Example

Exercise 02

< File sorting (through sort and merge)

|
Thread 1 : Merge
i Thread
File 1 ::\/\ File 1 :
sorted | |
| : Merge
|
I I;”e. I Thread
| WFMO oy
' sorted |1 %
Thread i [ﬁ : Fi.le
-y j|> Filei | | I WFMO 1+i+n
sorted | 1 : sorted
|
|
! i
|
Thread n :
File n :'> Filen |y
sorted |1

.-/:,'/'

System and Device Programming - Stefano Quer 22

Example

+» How can we use WFMO to

> Wait for more than MAXIMUM_WAIT_OBJECTS
handles?

» Wait (and act) for a single thread within a large
group of threads

System and Device Programming - Stefano Quer 23

_ _ Example
Wait for all threads in a group,
then move into the next group

{V\ai tForMul ti pl eObjects (N, threadH, TRUE, | NFI N TE);]

{ Wait for a large

number of threads / @ LUsuauy 64 |
e

for (1=0; i1<N;, i+=MAXI MUM WAI T_OBJECTS) {
Wai t For Mul ti pl eObj ects (
m n (MAXI MUM WAI T_OBJECTS, N_i)’j

-

& hreadH i], TRUE, | NFIN TE);
Threads

N\ ~ J
Wait for all
(within the same goup)
Then move to the next group

Reamining]

MAXIMUM_WAIT_OBIJECTS
\

System and Device Programming - Stefano Quer

Wait for a single thread within the first
group, then re-arrange the groups

MAXIMUM_WAIT_OBIJECTS

[|

24

Wait for a
single thread

|

“while (N> 0) {
| NDEX = Wai t For Mul ti pl eObj ects (
mn (MAXI MUM WAI T_OBJECTS, N),

t hreadH, FALSE, | NFI N TE);
I ndex = (int) INDEX - (int) WAIT_OBJECT_O;

Cl oseHandl e (threadH[| ndex]);
t hreadH i ndex] = threadH N-1] : Acz[

Re-arrange groups
(handles and data)

|

... Free threadData[index] ...
t hreadDat a[i ndex] = threadData[N-1];
N--;

System and Device Programming - Stefano Quer 25

Thread Identifiers

4)

BOOL Cet Exi t CodeThr ead (
HANDLE | Thr ead,
LPDWORD | pExi t Code

)|

- J

% A terminated thread will exist until the last
handle to it is closed (by Closehandle)

< Any other thread can retrieve its exit code

» The code will be returned into IpExitCode

» The value STILL_ACTIVE will be returned is the
thread is still running

System and Device Programming - Stefano Quer 26

Thread Identifiers

(N

HANDLE Get Current Thread (VA D);
DWORD Get Current Threadld (VA D);

DWORD CGet Threadl d (HANDLE t hr eadHandl e) ;

(S /

% These functions are use to obain
» GetCurrent Thread the thread handles
» GetCurrentTheradld the thread identifiers
» GetTheradld the thread’s ID from its handle

System and Device Programming - Stefano Quer 2

Resume & Suspend Threads

4)

DWORD ResuneThread (HANDLE hThread);

DWORD SuspendThread (HANDLE hThread);

- J

s+ Every thread has a suspend count
> A thread can execute only if this count is zero

% A thread can be created in the suspended state

2 One thread can

» Increment the suspend count of another thread
(resume)

» Decrement the suspend count of another thread
(suspend)

System and Device Programming - Stefano Quer 28

Resume & Suspend Threads

% Return value
» Both functions return previous suspend count
» The value OxFFFFFFFF, in case of failure

% Useful in preventing “race conditions”

» Do not allow threads to start until initialization is
complete

< Unsafe for general synchronization

System and Device Programming - Stefano Quer 29

Thread’s Priority

4)

DWORD Set ThreadPriority (
HANDLE hThread, DWORD dwPriority);

DWORD Get ThreadPriority (HANDLE hThread);

- J

% Change or determine a thread’s priority
> For itself
» For another process, security permitting
% Thread priorities are relative to the process base
priority (the priority class)

» See SetPriorityClass and GetPriorityClass for
further details

System and Device Programming - Stefano Quer 30

Thread’s Priority

» Use constant values as dwPriority
= THREAD PRI ORI TY_LOWEST,

THREAD PRI ORI TY_BELOW NORMAL, etc.
< Modify the priority with cautions
» Use high thread priorities with caution
» Avoid real time priorities for user processes
= User threads may preempt executive threads
» Assure fairness

= All threads should run eventually

= Real time priorities may prevent fairness
e “Priority inversion”
e "Thread starvation”

