Input & Output

File Management
Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

System and Device Programming - Stefano Quer 2

File Management Guidelines

< To manage a file it is always possible to use
» C library functions

= Are generally high level and easy to use
= The code will be portable on non-Windows systems

» Field and character-oriented funtions do not have
direct Windows equivalent

= Generic calls (ASCII and Unicode) can be easily used
but the portability advantage will be lost

> Windows functions

= Enable advanced features

e File security attributes, 32 versus 64-bit manipulation,
file locking, directory manipulations, etc.

= Optimize specific operations

System and Device Programming - Stefano Quer 3

File Management Guidelines

< File management in Windows includes
» Basic file processing functions
» CreateFile, ReadFile, WriteFile, CloseHandle

» Random access functions

= SetFilePointer (SetFilePointerEx), overlapped data
structure, GetFileSizeEx

> File locking
= LockFileEx, UnlockFileEx

First form of threads
(or processes)
synchronization

System and Device Programming - Stefano Quer 4

Create a File

4 .))
HANDLE CreateFile (/(Numerous advanced

LPCTSTR | pNane,
DWORD dwAccess,
DWORD dwShar eMbde, ——
LPSECURI TY_ATTRI BUTES | psa,
DWORD dwCr eat e,

DWORD dwAt t r sAndFl ags,
HANDLE hTenpl ateFil e

)¢ J

options
(not fully described here) y

% Returned value
» A HANDLE to an open file object
» INVALID_HANDLE_VALUE in case of failure

System and Device Programming - Stefano Quer 5

Create a File

/HANDLE CreateFile (h
< Parameters Sie
> IpName PégégUdR\lA??(irN?"ll\%?EUTES | psa,
= Pointer to file name DVCRD QWA ¢ ?gZﬁdF! ags,
; Length limited to \) ; HANDLE hTenpl ateFil e)
MAX_PATH

= If "\\?\" is used as prefix it is possible to use name
as long as 32K (UNICODE coding)

» dwAccess

= Specify the read and write access
e Use GENERIC_READ or GENERIC_WRITE (the term
"GENERIC” is somehow redundant)
= Combine flags with the OR operator ”|”
e GENERIC_READ | GENERIC_WRITE

System and Device Programming - Stefano Quer 6

Create a File

/HANDLE CreateFile (h
LPCTSTR | pNane,
> dwShareMode DWORD dWAGCESS.
] _ DWORD dwShar eMode,
= File sharing mode LPSECURI TY_ATTRI BUTES | psa,
TR min DWORD dwCr eat e,
= Bit-wise OR (|) Of DWORD dwAt t r sAndFI ags,
table flags HANDLE hTenpl ateFi |l e
U -
Value Action / Meaning
0 Cannot be shared.

Not even the same process can open
another handle.

FILE_SHARE_READ Other processes can read concurrently
FILE_SHARE_WRITE Other processes can write concurrently

sl

System and Device Programming - Stefano Quer 7

Create a File

[HANDLE CreateFile (A
> Ipsa DACRD. GwALCoss.
* Usually NULL UPSECUR T ATTRI BUTES 1 psa,
- It pOintS to a % gm te?;g\hdFl ags,
SECURITY_ATTRIBUTES HANDLE hTenpl at eFi | e
structure (advanced wk y

topic on security)

= Alert: Everyone has full
control of a newly
created file

System and Device Programming - Stefano Quer 8

Create a File

/HANDLE CreateFile (h
LPCTSTR | pNane,
> dwcreate DWORD degce;n:,
. - - DWORD dwShar eMbde,
Cr_ea_te d flle’ Overwrlte LPSECURI TYirA'eI'TRI EUTES | psa,
existing file, etc. DWORD dwCr eat e,
] DWORD dwAt t r sAndFI ags,
= There is no append HANDLE hTenpl ateFi | e
mode U J
e Set file pointer to the
end of file
Value Action / Meaning
CREATE_NEW Fails if the file exists
CREATE_ALWAYS An existing file will be overwritten
OPEN_EXISTING Fail if the file does not exist
OPEN_ALWAYS Open the file or create it if it doesn't exist

TRUNCATE_EXISTING File length will be set to zero

System and Device Programming - Stefano Quer 9

Create a File

" HANDLE CreateFile (h
LPCTSTR | pNane,
» dwAttrsAndFlags D anBITe:
- ihi i DWORD dwShar eMbde,
32 pOSSIbIIe d_lfferent LPSECURI TY_ATTRI BUTES | psa,
flags and attributes DWORD dwCr eat e,
DWORD dwAt t r sAndFl ags,
= Attributes are HANDLE hTenpl at eFi | e
properties of the files wk J
themselves

= The main flags are the following

Value Action / Meaning
FILE_ ATTRIBUTE_NORMAL No other attributes are set
FILE_ATTRIBUTE_READONLY Cannot write or delete
FILE_FLAG_OVERLAPPED For asynch I/O

FILE_ FLAG_SEQUENTIAL_SCAN Provide performance hints
FILE_ FLAG_RANDOM_ACCESS Provide performance hints

System and Device Programming - Stefano Quer 10

Create a File

/HANDLE CreateFile (h
> hTemplateFile e et
= Usually NULL CPSECURI v ATTRI BUTES | psa,
= Tt can be a handle of DIESD S e e o
an open file (opened in AANBHE el et eI
GENERIC_READ mode) O J

= [t forces CreateFile to
use the same
attributes of that file to
create the new file

System and Device Programming - Stefano Quer 11

% There is an OpenFile() function
» Don't use it
> It's obsolete and for 16-bit applications

<+ Flags are associated with the file HANDLE
> Different HANDLESs referring to the same file can
have different flags
= One HANDLE is “overlapped,” another not
= One HANDLE has FILE_FLAG_SEQUENTIAL_SCAN
and another FILE_FLAG_RANDOM_ACCESS

> Different Ts (Ps) can manage a file using the sme
or different handles

System and Device Programming - Stefano Quer 12

CEELIERALE

/ N ~
BOOL ReadFi | e(f Numerous advanced
HANDLE hFi |l e, . odptlon_T,3 .
LPVA D | pBuf fer, L—\ (not fully described here) y

DWORD nNunber O Byt esToRead,
LPDWORD | pNunber O Byt esRead,
LPOVERLAPPED | pOver | apped

)
N\ Y,

s* Return
» TRUE if the read succeeds

= Even if no bytes were read due to an attempt to
read past the end of file

» FALSE indicates an invalid handle
= A handle without GENERIC_READ access, etc.

System and Device Programming - Stefano Quer 13

CEELIERALE

(BCXJ_ ReadFi | e(A
** Parameters HANDLE IhgiB[Jﬁ o
> hFile CPONRD | phrber Of oyt coroat,
= File handle with . LPOVERLAPPED | pOver | apped
GENERIC_READ access 7

> |pBuffer
= Memory buffer to receive the input data

» nNumberOfBytesToRead
= Number of bytes you expect to read

System and Device Programming - Stefano Quer 14

CEELIERALE

~
[BO(]_ ReadFi | e(
» *IpNumberOfBytesRead HANDLE hFi | e,
LPVA D | pBuffer,
DWORD nNumber Of Byt esToRead,
" Actual number of LPDWORD | pNunmber O Byt esRead,
bytes transferred . LPOVERLAPPED | pOver | apped
= Zero indicates end - o

of file

» IpOverlapped
= Points to the OVERLAPPED data structure
= Often NULL
= Not NULL for random file access

System and Device Programming - Stefano Quer 15

4)

BOOL WiteFile (
HANDLE hFil e,
LPCVA D *I| pBuf f er,
DWORD nNunber O Byt esToW i t e,
LPDWORD | pNunber OF Byt esWi tten,
LPOVERLAPPED | pOver | apped

)

&)
++ Return

> TRUE if the function succeeds
> FALSE otherwise

** Parameters
> See the ReadFile function

System and Device Programming - Stefano Quer 16

Close a File

4 N

BOOL C oseHandl e (
HANDLE hQnj ect

)|

S J

«» Return
» TRUE if the function succeeds
» FALSE otherwise

+ This function is general purpose and will be used
to close handles to many different object types

System and Device Programming - Stefano Quer I

Convenience function to Copy a File

()
BOOL CopyFile (
LPCTSTR | pExi stingFil e,
LPCTSTR | pNewfFi | e,
BOOL fFaillfExists

)

(. J

< Copy an old file into a new one

< Parameters
> |IpExistingFile existing file name
> IpNewrFile new file name

> If fFallIfExists is FALSE the source file will
replace an existing file

System and Device Programming - Stefano Quer 18

Convenience function to Copy a File

()

>] BOOL CopyFil e (_ _
2 This “Conver"ence LPCTSTR | pExi stingFil e,

LPCTSTR | pNewFi | e,
" rn BOOL fFaillfExists
function .
» It is easier to use
» It provides better performance

» It preserves the file’s attributes, including time
stamps

System and Device Programming - Stefano Quer 19

[Copy a file into an

equivalent one

- BN

See previous section (and demo)

HANDLE hln, hQut:
DWORD nln, nQut: for further comments
TCHAR c;

hin = CreateFile (argv[1l], GENERI C READ, 0, NULL,
OPEN_EXI STI NG, FI LE_ATTRI BUTE_NORMAL, NULL) ;
hQut = CreateFile (argv[2], GENERIC WRI TE, 0, NULL,
CREATE_ALVWAYS, FILE ATTRI BUTE NORMAL, NULL);
I f (hl n==I N\VALI D_ HANDLE VALUE| | hQut ==I NVALI D HANDLE VALUE) {
printf ("Error opening file.\n");
return 1;

}

whi |l e (ReadFi |l e(hln, &, si zeof (c), &l n, NULL) && nln > 0) {
WiteFile (hQut, &c, sizeof(c), &nQut, NULL);

}

Cl oseHandl e (hln);
Cl oseHandl e (hCut);

System and Device Programming - Stefano Quer 20

File Pointers

< Windows (like UNIX) indicates the current byte
location in the file
» The file pointer is associated with the HANDLE, not
the file

= For each handle (even to the same file) there is a
file pointer

Pay attention to concurrent manipulation:
1 versus N threads R/W the same file

» The pointer
= Is initialized to zero by CreateFile
= Advances with each read and write operation

System and Device Programming - Stefano Quer 21

File Pointers

2 In Windows

> It is possible to explicitly modify file pointers to
perform random walks on the file

» Random walks can be implemented using two
different strategies
= Setting the current position using a function before
reading or writing with RF and WF system calls
e SetFilePointer [J

. . Obsolete (complex manipulation
o SetF|IeP0|nterEX\L of 64-bit pointers) but still used

= Setting the current position using the overlapped
data structure while reading or writing

System and Device Programming - Stefano Quer 22

Setting File Pointers

e N
DWORD Set Fi | ePoi nter (

HANDLE hFi | e,
LONG | D st anceTolMove,
PLONG | pDi st anceToMoveH gh,

DWORD dwivbveMet hod
)

()
32-LSBs
< Return % J

» The low-order part (DWORD, unsigned) of the new
file pointer

= The high-order portion of the new file pointer goes to
the DWORD indicated by IpDistanceToMoveHigh
(if this parameter is non-NULL)

> In case of error, the return value is OxFFFFFFFF

T

[The return value can be a value or an error code ... confused]

(&

[32-MSBs

System and Device Programming - Stefano Quer 23

File Pointers

/ B
DWORD Set Fi | ePoi nt er
+»+ Parameters HANDLE hFi | e, (
. LONG | D st anceToMve,
> hFile PLONG | pDi st anceToMoveHi gh,
DWORD dwivbvelMet hod
= Handle of an open)
file with read and/or S 4

write access

> |IDistanceToMove
= | ONG (32bits) signed distance to move or unsigned

file position
: : 32-MSB
> *IpDistanceToMoveHigh 4[’ J
= High-order portion of the move distance
= Can be NULL for “small” files (<4GBytes)

32-LSBs]

System and Device Programming - Stefano Quer - 24

File Pointers

4 N\
> dwMoveMethod D EANDLE hi Lo e |
. LONG | Di st anceTolMove,
- SpeC|f_|es one of the PLONG | pDi st anceToMoveH gh,
following modes DWORD dwibveMet hod
)
N\ J
Value Action / Meaning
FILE_BEGIN Position from the start of file
FILE_ CURRENT Move pointer forward or backward

FILE_END Position backward (or forward) from end of file

System and Device Programming - Stefano Quer 25

File Pointers with 64-bit Arithmetic

% With SetFilePointer file pointers are specified
with two 32-bit parts

% For 64-bit file systems, file pointers are long 64
bits
> Large files are increasingly important in many
applications

» However, many users will only require “short” (<
4GBytes) files

% Function SetFilePointerEx is the first of many
“extended” functions

» There is no consistency in the extended features
or parameters

System and Device Programming - Stefano Quer 26

File Pointers with 64-bit Arithmetic

% SetFilePointerEx uses the LARGE_INTEGER
data type for 64-bit file positions
*+ LARGE_INTEGERS are C union of
» A LONGLONG type named QuadPart

and two 32-bit quantities

» A DWORD (32-bit unsigned integer) type named
LowPart

» A LONG (32-bit signed integer) type named
HighPart

System and Device Programming - Stefano Quer -

File Pointers with 64-bit Arithmetic

C)

t ypedef uni on LARGE | NTEGER {
struct { DWORD LowPart; LONG HighPart; };
struct { DWORD LowPart; LONG HighPart; } u;
LONGLONG QuadPart ;

} LARGE | NTEGER, *PLARGE | NTEGER,

L J
[64 bits L LONGLONG QuadPart
LONG HighPart DWORD LowPart
[32 bits j% J

i 32 bits \

-
A union is a special data type available in C that

allows to store different data types in the same
memory area (overlapped, shared)

"

System and Device Programming - Stefano Quer - 28

File Pointers with 64-bit Arithmetic

e ™ : N
LARGE | NTEGER var ; Janlpulate 64 bits)
var. QuadPart = ... //(Get lower 32 bits
var. LowPart = ... __——F ’
var. H ghart = \ Get higher 32 bits

N\ J y

[64 bits L\ LONGLONG QuadPart
LONG HighPart DWORD LowPart
32 bits j% J

i 32 bits \

K

o

address increment, etc.), sometimes it is useful to

Sometimes is useful to access 64 bits (i.e.,

access two 32-bit fields y

System and Device Programming - Stefano Quer 29

Function SetFilePointerEx

s D
BOOL Set Fi | ePoi nter Ex (

HANDLE hFi | e,

LARGE | NTEGER |1 Di st anceToMove,

PLARGE | NTEGER | pNewFi | ePoi nt er,

DWORD dwivbveMet hod

)

N\ J
% Similar to SetFilePointer but requires

> A large integer (liDistanceToMove) to set the
required position

> A large integer pointer (IpNewFilePointer) to return
the actual position

System and Device Programming - Stefano Quer 30

[Update (read-modify-write) the same

record within file hFile

record t r; =
LARGE | NTEGER Fi | ePos: Set current position
PLARGE_| NTEGER | pFi | ePos; onto record n
DWORD n, nRd, nWt;

N

Set file pointer to
that position

Fi |l ePos. QuadPart = n * sizeof (record t);
Set Fi | ePoi nterEx(hFile, FilePos, |pFilePos, FILE BEG N);
ReadFile(hFile, &, sizeof(record t), &Rd, NULL);

Same position (must be reset)

Set Fi | ePoi nterEx(hFile, FilePos, |pFilePos, FILE BEG N);
WiteFile(hFile, &, sizeof(record t), &Wt, NULL);

(&

Pay attention to share hFile

System and Device Programming - Stefano Quer 31

Overlapped Data Structure

<+ Windows provides another way to specify file
position
% The final parameter of ReadFile and WriteFile is
an overlapped data structure
» This structure has offset fields to specify the

starting position of the current read/write
operation

System and Device Programming - Stefano Quer Sz2

Overlapped Data Structure

4 N
type def struct _OVERLAPPED {

DWORD | nt er nal ;
DWORD | nt er nal Hi gh;
DWORD O f set ;
DWORD O f set H gh;
HANDLE hEvent ;

] OVERLAPPED,

» The overlapped structure has 5 data fields

= Internal and InternalHigh
e Those two fields are reserved
e Do not use

System and Device Programming - Stefano Quer 33

Overlapped Data Structure

= Offset and OffsetHigh
e Low order (32-LSBs)
e High order address (32-MSBs)

New position is always
set from “FILE_BEGIN”

= hEvent
e Field is used with asynchronous I/O
e Must be NULL

C D
type def struct _OVERLAPPED {

DWORD | nt er nal ;
DWORD | nt er nal Hi gh;
DWORD O f set ;
DWORD O f set Hi gh;
HANDLE hEvent ;

] OVERLAPPED,;

System and Device Programming - Stefano Quer 34

p

Define proper data-structure || Set those 2 fields

/ OVERLAPPED ov = { 0, 0, 0, 0, NULL }: I
record t r;
LONGLONG n: Use LARGE_INTEGER
LARGE | NTEGER Fi | ePos; as before

DWORD nRd, nWt;

/* Update reference position (record n) */
Fi |l ePos. QuadPart = n * sizeof (record t); Set position
ov. O fset = Fil ePos. LowPart ;

ov. O fsetH gh = Fil ePos. H ghPart;

ReadFi |l e(hFile, &r, sizeof(record t), &Rd, &ov);

/[* Update the record. */

WiteFile(hFile, &, sizeof(record t), &Wt, &ov);

\ Set position again (structure
ov does not change)

System and Device Programming - Stefano Quer 35

Getting the File Size

% To append new record to the end of an existing
file, it is enough to set

» Offset and OffsetHigh to OxFFFFFFFF, before
performing a write operation

< Anyhow, to know the file size it is possible to use
SetFilePointerEx

» Set the position 0 bytes from the end of the file
» Get the IpNewFilePointer returned

/BCD_ Set Fi | ePoi nter Ex (
HANDLE hFil e,
LARGE | NTEGER | i Di st anceToMove,
PLARGE | NTEGER | pNewfi | ePoi nt er,
DWORD dwivbveMet hod

System and Device Programming - Stefano Quer 36

Getting the File Size

()

BOOL CGetFil eSi zeEx (
HANDLE hFi | e,
PLARGE | NTEGER | pFi |l eSi ze

)|

- J

% To know a file size in a more directed fashion
% Return value

» FALSE in case of error
*» Parameters

> hFile is the file handle (of an already opened file)

> |pFileSize the pointer to the 64-bit value
representing the file size

System and Device Programming - Stefano Quer 3

I/0 and Synchronization

< An important aspect of concurrent programming
IS synchronization of access to shared objects
such as files

< All previous input/output operations are thread-
Syncronous
» The thread waits until input/output completes

» To allow a thread to continue without waiting for
an input/output operation to complete it is
necessary to use asynchronous system calls

System and Device Programming - Stefano Quer 38

I/0 and Synchronization

< File locking is a limited form of synchronization

< In Windows it is possible to lock a file so that no
other P or T can access the same file area

< Lock belongs to a process, and it is possible to

» Lock
= An entire file
= Part of a file
» Obtain
= A shared, i.e., multiple reader (read-only) access
= An exclusive, i.e., single reader-writer, access

System and Device Programming - Stefano Quer - o0

File Locking

<+ Conflicting locks cannot be created on a file
% Locks cannot overlap

% The logic to manipulate lock is the following

» A process (or a thread within a process)
= Gets a lock
= Waits for a lock to become available
= If it does not want to wait, it returns immediately
» When more than one therad want to get a lock on
(possibly) a different section of the file
= Each thread must use a different file handles

System and Device Programming - Stefano Quer 40

Locking a File

~

/B(Il LockFi | eEx (
HANDLE hFi | e,
DWORD dwFI ags, hFile
DWORD dwReser ved, ————e .
DWORD nNunber O Byt esToLockLow, __:___.,{ Locked portion
DWORD nNunber O Byt esToLockHi gh, l
LPOVERLAPPED | pOver | apped -

U J

< LockFileEx locks a byte range in an open file

+» Return

» A non-zero value (TRUE), if it succeeds
> A zero value (FALSE), if it fails

s

System and Device Programming - Stefano Quer

41

Locking a File

+»+ Parameters

> hFile
= Handle of an open
file
= The file must have
an access such as

e GENERIC_READ

or
e GENERIC_WRITE

e
BOOL LockFil eEx (

HANDLE hFil e,

DWORD dwFl ags,

DWORD dwReser ved,

DWORD nNunber OF Byt esToLockLow,
DWORD nNunber OfF Byt esToLockHi gh,
LPOVERLAPPED | pOver | apped

)

System and Device Programming - Stefano Quer 42

Locking a File

/BOO_ LockFi | eEx (
> dwFIags HANDLE hFi | e,
DWORD dwFl ags,
= Lock mode and DWORD dwReser ved,
: DWORD nNunber OF Byt esToLockLow,
how to wait DWORD nNunber OF Byt esToLockHi gh,
for the lock to) LPOVERLAPPED | pOver | apped

\ /)

become available

= It may get one or more of the following values
e LOCKFILE_EXCLUSIVE_LOCK

o If present, the request is for an exclusive (read-write) lock
o Otherwise, the request is for a shared (read only) lock

o LOCKFILE_FAIL_IMMEDIATELY

o If present, specifies that the function should return
immediately with a FALSE if the lock cannot be acquired

o Otherwise, the call blocks until the lock becomes
available

System and Device Programming - Stefano Quer 43

Locking a File

KBOO_ LockFi | eEx (h
» dwReserved HANDLE hFi | e,
DWORD dwFl ags,
= Reserved DWORD dwReser ved,
DWORD nNunber OF Byt esToLockLow,
= Must be set to zero DWORD nNumber OfF Byt esToLockHi gh,
> nNumberOf...LOW) LPOVERLAPPED | pOver | apped
S)

= Low-order 32 bits
of the length of the byte range to lock
» NNumberOfBytesLockHigh

= High-order 32 bits of the length of the byte range
to lock

~
NNumbeOfBytesToLockLow/High
define the size (the number of
bytes) of the locked region

N

System and Device Programming - Stefano Quer 44

Locking a File

KBOC]_ LockFi | eEx (h
> |pOverlapped HANDLE hFi | e,
. DWORD dwfl ags,
= Points to an DWORD dwReser ved,
DWORD nNumber O Byt esToLockLow,
OVERLAPPED DUCRD nNurber Of Byt esToLockH gh,
data structure LPOVERLAPPED | pOver | apped
);
containing the - o
offset of the beginning of the lock range
e Offset is the low part offset
e OffsetHigh is the high part offset
e The HANDLE hEvent should be set to 0
4)
type def struct _OVERLAPPED {
DWRD O fset;)
DWORD Of f set Hi gh: IpOvelapped
- defines the starting position (in
] OVERLAPPED; % term of bytes) of the locked region y
& J

System and Device Programming - Stefano Quer 45

Unlocking a File

4 .)
BOOL Unl ockFi |l eEx (1 Any file lock is
HANDLE hFi |l e, removed with a
DWORD dwReser ved, corresponding

DWORD nNunmber OF Byt esToLockLow, UnlockFileEx call

DWORD nNunber O Byt esToLockHi gh,
LPOVERLAPPED | pOver | apped

)

- /)
% The unlock must use exactly the same range as a
preceding lock
% See LockFileEx for
» Return value

» Parameters
= Notie that the field "DWORD dwFlags” is not present

System and Device Programming - Stefano Quer 46

Define proper data-structures

| Starting position for lock }—\

record_t ...; _]
HANDLE hFi |l e: ‘ Range size for lock

LARGE | NTEGER fil ePos, fil eReserved,;
OVERLAPPED ov = {0, 0, O, 0O, NULL};

: — : : n = number of records to skip
A LE SrEEHEAE aoa)) record_t = struct defining a file record]

filePos. QuadPart = n * sizeof (record t);
fil eReserved. QuadPart = m* sizeof (record t);

k /
\ m = number of records to lock
L record_t = struct defining a file record

System and Device Programming - Stefano Quer 47

/ Set%rlapping data structure fields
ov. O fset = filePos. LowPart;) :
ov. Off setH gh = fil ePos. H ghPart ; n - hFile
ov. hEvent = (HANDLE) O; -

. . m - Locked portion
LLocklng \ [Excluswe\L/ock_] L

LockFil eEx (hFile, LOCKFILE EXCLUSI VE LOCK,
O, fileReserved. LowPart, fileReserved. H ghPart,

) &OV) y $
[Reserved Field J\[Starting at ...] Size to lock J

Unl ockFil eEx (hFile, 0, fil eReserved. LowPart,
>/\ fil eReserved. H ghPart, &ov);

[Unlocking J

System and Device Programming - Stefano Quer 48

% Repeated Lock Request
> If a lock is present
» When a new lock request is granted or refused ?

Requested Lock Type

Exiting Lock Shared Lock Exclusive Lock
None Granted Granted
Shared lock Granted Refused

Exclusive lock Refused Refused

System and Device Programming - Stefano Quer 49

% I/O Request on a Lock
> If a lock is present
» When a new read or write opeation is granted or

refused ?
- Requested I/0 Operation
Exiting Lock Read Write
None Succeeds Succeeds
Succeeds for the lock owner.
Shared lock Succeeds Refused otherwise
Exclusive Succeeds for the lock owner. Succeeds for the lock owner.

lock Refused otherwise Refused otherwise

System and Device Programming - Stefano Quer 50

% Every successful file lock must be followed by a
successful file unlock

» There must be a 1-to-1 matchig between lock and
unlock operations

% Locks cannot overlap
» They would conflict

% It is possible to lock beyond the file's end
> This process can be useful to extend the file

% A lock may fail if a portion of record is locked

» The R/W operation will operate only when the
portion is unlocked

&

System and Device Programming - Stefano Qi er 55!

Guidelines

 File locking can produce

» Starvation

= Thread A and B periodically obtain a shared lock
whereas C is waiting forever for an exclusive lock

> Deadlock

= Thread A is waiting for B to unlock and vice-versa
(on a different file region)

