
Input & Output

File Management
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2System and Device Programming – Stefano Quer

File Management Guidelines

 To manage a file it is always possible to use

 C library functions

 Are generally high level and easy to use

 The code will be portable on non-Windows systems

 Field and character-oriented funtions do not have
direct Windows equivalent

 Generic calls (ASCII and Unicode) can be easily used
but the portability advantage will be lost

 Windows functions

 Enable advanced features

● File security attributes, 32 versus 64-bit manipulation,
file locking, directory manipulations, etc.

 Optimize specific operations

3System and Device Programming – Stefano Quer

File Management Guidelines

 File management in Windows includes

 Basic file processing functions

 CreateFile, ReadFile, WriteFile, CloseHandle

 Random access functions

 SetFilePointer (SetFilePointerEx), overlapped data
structure, GetFileSizeEx

 File locking

 LockFileEx, UnlockFileEx
First form of threads

(or processes)
synchronization

4System and Device Programming – Stefano Quer

 Returned value

 A HANDLE to an open file object

 INVALID_HANDLE_VALUE in case of failure

HANDLE CreateFile (
LPCTSTR lpName,
DWORD dwAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwCreate,
DWORD dwAttrsAndFlags,
HANDLE hTemplateFile

);

Create a File

Numerous advanced
options

(not fully described here)

5System and Device Programming – Stefano Quer

 Parameters

 lpName

 Pointer to file name

 Length limited to

MAX_PATH

 If "\\?\″ is used as prefix it is possible to use name
as long as 32K (UNICODE coding)

 dwAccess

 Specify the read and write access

● Use GENERIC_READ or GENERIC_WRITE (the term
″GENERIC″ is somehow redundant)

 Combine flags with the OR operator ″|″

● GENERIC_READ | GENERIC_WRITE

Create a File

HANDLE CreateFile (
LPCTSTR lpName,
DWORD dwAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwCreate,
DWORD dwAttrsAndFlags,
HANDLE hTemplateFile

);

6System and Device Programming – Stefano Quer

 dwShareMode

 File sharing mode

 Bit-wise OR (″|″) of
table flags

Value Action / Meaning

0 Cannot be shared.
Not even the same process can open
another handle.

FILE_SHARE_READ Other processes can read concurrently

FILE_SHARE_WRITE Other processes can write concurrently

Create a File

HANDLE CreateFile (
LPCTSTR lpName,
DWORD dwAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwCreate,
DWORD dwAttrsAndFlags,
HANDLE hTemplateFile

);

7System and Device Programming – Stefano Quer

Create a File

 lpsa

 Usually NULL

 It points to a
SECURITY_ATTRIBUTES
structure (advanced
topic on security)

 Alert: Everyone has full
control of a newly
created file

HANDLE CreateFile (
LPCTSTR lpName,
DWORD dwAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwCreate,
DWORD dwAttrsAndFlags,
HANDLE hTemplateFile

);

8System and Device Programming – Stefano Quer

 dwCreate

 Create a file, overwrite
existing file, etc.

 There is no append
mode

● Set file pointer to the
end of file

Value Action / Meaning

CREATE_NEW Fails if the file exists

CREATE_ALWAYS An existing file will be overwritten

OPEN_EXISTING Fail if the file does not exist

OPEN_ALWAYS Open the file or create it if it doesn’t exist

TRUNCATE_EXISTING File length will be set to zero

Create a File

HANDLE CreateFile (
LPCTSTR lpName,
DWORD dwAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwCreate,
DWORD dwAttrsAndFlags,
HANDLE hTemplateFile

);

9System and Device Programming – Stefano Quer

 dwAttrsAndFlags

 32 possibile different
flags and attributes

 Attributes are
properties of the files
themselves

Value Action / Meaning

FILE_ATTRIBUTE_NORMAL No other attributes are set

FILE_ATTRIBUTE_READONLY Cannot write or delete

FILE_FLAG_OVERLAPPED For asynch I/O

FILE_FLAG_SEQUENTIAL_SCAN Provide performance hints

FILE_FLAG_RANDOM_ACCESS Provide performance hints

Create a File

 The main flags are the following

HANDLE CreateFile (
LPCTSTR lpName,
DWORD dwAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwCreate,
DWORD dwAttrsAndFlags,
HANDLE hTemplateFile

);

10System and Device Programming – Stefano Quer

 hTemplateFile

 Usually NULL

 It can be a handle of
an open file (opened in
GENERIC_READ mode)

 It forces CreateFile to
use the same
attributes of that file to
create the new file

Create a File

HANDLE CreateFile (
LPCTSTR lpName,
DWORD dwAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpsa,
DWORD dwCreate,
DWORD dwAttrsAndFlags,
HANDLE hTemplateFile

);

11System and Device Programming – Stefano Quer

 There is an OpenFile() function

 Don’t use it

 It’s obsolete and for 16-bit applications

 Flags are associated with the file HANDLE

 Different HANDLEs referring to the same file can
have different flags

 One HANDLE is “overlapped,” another not

 One HANDLE has FILE_FLAG_SEQUENTIAL_SCAN
and another FILE_FLAG_RANDOM_ACCESS

 Different Ts (Ps) can manage a file using the sme
or different handles

Guidelines

12System and Device Programming – Stefano Quer

 Return

 TRUE if the read succeeds

 Even if no bytes were read due to an attempt to
read past the end of file

 FALSE indicates an invalid handle

 A handle without GENERIC_READ access, etc.

BOOL ReadFile(
HANDLE hFile,
LPVOID lpBuffer,
DWORD nNumberOfBytesToRead,
LPDWORD lpNumberOfBytesRead,
LPOVERLAPPED lpOverlapped

);

Read a File

Numerous advanced
options

(not fully described here)

13System and Device Programming – Stefano Quer

 Parameters

 hFile

 File handle with

GENERIC_READ access

 lpBuffer

 Memory buffer to receive the input data

 nNumberOfBytesToRead

 Number of bytes you expect to read

Read a File

BOOL ReadFile(
HANDLE hFile,
LPVOID lpBuffer,
DWORD nNumberOfBytesToRead,
LPDWORD lpNumberOfBytesRead,
LPOVERLAPPED lpOverlapped

);

14System and Device Programming – Stefano Quer

 *lpNumberOfBytesRead

 Actual number of

bytes transferred

 Zero indicates end

of file

 lpOverlapped

 Points to the OVERLAPPED data structure

 Often NULL

 Not NULL for random file access

Read a File

BOOL ReadFile(
HANDLE hFile,
LPVOID lpBuffer,
DWORD nNumberOfBytesToRead,
LPDWORD lpNumberOfBytesRead,
LPOVERLAPPED lpOverlapped

);

15System and Device Programming – Stefano Quer

 Return

 TRUE if the function succeeds

 FALSE otherwise

 Parameters

 See the ReadFile function

BOOL WriteFile (
HANDLE hFile,
LPCVOID *lpBuffer,
DWORD nNumberOfBytesToWrite,
LPDWORD lpNumberOfBytesWritten,
LPOVERLAPPED lpOverlapped

);

Write a File

16System and Device Programming – Stefano Quer

 Return

 TRUE if the function succeeds

 FALSE otherwise

 This function is general purpose and will be used
to close handles to many different object types

BOOL CloseHandle (
HANDLE hObject

);

Close a File

17System and Device Programming – Stefano Quer

 Copy an old file into a new one

 Parameters

 lpExistingFile existing file name

 lpNewFile new file name

 If fFailIfExists is FALSE the source file will
replace an existing file

Convenience function to Copy a File

BOOL CopyFile (
LPCTSTR lpExistingFile,
LPCTSTR lpNewFile,
BOOL fFailIfExists

);

18System and Device Programming – Stefano Quer

 This “convenience

function”

 It is easier to use

 It provides better performance

 It preserves the file’s attributes, including time
stamps

Convenience function to Copy a File

BOOL CopyFile (
LPCTSTR lpExistingFile,
LPCTSTR lpNewFile,
BOOL fFailIfExists

);

19System and Device Programming – Stefano Quer

HANDLE hIn, hOut;
DWORD nIn, nOut;
TCHAR c;

hIn = CreateFile (argv[1], GENERIC_READ, 0, NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

hOut = CreateFile (argv[2], GENERIC_WRITE, 0, NULL,
CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

if (hIn==INVALID_HANDLE_VALUE||hOut==INVALID_HANDLE_VALUE) {
printf (″Error opening file.\n″);
return 1;

}

while (ReadFile(hIn,&c,sizeof(c),&nIn,NULL) && nIn > 0) {
WriteFile (hOut, &c, sizeof(c), &nOut, NULL);

}

CloseHandle (hIn);
CloseHandle (hOut);

Example

See previous section (and demo)
for further comments

Copy a file into an
equivalent one

20System and Device Programming – Stefano Quer

File Pointers

 Windows (like UNIX) indicates the current byte
location in the file

 The file pointer is associated with the HANDLE, not
the file

 For each handle (even to the same file) there is a
file pointer

 The pointer

 Is initialized to zero by CreateFile

 Advances with each read and write operation

Pay attention to concurrent manipulation:
1 versus N threads R/W the same file

21System and Device Programming – Stefano Quer

File Pointers

 In Windows

 It is possible to explicitly modify file pointers to
perform random walks on the file

 Random walks can be implemented using two
different strategies

 Setting the current position using a function before
reading or writing with RF and WF system calls

● SetFilePointer

● SetFilePointerEx

 Setting the current position using the overlapped
data structure while reading or writing

Obsolete (complex manipulation
of 64-bit pointers) but still used

22System and Device Programming – Stefano Quer

Setting File Pointers

 Return

 The low-order part (DWORD, unsigned) of the new
file pointer

 The high-order portion of the new file pointer goes to
the DWORD indicated by lpDistanceToMoveHigh
(if this parameter is non-NULL)

 In case of error, the return value is 0xFFFFFFFF

DWORD SetFilePointer (
HANDLE hFile,
LONG lDistanceToMove,
PLONG lpDistanceToMoveHigh,
DWORD dwMoveMethod

);

32-LSBs

32-MSBs

The return value can be a value or an error code … confused

23System and Device Programming – Stefano Quer

 Parameters

 hFile

 Handle of an open

file with read and/or

write access

 lDistanceToMove

 LONG (32bits) signed distance to move or unsigned
file position

 *lpDistanceToMoveHigh

 High-order portion of the move distance

 Can be NULL for “small” files (<4GBytes)

File Pointers

32-LSBs

32-MSBs

DWORD SetFilePointer (
HANDLE hFile,
LONG lDistanceToMove,
PLONG lpDistanceToMoveHigh,
DWORD dwMoveMethod

);

24System and Device Programming – Stefano Quer

 dwMoveMethod

 Specifies one of the
following modes

File Pointers

Value Action / Meaning

FILE_BEGIN Position from the start of file

FILE_CURRENT Move pointer forward or backward

FILE_END Position backward (or forward) from end of file

DWORD SetFilePointer (
HANDLE hFile,
LONG lDistanceToMove,
PLONG lpDistanceToMoveHigh,
DWORD dwMoveMethod

);

25System and Device Programming – Stefano Quer

 With SetFilePointer file pointers are specified
with two 32-bit parts

 For 64-bit file systems, file pointers are long 64
bits

 Large files are increasingly important in many
applications

 However, many users will only require “short” (<
4GBytes) files

 Function SetFilePointerEx is the first of many
“extended” functions

 There is no consistency in the extended features
or parameters

File Pointers with 64-bit Arithmetic

26System and Device Programming – Stefano Quer

 SetFilePointerEx uses the LARGE_INTEGER
data type for 64-bit file positions

 LARGE_INTEGERs are C union of

 A LONGLONG type named QuadPart

and two 32-bit quantities

 A DWORD (32-bit unsigned integer) type named
LowPart

 A LONG (32-bit signed integer) type named
HighPart

File Pointers with 64-bit Arithmetic

27System and Device Programming – Stefano Quer

File Pointers with 64-bit Arithmetic

A union is a special data type available in C that
allows to store different data types in the same

memory area (overlapped, shared)

LONGLONG QuadPart

LONG HighPart DWORD LowPart

64 bits

32 bits

typedef union _LARGE_INTEGER {
struct { DWORD LowPart; LONG HighPart; };
struct { DWORD LowPart; LONG HighPart; } u;
LONGLONG QuadPart;

} LARGE_INTEGER, *PLARGE_INTEGER;

32 bits

28System and Device Programming – Stefano Quer

File Pointers with 64-bit Arithmetic

LARGE_INTEGER var;

var.QuadPart = ...
var.LowPart = ...
var.Highart = ...

Get lower 32 bits

Get higher 32 bits

Sometimes is useful to access 64 bits (i.e.,
address increment, etc.), sometimes it is useful to

access two 32-bit fields

LONGLONG QuadPart

LONG HighPart DWORD LowPart

64 bits

32 bits

32 bits

Manipulate 64 bits

29System and Device Programming – Stefano Quer

Function SetFilePointerEx

 Similar to SetFilePointer but requires

 A large integer (liDistanceToMove) to set the
required position

 A large integer pointer (lpNewFilePointer) to return
the actual position

BOOL SetFilePointerEx (
HANDLE hFile,
LARGE_INTEGER liDistanceToMove,
PLARGE_INTEGER lpNewFilePointer,
DWORD dwMoveMethod

);

30System and Device Programming – Stefano Quer

. . .
record_t r;
LARGE_INTEGER FilePos;
PLARGE_INTEGER lpFilePos;
DWORD n, nRd, nWrt;
. . .

FilePos.QuadPart = n * sizeof (record_t);
SetFilePointerEx(hFile, FilePos, lpFilePos, FILE_BEGIN);
ReadFile(hFile, &r, sizeof(record_t), &nRd, NULL);
...

SetFilePointerEx(hFile, FilePos, lpFilePos, FILE_BEGIN);
WriteFile(hFile, &r, sizeof(record_t), &nWrt, NULL);

Example
Update (read-modify-write) the same

record within file hFile

Set current position
onto record n

Same position (must be reset)

Set file pointer to
that position

Pay attention to share hFile

31System and Device Programming – Stefano Quer

Overlapped Data Structure

 Windows provides another way to specify file
position

 The final parameter of ReadFile and WriteFile is
an overlapped data structure

 This structure has offset fields to specify the
starting position of the current read/write
operation

32System and Device Programming – Stefano Quer

type def struct _OVERLAPPED {
DWORD Internal;
DWORD InternalHigh;
DWORD Offset;
DWORD OffsetHigh;
HANDLE hEvent;

] OVERLAPPED;

Overlapped Data Structure

 The overlapped structure has 5 data fields

 Internal and InternalHigh

● Those two fields are reserved

● Do not use

33System and Device Programming – Stefano Quer

type def struct _OVERLAPPED {
DWORD Internal;
DWORD InternalHigh;
DWORD Offset;
DWORD OffsetHigh;
HANDLE hEvent;

] OVERLAPPED;

Overlapped Data Structure

 Offset and OffsetHigh

● Low order (32-LSBs)

● High order address (32-MSBs)

 hEvent

● Field is used with asynchronous I/O

● Must be NULL

New position is always
set from ″FILE_BEGIN″

34System and Device Programming – Stefano Quer

OVERLAPPED ov = { 0, 0, 0, 0, NULL };
record_t r;
LONGLONG n;
LARGE_INTEGER FilePos;
DWORD nRd, nWrt;
. . .
/* Update reference position (record n) */
FilePos.QuadPart = n * sizeof (record_t);
ov.Offset = FilePos.LowPart;
ov.OffsetHigh = FilePos.HighPart;
ReadFile(hFile, &r, sizeof(record_t), &nRd, &ov);
...
/* Update the record. */
...
WriteFile(hFile, &r, sizeof(record_t), &nWrt, &ov);

Example
Define proper data-structure

Set position

Set position again (structure
ov does not change)

Use LARGE_INTEGER
as before

Set those 2 fields

35System and Device Programming – Stefano Quer

Getting the File Size

BOOL SetFilePointerEx (
HANDLE hFile,
LARGE_INTEGER liDistanceToMove,
PLARGE_INTEGER lpNewFilePointer,
DWORD dwMoveMethod

);

 To append new record to the end of an existing
file, it is enough to set

 Offset and OffsetHigh to 0xFFFFFFFF, before
performing a write operation

 Anyhow, to know the file size it is possible to use
SetFilePointerEx

 Set the position 0 bytes from the end of the file

 Get the lpNewFilePointer returned

36System and Device Programming – Stefano Quer

BOOL GetFileSizeEx (
HANDLE hFile,
PLARGE_INTEGER lpFileSize

);

Getting the File Size

 To know a file size in a more directed fashion

 Return value

 FALSE in case of error

 Parameters

 hFile is the file handle (of an already opened file)

 lpFileSize the pointer to the 64-bit value
representing the file size

37System and Device Programming – Stefano Quer

I/O and Synchronization

 An important aspect of concurrent programming
is synchronization of access to shared objects
such as files

 All previous input/output operations are thread-
syncronous

 The thread waits until input/output completes

 To allow a thread to continue without waiting for
an input/output operation to complete it is
necessary to use asynchronous system calls

38System and Device Programming – Stefano Quer

I/O and Synchronization

 File locking is a limited form of synchronization

 In Windows it is possible to lock a file so that no
other P or T can access the same file area

 Lock belongs to a process, and it is possible to

 Lock

 An entire file

 Part of a file

 Obtain

 A shared, i.e., multiple reader (read-only) access

 An exclusive, i.e., single reader-writer, access

39System and Device Programming – Stefano Quer

File Locking

 Conflicting locks cannot be created on a file

 Locks cannot overlap

 The logic to manipulate lock is the following

 A process (or a thread within a process)

 Gets a lock

 Waits for a lock to become available

 If it does not want to wait, it returns immediately

 When more than one therad want to get a lock on
(possibly) a different section of the file

 Each thread must use a different file handles

40System and Device Programming – Stefano Quer

 LockFileEx locks a byte range in an open file

 Return

 A non-zero value (TRUE), if it succeeds

 A zero value (FALSE), if it fails

Locking a File

BOOL LockFileEx (
HANDLE hFile,
DWORD dwFlags,
DWORD dwReserved,
DWORD nNumberOfBytesToLockLow,
DWORD nNumberOfBytesToLockHigh,
LPOVERLAPPED lpOverlapped

);

hFile

Locked portion

41System and Device Programming – Stefano Quer

 Parameters

 hFile

 Handle of an open
file

 The file must have
an access such as

● GENERIC_READ

or

● GENERIC_WRITE

Locking a File

BOOL LockFileEx (
HANDLE hFile,
DWORD dwFlags,
DWORD dwReserved,
DWORD nNumberOfBytesToLockLow,
DWORD nNumberOfBytesToLockHigh,
LPOVERLAPPED lpOverlapped

);

42System and Device Programming – Stefano Quer

 dwFlags

 Lock mode and

how to wait

for the lock to

become available

 It may get one or more of the following values

● LOCKFILE_EXCLUSIVE_LOCK

o If present, the request is for an exclusive (read-write) lock
o Otherwise, the request is for a shared (read only) lock

● LOCKFILE_FAIL_IMMEDIATELY

o If present, specifies that the function should return
immediately with a FALSE if the lock cannot be acquired

o Otherwise, the call blocks until the lock becomes
available

Locking a File

BOOL LockFileEx (
HANDLE hFile,
DWORD dwFlags,
DWORD dwReserved,
DWORD nNumberOfBytesToLockLow,
DWORD nNumberOfBytesToLockHigh,
LPOVERLAPPED lpOverlapped

);

43System and Device Programming – Stefano Quer

 dwReserved

 Reserved

 Must be set to zero

 nNumberOf…Low

 Low-order 32 bits

of the length of the byte range to lock

 nNumberOfBytesLockHigh

 High-order 32 bits of the length of the byte range
to lock

Locking a File

nNumbeOfBytesToLockLow/High
define the size (the number of

bytes) of the locked region

BOOL LockFileEx (
HANDLE hFile,
DWORD dwFlags,
DWORD dwReserved,
DWORD nNumberOfBytesToLockLow,
DWORD nNumberOfBytesToLockHigh,
LPOVERLAPPED lpOverlapped

);

44System and Device Programming – Stefano Quer

 lpOverlapped

 Points to an

OVERLAPPED

data structure

containing the

offset of the beginning of the lock range

● Offset is the low part offset

● OffsetHigh is the high part offset

● The HANDLE hEvent should be set to 0

Locking a File

lpOvelapped
defines the starting position (in

term of bytes) of the locked region

type def struct _OVERLAPPED {
...
DWORD Offset;
DWORD OffsetHigh;
...

] OVERLAPPED;

BOOL LockFileEx (
HANDLE hFile,
DWORD dwFlags,
DWORD dwReserved,
DWORD nNumberOfBytesToLockLow,
DWORD nNumberOfBytesToLockHigh,
LPOVERLAPPED lpOverlapped

);

45System and Device Programming – Stefano Quer

 The unlock must use exactly the same range as a
preceding lock

 See LockFileEx for

 Return value

 Parameters

 Notie that the field “DWORD dwFlags” is not present

BOOL UnlockFileEx (
HANDLE hFile,
DWORD dwReserved,
DWORD nNumberOfBytesToLockLow,
DWORD nNumberOfBytesToLockHigh,
LPOVERLAPPED lpOverlapped

);

Unlocking a File

Any file lock is
removed with a
corresponding

UnlockFileEx call

46System and Device Programming – Stefano Quer

record_t ...;
HANDLE hFile;
LARGE_INTEGER filePos, fileReserved;
OVERLAPPED ov = {0, 0, 0, 0, NULL};

. . .

hFile = CreateFile (...);

. . .

filePos.QuadPart = n * sizeof (record_t);
fileReserved.QuadPart = m * sizeof (record_t);

ExampleDefine proper data-structures

Starting position for lock

Range size for lock

n = number of records to skip
record_t = struct defining a file record

m = number of records to lock
record_t = struct defining a file record

47System and Device Programming – Stefano Quer

. . .
ov.Offset = filePos.LowPart;
ov.OffsetHigh = filePos.HighPart;
ov.hEvent = (HANDLE) 0;

LockFileEx (hFile, LOCKFILE_EXCLUSIVE_LOCK,
0, fileReserved.LowPart, fileReserved.HighPart,
&ov);

. . .

UnlockFileEx (hFile, 0, fileReserved.LowPart,
fileReserved.HighPart, &ov);

Example

Locking

Unlocking

Exclusive Lock

Reserved Field Starting at …
Size to lock

hFile

Locked portion

n

m

Set overlapping data structure fields

48System and Device Programming – Stefano Quer

Guidelines

Exiting Lock
Requested Lock Type

Shared Lock Exclusive Lock

None Granted Granted

Shared lock Granted Refused

Exclusive lock Refused Refused

 Repeated Lock Request

 If a lock is present

 When a new lock request is granted or refused ?

49System and Device Programming – Stefano Quer

Guidelines

Exiting Lock
Requested I/O Operation

Read Write

None Succeeds Succeeds

Shared lock Succeeds
Succeeds for the lock owner.

Refused otherwise

Exclusive
lock

Succeeds for the lock owner.
Refused otherwise

Succeeds for the lock owner.
Refused otherwise

 I/O Request on a Lock

 If a lock is present

 When a new read or write opeation is granted or
refused ?

50System and Device Programming – Stefano Quer

Guidelines

 Every successful file lock must be followed by a
successful file unlock

 There must be a 1-to-1 matchig between lock and
unlock operations

 Locks cannot overlap

 They would conflict

 It is possible to lock beyond the file’s end

 This process can be useful to extend the file

 A lock may fail if a portion of record is locked

 The R/W operation will operate only when the
portion is unlocked

51System and Device Programming – Stefano Quer

Guidelines

 File locking can produce

 Starvation

 Thread A and B periodically obtain a shared lock
whereas C is waiting forever for an exclusive lock

 Deadlock

 Thread A is waiting for B to unlock and vice-versa
(on a different file region)

