
Input & Output

File Management
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2System and Device Programming – Stefano Quer

File Management Guidelines

 To manage a file it is always possible to use

 C library functions

 Are generally high level and easy to use

 The code will be portable on non-Windows systems

 Field and character-oriented funtions do not have
direct Windows equivalent

 Generic calls (ASCII and Unicode) can be easily used
but the portability advantage will be lost

 Windows functions

 Enable advanced features

● File security attributes, 32 versus 64-bit manipulation,
file locking, directory manipulations, etc.

 Optimize specific operations

3System and Device Programming – Stefano Quer

File Management Guidelines

 File management in Windows includes

 Basic file processing functions

 CreateFile, ReadFile, WriteFile, CloseHandle

 Random access functions

 SetFilePointer (SetFilePointerEx), overlapped data
structure, GetFileSizeEx

 File locking

 LockFileEx, UnlockFileEx
First form of threads

(or processes)
synchronization

4System and Device Programming – Stefano Quer

 Returned value

 A HANDLE to an open file object

 INVALID_HANDLE_VALUE in case of failure

HANDLE CreateFile (
LPCTSTR lpName,
DWORD dwAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwCreate,
DWORD dwAttrsAndFlags,
HANDLE hTemplateFile

);

Create a File

Numerous advanced
options

(not fully described here)

5System and Device Programming – Stefano Quer

 Parameters

 lpName

 Pointer to file name

 Length limited to

MAX_PATH

 If "\\?\″ is used as prefix it is possible to use name
as long as 32K (UNICODE coding)

 dwAccess

 Specify the read and write access

● Use GENERIC_READ or GENERIC_WRITE (the term
″GENERIC″ is somehow redundant)

 Combine flags with the OR operator ″|″

● GENERIC_READ | GENERIC_WRITE

Create a File

HANDLE CreateFile (
LPCTSTR lpName,
DWORD dwAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwCreate,
DWORD dwAttrsAndFlags,
HANDLE hTemplateFile

);

6System and Device Programming – Stefano Quer

 dwShareMode

 File sharing mode

 Bit-wise OR (″|″) of
table flags

Value Action / Meaning

0 Cannot be shared.
Not even the same process can open
another handle.

FILE_SHARE_READ Other processes can read concurrently

FILE_SHARE_WRITE Other processes can write concurrently

Create a File

HANDLE CreateFile (
LPCTSTR lpName,
DWORD dwAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwCreate,
DWORD dwAttrsAndFlags,
HANDLE hTemplateFile

);

7System and Device Programming – Stefano Quer

Create a File

 lpsa

 Usually NULL

 It points to a
SECURITY_ATTRIBUTES
structure (advanced
topic on security)

 Alert: Everyone has full
control of a newly
created file

HANDLE CreateFile (
LPCTSTR lpName,
DWORD dwAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwCreate,
DWORD dwAttrsAndFlags,
HANDLE hTemplateFile

);

8System and Device Programming – Stefano Quer

 dwCreate

 Create a file, overwrite
existing file, etc.

 There is no append
mode

● Set file pointer to the
end of file

Value Action / Meaning

CREATE_NEW Fails if the file exists

CREATE_ALWAYS An existing file will be overwritten

OPEN_EXISTING Fail if the file does not exist

OPEN_ALWAYS Open the file or create it if it doesn’t exist

TRUNCATE_EXISTING File length will be set to zero

Create a File

HANDLE CreateFile (
LPCTSTR lpName,
DWORD dwAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwCreate,
DWORD dwAttrsAndFlags,
HANDLE hTemplateFile

);

9System and Device Programming – Stefano Quer

 dwAttrsAndFlags

 32 possibile different
flags and attributes

 Attributes are
properties of the files
themselves

Value Action / Meaning

FILE_ATTRIBUTE_NORMAL No other attributes are set

FILE_ATTRIBUTE_READONLY Cannot write or delete

FILE_FLAG_OVERLAPPED For asynch I/O

FILE_FLAG_SEQUENTIAL_SCAN Provide performance hints

FILE_FLAG_RANDOM_ACCESS Provide performance hints

Create a File

 The main flags are the following

HANDLE CreateFile (
LPCTSTR lpName,
DWORD dwAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwCreate,
DWORD dwAttrsAndFlags,
HANDLE hTemplateFile

);

10System and Device Programming – Stefano Quer

 hTemplateFile

 Usually NULL

 It can be a handle of
an open file (opened in
GENERIC_READ mode)

 It forces CreateFile to
use the same
attributes of that file to
create the new file

Create a File

HANDLE CreateFile (
LPCTSTR lpName,
DWORD dwAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwCreate,
DWORD dwAttrsAndFlags,
HANDLE hTemplateFile

);

11System and Device Programming – Stefano Quer

 There is an OpenFile() function

 Don’t use it

 It’s obsolete and for 16-bit applications

 Flags are associated with the file HANDLE

 Different HANDLEs referring to the same file can
have different flags

 One HANDLE is “overlapped,” another not

 One HANDLE has FILE_FLAG_SEQUENTIAL_SCAN
and another FILE_FLAG_RANDOM_ACCESS

 Different Ts (Ps) can manage a file using the sme
or different handles

Guidelines

12System and Device Programming – Stefano Quer

 Return

 TRUE if the read succeeds

 Even if no bytes were read due to an attempt to
read past the end of file

 FALSE indicates an invalid handle

 A handle without GENERIC_READ access, etc.

BOOL ReadFile(
HANDLE hFile,
LPVOID lpBuffer,
DWORD nNumberOfBytesToRead,
LPDWORD lpNumberOfBytesRead,
LPOVERLAPPED lpOverlapped

);

Read a File

Numerous advanced
options

(not fully described here)

13System and Device Programming – Stefano Quer

 Parameters

 hFile

 File handle with

GENERIC_READ access

 lpBuffer

 Memory buffer to receive the input data

 nNumberOfBytesToRead

 Number of bytes you expect to read

Read a File

BOOL ReadFile(
HANDLE hFile,
LPVOID lpBuffer,
DWORD nNumberOfBytesToRead,
LPDWORD lpNumberOfBytesRead,
LPOVERLAPPED lpOverlapped

);

14System and Device Programming – Stefano Quer

 *lpNumberOfBytesRead

 Actual number of

bytes transferred

 Zero indicates end

of file

 lpOverlapped

 Points to the OVERLAPPED data structure

 Often NULL

 Not NULL for random file access

Read a File

BOOL ReadFile(
HANDLE hFile,
LPVOID lpBuffer,
DWORD nNumberOfBytesToRead,
LPDWORD lpNumberOfBytesRead,
LPOVERLAPPED lpOverlapped

);

15System and Device Programming – Stefano Quer

 Return

 TRUE if the function succeeds

 FALSE otherwise

 Parameters

 See the ReadFile function

BOOL WriteFile (
HANDLE hFile,
LPCVOID *lpBuffer,
DWORD nNumberOfBytesToWrite,
LPDWORD lpNumberOfBytesWritten,
LPOVERLAPPED lpOverlapped

);

Write a File

16System and Device Programming – Stefano Quer

 Return

 TRUE if the function succeeds

 FALSE otherwise

 This function is general purpose and will be used
to close handles to many different object types

BOOL CloseHandle (
HANDLE hObject

);

Close a File

17System and Device Programming – Stefano Quer

 Copy an old file into a new one

 Parameters

 lpExistingFile existing file name

 lpNewFile new file name

 If fFailIfExists is FALSE the source file will
replace an existing file

Convenience function to Copy a File

BOOL CopyFile (
LPCTSTR lpExistingFile,
LPCTSTR lpNewFile,
BOOL fFailIfExists

);

18System and Device Programming – Stefano Quer

 This “convenience

function”

 It is easier to use

 It provides better performance

 It preserves the file’s attributes, including time
stamps

Convenience function to Copy a File

BOOL CopyFile (
LPCTSTR lpExistingFile,
LPCTSTR lpNewFile,
BOOL fFailIfExists

);

19System and Device Programming – Stefano Quer

HANDLE hIn, hOut;
DWORD nIn, nOut;
TCHAR c;

hIn = CreateFile (argv[1], GENERIC_READ, 0, NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

hOut = CreateFile (argv[2], GENERIC_WRITE, 0, NULL,
CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

if (hIn==INVALID_HANDLE_VALUE||hOut==INVALID_HANDLE_VALUE) {
printf (″Error opening file.\n″);
return 1;

}

while (ReadFile(hIn,&c,sizeof(c),&nIn,NULL) && nIn > 0) {
WriteFile (hOut, &c, sizeof(c), &nOut, NULL);

}

CloseHandle (hIn);
CloseHandle (hOut);

Example

See previous section (and demo)
for further comments

Copy a file into an
equivalent one

20System and Device Programming – Stefano Quer

File Pointers

 Windows (like UNIX) indicates the current byte
location in the file

 The file pointer is associated with the HANDLE, not
the file

 For each handle (even to the same file) there is a
file pointer

 The pointer

 Is initialized to zero by CreateFile

 Advances with each read and write operation

Pay attention to concurrent manipulation:
1 versus N threads R/W the same file

21System and Device Programming – Stefano Quer

File Pointers

 In Windows

 It is possible to explicitly modify file pointers to
perform random walks on the file

 Random walks can be implemented using two
different strategies

 Setting the current position using a function before
reading or writing with RF and WF system calls

● SetFilePointer

● SetFilePointerEx

 Setting the current position using the overlapped
data structure while reading or writing

Obsolete (complex manipulation
of 64-bit pointers) but still used

22System and Device Programming – Stefano Quer

Setting File Pointers

 Return

 The low-order part (DWORD, unsigned) of the new
file pointer

 The high-order portion of the new file pointer goes to
the DWORD indicated by lpDistanceToMoveHigh
(if this parameter is non-NULL)

 In case of error, the return value is 0xFFFFFFFF

DWORD SetFilePointer (
HANDLE hFile,
LONG lDistanceToMove,
PLONG lpDistanceToMoveHigh,
DWORD dwMoveMethod

);

32-LSBs

32-MSBs

The return value can be a value or an error code … confused

23System and Device Programming – Stefano Quer

 Parameters

 hFile

 Handle of an open

file with read and/or

write access

 lDistanceToMove

 LONG (32bits) signed distance to move or unsigned
file position

 *lpDistanceToMoveHigh

 High-order portion of the move distance

 Can be NULL for “small” files (<4GBytes)

File Pointers

32-LSBs

32-MSBs

DWORD SetFilePointer (
HANDLE hFile,
LONG lDistanceToMove,
PLONG lpDistanceToMoveHigh,
DWORD dwMoveMethod

);

24System and Device Programming – Stefano Quer

 dwMoveMethod

 Specifies one of the
following modes

File Pointers

Value Action / Meaning

FILE_BEGIN Position from the start of file

FILE_CURRENT Move pointer forward or backward

FILE_END Position backward (or forward) from end of file

DWORD SetFilePointer (
HANDLE hFile,
LONG lDistanceToMove,
PLONG lpDistanceToMoveHigh,
DWORD dwMoveMethod

);

25System and Device Programming – Stefano Quer

 With SetFilePointer file pointers are specified
with two 32-bit parts

 For 64-bit file systems, file pointers are long 64
bits

 Large files are increasingly important in many
applications

 However, many users will only require “short” (<
4GBytes) files

 Function SetFilePointerEx is the first of many
“extended” functions

 There is no consistency in the extended features
or parameters

File Pointers with 64-bit Arithmetic

26System and Device Programming – Stefano Quer

 SetFilePointerEx uses the LARGE_INTEGER
data type for 64-bit file positions

 LARGE_INTEGERs are C union of

 A LONGLONG type named QuadPart

and two 32-bit quantities

 A DWORD (32-bit unsigned integer) type named
LowPart

 A LONG (32-bit signed integer) type named
HighPart

File Pointers with 64-bit Arithmetic

27System and Device Programming – Stefano Quer

File Pointers with 64-bit Arithmetic

A union is a special data type available in C that
allows to store different data types in the same

memory area (overlapped, shared)

LONGLONG QuadPart

LONG HighPart DWORD LowPart

64 bits

32 bits

typedef union _LARGE_INTEGER {
struct { DWORD LowPart; LONG HighPart; };
struct { DWORD LowPart; LONG HighPart; } u;
LONGLONG QuadPart;

} LARGE_INTEGER, *PLARGE_INTEGER;

32 bits

28System and Device Programming – Stefano Quer

File Pointers with 64-bit Arithmetic

LARGE_INTEGER var;

var.QuadPart = ...
var.LowPart = ...
var.Highart = ...

Get lower 32 bits

Get higher 32 bits

Sometimes is useful to access 64 bits (i.e.,
address increment, etc.), sometimes it is useful to

access two 32-bit fields

LONGLONG QuadPart

LONG HighPart DWORD LowPart

64 bits

32 bits

32 bits

Manipulate 64 bits

29System and Device Programming – Stefano Quer

Function SetFilePointerEx

 Similar to SetFilePointer but requires

 A large integer (liDistanceToMove) to set the
required position

 A large integer pointer (lpNewFilePointer) to return
the actual position

BOOL SetFilePointerEx (
HANDLE hFile,
LARGE_INTEGER liDistanceToMove,
PLARGE_INTEGER lpNewFilePointer,
DWORD dwMoveMethod

);

30System and Device Programming – Stefano Quer

. . .
record_t r;
LARGE_INTEGER FilePos;
PLARGE_INTEGER lpFilePos;
DWORD n, nRd, nWrt;
. . .

FilePos.QuadPart = n * sizeof (record_t);
SetFilePointerEx(hFile, FilePos, lpFilePos, FILE_BEGIN);
ReadFile(hFile, &r, sizeof(record_t), &nRd, NULL);
...

SetFilePointerEx(hFile, FilePos, lpFilePos, FILE_BEGIN);
WriteFile(hFile, &r, sizeof(record_t), &nWrt, NULL);

Example
Update (read-modify-write) the same

record within file hFile

Set current position
onto record n

Same position (must be reset)

Set file pointer to
that position

Pay attention to share hFile

31System and Device Programming – Stefano Quer

Overlapped Data Structure

 Windows provides another way to specify file
position

 The final parameter of ReadFile and WriteFile is
an overlapped data structure

 This structure has offset fields to specify the
starting position of the current read/write
operation

32System and Device Programming – Stefano Quer

type def struct _OVERLAPPED {
DWORD Internal;
DWORD InternalHigh;
DWORD Offset;
DWORD OffsetHigh;
HANDLE hEvent;

] OVERLAPPED;

Overlapped Data Structure

 The overlapped structure has 5 data fields

 Internal and InternalHigh

● Those two fields are reserved

● Do not use

33System and Device Programming – Stefano Quer

type def struct _OVERLAPPED {
DWORD Internal;
DWORD InternalHigh;
DWORD Offset;
DWORD OffsetHigh;
HANDLE hEvent;

] OVERLAPPED;

Overlapped Data Structure

 Offset and OffsetHigh

● Low order (32-LSBs)

● High order address (32-MSBs)

 hEvent

● Field is used with asynchronous I/O

● Must be NULL

New position is always
set from ″FILE_BEGIN″

34System and Device Programming – Stefano Quer

OVERLAPPED ov = { 0, 0, 0, 0, NULL };
record_t r;
LONGLONG n;
LARGE_INTEGER FilePos;
DWORD nRd, nWrt;
. . .
/* Update reference position (record n) */
FilePos.QuadPart = n * sizeof (record_t);
ov.Offset = FilePos.LowPart;
ov.OffsetHigh = FilePos.HighPart;
ReadFile(hFile, &r, sizeof(record_t), &nRd, &ov);
...
/* Update the record. */
...
WriteFile(hFile, &r, sizeof(record_t), &nWrt, &ov);

Example
Define proper data-structure

Set position

Set position again (structure
ov does not change)

Use LARGE_INTEGER
as before

Set those 2 fields

35System and Device Programming – Stefano Quer

Getting the File Size

BOOL SetFilePointerEx (
HANDLE hFile,
LARGE_INTEGER liDistanceToMove,
PLARGE_INTEGER lpNewFilePointer,
DWORD dwMoveMethod

);

 To append new record to the end of an existing
file, it is enough to set

 Offset and OffsetHigh to 0xFFFFFFFF, before
performing a write operation

 Anyhow, to know the file size it is possible to use
SetFilePointerEx

 Set the position 0 bytes from the end of the file

 Get the lpNewFilePointer returned

36System and Device Programming – Stefano Quer

BOOL GetFileSizeEx (
HANDLE hFile,
PLARGE_INTEGER lpFileSize

);

Getting the File Size

 To know a file size in a more directed fashion

 Return value

 FALSE in case of error

 Parameters

 hFile is the file handle (of an already opened file)

 lpFileSize the pointer to the 64-bit value
representing the file size

37System and Device Programming – Stefano Quer

I/O and Synchronization

 An important aspect of concurrent programming
is synchronization of access to shared objects
such as files

 All previous input/output operations are thread-
syncronous

 The thread waits until input/output completes

 To allow a thread to continue without waiting for
an input/output operation to complete it is
necessary to use asynchronous system calls

38System and Device Programming – Stefano Quer

I/O and Synchronization

 File locking is a limited form of synchronization

 In Windows it is possible to lock a file so that no
other P or T can access the same file area

 Lock belongs to a process, and it is possible to

 Lock

 An entire file

 Part of a file

 Obtain

 A shared, i.e., multiple reader (read-only) access

 An exclusive, i.e., single reader-writer, access

39System and Device Programming – Stefano Quer

File Locking

 Conflicting locks cannot be created on a file

 Locks cannot overlap

 The logic to manipulate lock is the following

 A process (or a thread within a process)

 Gets a lock

 Waits for a lock to become available

 If it does not want to wait, it returns immediately

 When more than one therad want to get a lock on
(possibly) a different section of the file

 Each thread must use a different file handles

40System and Device Programming – Stefano Quer

 LockFileEx locks a byte range in an open file

 Return

 A non-zero value (TRUE), if it succeeds

 A zero value (FALSE), if it fails

Locking a File

BOOL LockFileEx (
HANDLE hFile,
DWORD dwFlags,
DWORD dwReserved,
DWORD nNumberOfBytesToLockLow,
DWORD nNumberOfBytesToLockHigh,
LPOVERLAPPED lpOverlapped

);

hFile

Locked portion

41System and Device Programming – Stefano Quer

 Parameters

 hFile

 Handle of an open
file

 The file must have
an access such as

● GENERIC_READ

or

● GENERIC_WRITE

Locking a File

BOOL LockFileEx (
HANDLE hFile,
DWORD dwFlags,
DWORD dwReserved,
DWORD nNumberOfBytesToLockLow,
DWORD nNumberOfBytesToLockHigh,
LPOVERLAPPED lpOverlapped

);

42System and Device Programming – Stefano Quer

 dwFlags

 Lock mode and

how to wait

for the lock to

become available

 It may get one or more of the following values

● LOCKFILE_EXCLUSIVE_LOCK

o If present, the request is for an exclusive (read-write) lock
o Otherwise, the request is for a shared (read only) lock

● LOCKFILE_FAIL_IMMEDIATELY

o If present, specifies that the function should return
immediately with a FALSE if the lock cannot be acquired

o Otherwise, the call blocks until the lock becomes
available

Locking a File

BOOL LockFileEx (
HANDLE hFile,
DWORD dwFlags,
DWORD dwReserved,
DWORD nNumberOfBytesToLockLow,
DWORD nNumberOfBytesToLockHigh,
LPOVERLAPPED lpOverlapped

);

43System and Device Programming – Stefano Quer

 dwReserved

 Reserved

 Must be set to zero

 nNumberOf…Low

 Low-order 32 bits

of the length of the byte range to lock

 nNumberOfBytesLockHigh

 High-order 32 bits of the length of the byte range
to lock

Locking a File

nNumbeOfBytesToLockLow/High
define the size (the number of

bytes) of the locked region

BOOL LockFileEx (
HANDLE hFile,
DWORD dwFlags,
DWORD dwReserved,
DWORD nNumberOfBytesToLockLow,
DWORD nNumberOfBytesToLockHigh,
LPOVERLAPPED lpOverlapped

);

44System and Device Programming – Stefano Quer

 lpOverlapped

 Points to an

OVERLAPPED

data structure

containing the

offset of the beginning of the lock range

● Offset is the low part offset

● OffsetHigh is the high part offset

● The HANDLE hEvent should be set to 0

Locking a File

lpOvelapped
defines the starting position (in

term of bytes) of the locked region

type def struct _OVERLAPPED {
...
DWORD Offset;
DWORD OffsetHigh;
...

] OVERLAPPED;

BOOL LockFileEx (
HANDLE hFile,
DWORD dwFlags,
DWORD dwReserved,
DWORD nNumberOfBytesToLockLow,
DWORD nNumberOfBytesToLockHigh,
LPOVERLAPPED lpOverlapped

);

45System and Device Programming – Stefano Quer

 The unlock must use exactly the same range as a
preceding lock

 See LockFileEx for

 Return value

 Parameters

 Notie that the field “DWORD dwFlags” is not present

BOOL UnlockFileEx (
HANDLE hFile,
DWORD dwReserved,
DWORD nNumberOfBytesToLockLow,
DWORD nNumberOfBytesToLockHigh,
LPOVERLAPPED lpOverlapped

);

Unlocking a File

Any file lock is
removed with a
corresponding

UnlockFileEx call

46System and Device Programming – Stefano Quer

record_t ...;
HANDLE hFile;
LARGE_INTEGER filePos, fileReserved;
OVERLAPPED ov = {0, 0, 0, 0, NULL};

. . .

hFile = CreateFile (...);

. . .

filePos.QuadPart = n * sizeof (record_t);
fileReserved.QuadPart = m * sizeof (record_t);

ExampleDefine proper data-structures

Starting position for lock

Range size for lock

n = number of records to skip
record_t = struct defining a file record

m = number of records to lock
record_t = struct defining a file record

47System and Device Programming – Stefano Quer

. . .
ov.Offset = filePos.LowPart;
ov.OffsetHigh = filePos.HighPart;
ov.hEvent = (HANDLE) 0;

LockFileEx (hFile, LOCKFILE_EXCLUSIVE_LOCK,
0, fileReserved.LowPart, fileReserved.HighPart,
&ov);

. . .

UnlockFileEx (hFile, 0, fileReserved.LowPart,
fileReserved.HighPart, &ov);

Example

Locking

Unlocking

Exclusive Lock

Reserved Field Starting at …
Size to lock

hFile

Locked portion

n

m

Set overlapping data structure fields

48System and Device Programming – Stefano Quer

Guidelines

Exiting Lock
Requested Lock Type

Shared Lock Exclusive Lock

None Granted Granted

Shared lock Granted Refused

Exclusive lock Refused Refused

 Repeated Lock Request

 If a lock is present

 When a new lock request is granted or refused ?

49System and Device Programming – Stefano Quer

Guidelines

Exiting Lock
Requested I/O Operation

Read Write

None Succeeds Succeeds

Shared lock Succeeds
Succeeds for the lock owner.

Refused otherwise

Exclusive
lock

Succeeds for the lock owner.
Refused otherwise

Succeeds for the lock owner.
Refused otherwise

 I/O Request on a Lock

 If a lock is present

 When a new read or write opeation is granted or
refused ?

50System and Device Programming – Stefano Quer

Guidelines

 Every successful file lock must be followed by a
successful file unlock

 There must be a 1-to-1 matchig between lock and
unlock operations

 Locks cannot overlap

 They would conflict

 It is possible to lock beyond the file’s end

 This process can be useful to extend the file

 A lock may fail if a portion of record is locked

 The R/W operation will operate only when the
portion is unlocked

51System and Device Programming – Stefano Quer

Guidelines

 File locking can produce

 Starvation

 Thread A and B periodically obtain a shared lock
whereas C is waiting forever for an exclusive lock

 Deadlock

 Thread A is waiting for B to unlock and vice-versa
(on a different file region)

