
System and Device Programming

Windows API and Visual Studio
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2System and Device Programming – Stefano Quer

Main Operating Systems

 Operating systems can be classified according to
several criteria

 Application domain

 Mainframes, servers, workstations

 Desktops, laptops

 Embedded systems

 Real-time devices

 Handlet devices

Supercomputing,
scientific calculus,
services, web, etc

Everyday-life applications, e.g.
cell-phones, automotive, etc.

Safety critical
applications, e.g.,
medical devices,

avionics, etc.

Specific appllications, e.g., bar-
code scanners, Personal Digital
Assistant (PDA), smart cards,

etc.

3System and Device Programming – Stefano Quer

Main Operating Systems

All Devices

SO Market

Android 48.61%

iOS / OS X 11.04%

Windows 14.00%

Others 26.34%

Server

SO Market

Windows 49.50%

Apple 15.62%

Linux based 19.13%

Others 3.83%

Desktop, laptop, etc.

SO Market Share

Windows 7 47.21%

Windows 10 29.00%

Mac OS 6.35%

Windows 8.1 5.89%

Windos XP 5.69%

Linux 3.04%

FreeBSD 0.10%

Others 2.72%

Microsoft
Windows:
90.79%

 Diffusion

 Data update: September 2018

4System and Device Programming – Stefano Quer

Microsoft

 Microsoft

 Founded in 1975 by Bill Gates e Paul Allen

 First MS-DOS version in 1981

 First Windows version in 1985

 OS with graphical interface

 Based on windows

 Targeting Intel processors

 Market share today

 90%, including all versions still in use

 Windows 10 (29%), Windows 8 (6%), Windows 7
(47%), Windows XP (5%), Windows Vista (1%), etc.

Linux 3%, Mac OS 6%

5System and Device Programming – Stefano Quer

Microsoft

Server Windows NT 3.1, 3.5, 3.51, 4.0 (from 1993), Windows
2000, Windows Server 2003, 2003 R2, 2008, 2008 R2,
2012, 2012 R2

Device -
embedded

Windows CE, Windows Embedded, Windows Phone,
Windows Mobile, Windows RT, ...

Desktop Windows 1.01-3.2 (from 1985 to 1993)
Windows 95, 98, ME (Windows 9x) (from 1993)
Windows XP (from 2001)
Windows Vista (from 2007): available with several flavours
(home premium, business, enterprise, ultimate)
Windows 7 (from 2009): available with several flavours
(basic, premium, professional, enterprise, ultimate, thin PC)
Windows 8, 8.1 (from 2012): available in several flavours
(standard, pro, enterprise)
Windows 10 (from 2015)

6System and Device Programming – Stefano Quer

Microsoft

 16-bit Versions

 From Windows 1.0 (1985) to Windows 3.1 (1992)

 Written to be portable on several architectures

 Used mainly on Intel x86 processors

 16/32-bit Versions

 Windows 9x (1993-2000)

 Derived from MS-DOS and 16-bit versions

 New kernel

 32/64-bit Versions

 From Windows NT (NT = New Technlogy?)

 Leave MS-DOS behind completely

 New kernel (hybrid micro-kernel architecture derived
from the UNIX system)

7System and Device Programming – Stefano Quer

Operating System Standards

 Known standards

 The C Library

 Unix (Linux) Systems

 Win32/Win64 or Windows

 C++

 Different standards have different APIs

 API = Application Programming Interface

Linux is a free version of UNIX.
The kernel identifies Linux’s OS

The C language and UNIX are
strictly connected as UNIX was

developed in C

8System and Device Programming – Stefano Quer

The UNIX (Linux) Standards

ISO C 1972: UNIX is moved from assembre to C.
Several versions are developed during the years: ANSI
C (1989), ISO C o C90 (1990), ISO C o C99 (1999), ISO
C11 (2011), ISO C18 (2018)

POSIX POSIX = Portable Operating System Interface
A family of standards born to facilitate the UNIX
portability at a word-wide level. It defines the services
each UNIX operating systems is suppose to deliver and
to satisfy to be "POSIX compliant".
It includes the ISO C standard.

SUS SUS = Single UNIX Specification
A project born in mid ’80, super-set of POSIX. It
defines what an operating system has to do and
how these things must be defined to be ″UNIX-
like″ operating system.

9System and Device Programming – Stefano Quer

The Windows Standards

 Win32/Win64 (or simply Windows) API

 Supported by Microsoft

 Microsoft is the sole arbiter and implementor

 Widely used by Windows operating systems

 Has its own set of conventions and programming
techniques, which are driven by Microsoft

 Support different processors to be able to be
ported under different architectures

 Are defined in C language (not in C++)

10System and Device Programming – Stefano Quer

The Windows Standards

 Go beyond standard C

 Reduce code portability

 Increase code functionality

 For example

● The C library is always available but we cannot fully
exploit Windows with it

● For example in C it is not possible to

o Lock a file or a part of it
o Mapping a file into main memory
o Organize inter-process communication

In this unit, we concentrate on
how to develop applications

using the Windows API

11System and Device Programming – Stefano Quer

 Windows APIs

 Are different from other standard (POSIX, etc.)

 Require is own coding style and technique

 Use threads (not processes) as basic unit of
execution

 A process can contain one or more threads

 Each process has its own code and data address
space

 Threads share the process address space

 Threads are “lightweight” and more efficient than
processes

Programming Principles

12System and Device Programming – Stefano Quer

Programming Principles

 When programming in the Microsoft Visual Studio
C++ environment, please remember to include

 windows.h

 This header includes most of the required data,
such as

 winnt.h

 winbase.h

 etc.

13System and Device Programming – Stefano Quer

Programming Principles

 Windows is rich and flexible

 Many functions perform the same or similar
operations

 There are sccasional artifacts from 16-bit Windows

● Windows 32 was created from scratch but designed to
be backward-compatible (with Windows 3.1 Win 16)

 SetFilePointer, SetFilePointerEx, GetFileSize,
GetFileSizeEx, etc.

 Function names are long and descriptive

 WaitForSingleObject, WaitForMultipleObjects, etc.

14System and Device Programming – Stefano Quer

 Each function has numerous parameters and flags

 HANDLE fileHandle, LPVOID dataBuffer, DWORD
numberOfByteToRead, LPDWORD
numberOfByteRead, LPOVERLAPPED
overlappedDataStructure

 Parameter and variable names are long and
descriptive and often use ″Hungarian″ notation

 lpFileName, lpBuffer, nNumberOfBytesToRead, etc.

 Symbolic constants and flags explain their meaning

 INVALID_HANDLE_VALUE, GENERIC_READ, etc.

Programming Principles

Long Pointer
[to a zero terminated string]

15System and Device Programming – Stefano Quer

 API C style

 API POSIX style

 API Win32/64

Examples

BOOL ReadFile (
HANDLE fileHandle,
LPVOID dataBuffer,
DWORD numberOfByteToRead,
LPDWORD numberOfByteRead,
LPOVERLAPPED overlappedDataStructure

);

int read (int fd, void *buffer, size_t nbytes);

size_t fread (void *ptr, size_t size,
size_t nObj, FILE *fp);

Read a file (text or binay format)

16System and Device Programming – Stefano Quer

 API POSIX style

 API Win32/64

Examples

HANDLE CreateThread(
LPSECURITY_ATTRIBUTES lpsa,
DWORD cbStack,
LPTHREAD_START_ROUTINE lpStartAddr,
LPVOID lpvThreadParm,
DWORD dwCreate,
LPDWORD lpIDThread

);

int pthread_create (
pthread_t *tid,
const pthread_attr_t *attr,
void *(*startRoutine)(void *),
void *arg

);

Create a thread

17System and Device Programming – Stefano Quer

Programming Principles

 Nearly every resource is a kernel object

 Objects are identified and referenced by handle

 Handle objects are of type HANDLE

 HANDLE objects include

 Files, pipes, processes, memory mapping, threads,
events, mutexes, semaphores

 HANDLEs are gray boxes

 Kernel objects must be manipulated by Windows
APIs

Similar to UNIX
file descriptor
or process id

18System and Device Programming – Stefano Quer

 Specific names are reserved for Microsoft Visual C
and the Microsoft compiler

 _ keywordName

 _functionName

 Functions

 CloseHandle applies to (nearly) all objects

 ReadFile, WriteFile, and many other return Boolean
values

 GetLastError returns system error codes

Programming Principles

19System and Device Programming – Stefano Quer

 Predefined descriptive data types

 Are expressed in upper case

 BOOL, DWORD, LPDWORD, etc.

 Avoid the ″*″ operator and make (name)
distinctions

 LPTSTR

● Long Pointer To STRing defined as TCHAR *

 LPCTSTR

● Long Pointer Constant To STRing defined as const
TCHAR *

Programming Principles

″LP″ is obsolete and
inconsistently used

″WIN32″ appears in macro
names even when the macro is

for 64 bits

20System and Device Programming – Stefano Quer

Examples

 Windows Data Types

INT8
An 8-bit signed integer.
This type is declared in BaseTsd.h as follows:
typedef signed char INT8;

INT16
A 16-bit signed integer. This type is declared in BaseTsd.h as follows:
typedef signed short INT16;

INT32
A 32-bit signed integer. The range is -2147483648 through 2147483647 decimal.
This type is declared in BaseTsd.h as follows: typedef signed int INT32;

INT64
A 64-bit signed integer. The range is -9223372036854775808 through
9223372036854775807 decimal. This type is declared in BaseTsd.h as follows:
typedef signed __int64 INT64;

UINT8
An unsigned INT8. This type is declared in BaseTsd.h as follows: typedef
unsigned char UINT8;

UINT16
An unsigned INT16. This type is declared in BaseTsd.h as follows: typedef
unsigned short UINT16;

UINT32
An unsigned INT32. The range is 0 through 4294967295 decimal. This
type is declared in BaseTsd.h as follows: typedef unsigned int UINT32;

UINT64
An unsigned INT64. The range is 0 through 18446744073709551615
decimal. typedef usigned __int 64 UINT64;

ULONG
An unsigned LONG. The range is 0 through 4294967295 decimal. This
type is declared in WinDef.h as follows: typedef unsigned long ULONG;

ULONGL
ONG

A 64-bit unsigned integer. The range is 0 through 18446744073709551615
decimal. This type is declared in WinNT.h as follows:

…

See WEB sources
(Windows Data Types)

for a complete list

…

21System and Device Programming – Stefano Quer

Coding Systems

 Windows supports executable code build in

 16 (Win16), 32 (Win32), 64 (Win64) bits

 16-bit versions are maintained only for backward
compatibility

 32-bit versions run on 64-bit architecture but cannot
exploit the larger address space

 It is usually fairly simple to build applications able
to run uder either Win32 and Win64

 Most of the difference concern the pointer size

 Avoid any assumption about pointer length

 Win64 uses 64-bit pointers

 DWORD32, DWORD64, POINTER_32, POINTER_64,
LONG32, LONG64, etc.

22System and Device Programming – Stefano Quer

Character Coding Systems

 For characters and strings, four different coding
strategies are possible

 8-bit only

 Unicode only

 8-bit and Unicode with generic code

 8-bit and Unicode with run-time selection

This is generally the
wiser and safer solution

23System and Device Programming – Stefano Quer

Character Coding Systems

 8-bit only

 Use char (or CHAR) and C library such as printf,
scanf, strcmp, etc.

 Unicode only

 Use only 16-bit chars by defining proper variable
(UNICODE and _UNICODE)

 8-bit and Unicode with generic code

 Use generic functions

 These functions are automatically mapped on 8-bit
or on the corresponding unicode functions

 8-bit and Unicode with run-time selection

 Use 8-bit or unicode functions on purpose

 The selection is made by the programmer

24System and Device Programming – Stefano Quer

Character Coding Systems

 To assure maximum flexibility and source
portability

 Define all characters and strings using generic type
TCHAR

 Calculate lengths using sizeof(TCHAR)

 TCHAR is mapped on

 ANSI ASCII coding when it is on 8-bits

● char (or CHAR)

 Unicode UTF-16 coding when it is mapped on 16-bits

● WCHAR or (wchar_t)

25System and Device Programming – Stefano Quer

String Coding Systems

 Constant strings are expressed in one of three
forms

 "This string uses 8-bit characters"

 L"This string uses 16-bit characters"

 _T("This string uses generic characters")

 Expands to “T…” if UNICODE is not defined

 Expenad to L”T…” if UNICODE is defined

 The TEXT macro is the same as _T

 LPTSTR expands to either char * or wchar_t *

ANSI C

ANSI C

A macro

.. coming …

26System and Device Programming – Stefano Quer

Selecting the Coding System

 To select the coding system

 Include

 #define UNICODE

● To get WCHAR in all source modules

 #undef UNICODE

● To get CHAR

 Be consistent

● Define UNICODE before #include <windows.h>

#ifdef UNICODE
#define TCHAR WCHAR

#else
#define TCHAR CHAR

#endif

Symbol definitions

Different Visual
Studio versions may

have different
requirements

27System and Device Programming – Stefano Quer

The generic C library

 To make available a wide class of string
processing and I/O functions

 Include

 #define _UNICODE

 Consistently with UNICODE

 This enables functions such as

 _fgettc, _itot, _ttoi, _totupper, _totlower

 And many more, nearly the complete library

 Also, locale-specific functions (seven in all)

 lstrlen, lstrcmp, lstrcpy, lstrcat, …

28System and Device Programming – Stefano Quer

 To get generic C library text macros and
functions

 After windows.h, include tchar.h, i.e.,

 #include <tchar.h>

 Use the generic C library for all string functions

 _tprintf in place of printf

 _stprintf in place of sprintf

 _tcslen in place of strlen

 _itot in place of itoa

 … and MANY more

 Generic versions of some functions are not
provided (e.g., memchr)

The generic C library

29System and Device Programming – Stefano Quer

Examples

#ifndef _TCHAR_H_
#define _TCHAR_H_
...
#ifdef _UNICODE
/* Unicode functions */
#define _tprintf wprintf
#define _ftprintf fwprintf
#define _stprintf swprintf
...
#else
/* Non-unicode (standard) functions */
#define _tprintf printf
#define _ftprintf fprintf
#define _stprintf sprintf
...
#endif
#endif

tchar.h

Windows standard
library functions

ANSI C standard library
functions

30System and Device Programming – Stefano Quer

Main Program Definition

 Pay attention on how the main header is defined

 int main (int argc, char * argv[])

 Is for 8-bit characters only

 int main (int argc, w_char * argv[])

 8-bit definition header but with wide-characters

 ASCII is no entirely accurate but it is used sometimes

 int wmain (int argc, w_char *argv[])

 Is for Unicode characters only

 int _tmain (int argc, LPTSTR argv[]) {

 Expands to main or wmain depending on definition
of _UNICODE

 This assures correct operations in all combinations

31System and Device Programming – Stefano Quer

Examples

#define UNICODE
#define _UNICODE

#define _CRT_SECURE_NO_WARNINGS

#include <windows.h>
#include <tchar.h>
...

int _tmain (int argc, LPTSTR argv[]) {
...
}

Generic code
(mapped on 16-bits)

Windows and standard
C libraries

Generic header
(mapped on 8 or 16 bits)

C library and macros
available

Remove Warnings from
projects in Visual Studio

32System and Device Programming – Stefano Quer

One Example: Copy a File

 Write a simple C program copying an input file
into an output file

 Input and output file names are passed to the
program on the command line

 The file can be in binary or in text form

 If in text form can be in ASCII or UNICODE format

 Check and debug the program on the Visual Studio
environment

Functions such as
fscanf cannot be used

33System and Device Programming – Stefano Quer

One Example: Copy a File

 Write 4 versions of the program, using

 The standard C library

 The UNIX library

 The Windows API

 The Windows API with convenience functions

Windows API is reach and many
operations can be done in several

different ways

34System and Device Programming – Stefano Quer

#include <stdio.h>

#define N 256

int main (int argc, char *argv []) {
FILE *fpIn, *fpOut;
char str[N];
size_t nIn, nOut;

fpIn = fopen (argv[1], "rb");
fpOut = fopen (argv[2], "wb");

if (fpIn==NULL || fpOut==NULL) {
printf (″Error opening file.\n″);
return 1;

}

C Library Implementation

‘b’: Binary mode
(no meaning for UNIX)

Can also read single bytes
(avoided for the sake of efficiency)

35System and Device Programming – Stefano Quer

while ((nIn = fread (str, 1, N, fpIn)) > 0) {
nOut = fwrite (str, 1, nIn, fpOut);
if (nOut!=nIn) {
printf (″I/O Error.\n″);
return 2;

}
}

fclose (fpIn);
fclose (fpOut);

return 0;
}

C Library Implementation

Parameters:
Data structure pointer, Size of the structure,

Number of elements, File pointer

Number of objects
read or written

Synchronous I/O (wait to terminate)
No file security control

No file locking

36System and Device Programming – Stefano Quer

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <errno.h>

#define N 256

int main (int argc, char *argv []) {
int fdIn, fdOut;
ssize_t nIn, nOut;
char str[N];

fdIn = open(argv[1], O_RDONLY);
fdOut = open(argv[2], O_WRONLY|O_CREAT, 0666);
if (fdIn==-1 || fdOut==-1) {
printf (″Error opening file.\n″);
return 1;

}

UNIX Implementation

Return file descriptor
or -1 on error

Parameters: Pathname, OR-ing
constant from fnctl.h, Access mode

37System and Device Programming – Stefano Quer

while ((nIn = read (fdIn, str, N)) > 0) {
nOut = write (fdOut, str, (size_t) nIn);
if (nOut!=nIn) {
printf (″I/O Error.\n″);
return 2;

}
}

close (fdIn);
close (fdOut);

return 0;
}

UNIX Implementation

Parameters: File descriptor,
Data structure pointer,
Number of elements

Number of objects
read or written

38System and Device Programming – Stefano Quer

#include <windows.h>
#include <stdio.h>

#define N 256

INT main (INT argc, LPTSTR argv []) {
HANDLE hIn, hOut;
DWORD nIn, nOut;
CHAR str[N];

Windows Implementation 1

For now:
NO #define UNICODE, #define _UNICODE,

#include <tchar.h>, etc.

Standard main header

Windows API standard types

39System and Device Programming – Stefano Quer

hIn = CreateFile (argv[1], GENERIC_READ,
0, NULL, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, NULL);

hOut = CreateFile (argv[2], GENERIC_WRITE,
0, NULL, CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL, NULL);

if (hIn==INVALID_HANDLE_VALUE ||
hOut==INVALID_HANDLE_VALUE) {
printf (″Error opening file.\n″);
return 1;

}

Windows Implementation 1

Parameters: File name, Access type, Share
mode, Security attribute, Creation mode

Flags, Template

Using standard C library

40System and Device Programming – Stefano Quer

while (
ReadFile (hIn, str, N, &nIn, NULL) && nIn > 0) {
WriteFile (hOut, str, nIn, &nOut, NULL);

}

CloseHandle (hIn);
CloseHandle (hOut);

return 0;
}

Windows Implementation 1

Parameters: similar to C & UNIX
Error code is returned, number of

bytes is a parameter

41System and Device Programming – Stefano Quer

#include <windows.h>
#include <stdio.h>

int main (int argc, LPTSTR argv []) {
if (!CopyFile (argv[1], argv[2], FALSE)) {
printf (″Error opening file.\n″);
return 1;

}
return 0;

}

Windows Implementation 2

Convenience function
Parameters: Input file name,

Output file name, Overwrite or
not (yes iff FALSE)

