System and Device Programming

Windows API and Visual Studio
Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

System and Device Programming - Stefano Quer 2

Main Operating Systems

% Operating systems can be classified according to
several criteria

> Application domain
= Mainframes, servers, workst%r ~
Supercomputing,
Desktops, Iaptops scientific calculus,
Embedded systems L

services, web, etc
Real-time devices ~

i Everyday-life applications, e.g.
Handlet devices cell-phones, automotive, etc.

J

Specific appllications, e.g., bar-\ Safety critical

code scanners, Personal Digital applications, e.g.,

Assistant (PDA), smart cards, medical devices,
etc. avionics, etc.

(. / o /

s

System and Device Programming - Stefano Quer 3

Main Operating Systems

= Data update: September 2018

> Diffusion
All Devices
SO Market
Android 48.61%

iI0S / 0S X 11.04%
Windows 14.00%

Others 26.34%
Server

SO Market

Windows 49.50%

Apple 15.62%

Linux based 19.13%

Others 3.83%

Microsoft
Windows:
90.79%

Desktop, laptop, etc.

SO Market Share

Windows 7 47.21%
Windows 10 29.00%
Mac OS 6.35%
Windows 8.1 5.89%
Windos XP 5.69%
Linux 3.04%
FreeBSD 0.10%

Others 2.72%

System and Device Programming - Stefano Quer 4

*+» Microsoft
» Founded in 1975 by Bill Gates e Paul Allen
> First MS-DQOS version in 1981

» First Windows version in 1985
= OS with graphical interface
= Based on windows
= Targeting Intel processors

» Market share today

= 90%, including all versions still in use

= Windows 10 (29%), Windows 8 (6%), Windows 7
(47%), Windows XP (5%), Windows Vista (1%), etc.

mo, Mac OS 6% J

System and Device Programming - Stefano Quer 5

Server

Device -
embedded

Desktop

Windows NT 3.1, 3.5, 3.51, 4.0 (from 1993), Windows
2000, Windows Server 2003, 2003 R2, 2008, 2008 R2,
2012, 2012 R2

Windows CE, Windows Embedded, Windows Phone,
Windows Mobile, Windows RT, ...

Windows 1.01-3.2 (from 1985 to 1993)

Windows 95, 98, ME (Windows 9x) (from 1993)
Windows XP (from 2001)

Windows Vista (from 2007): available with several flavours
(home premium, business, enterprise, ultimate)

Windows 7 (from 2009): available with several flavours
(basic, premium, professional, enterprise, ultimate, thin PC)
Windows 8, 8.1 (from 2012): available in several flavours
(standard, pro, enterprise)

Windows 10 (from 2015)

System and Device Programming - Stefano Quer 6

% 16-bit Versions
» From Windows 1.0 (1985) to Windows 3.1 (1992)

= Written to be portable on several architectures
= Used mainly on Intel x86 processors

*» 16/32-bit Versions
» Windows 9x (1993-2000)
= Derived from MS-DOS and 16-bit versions
= New kernel
*» 32/64-bit Versions
» From Windows NT (NT = New Technlogy?)

= Leave MS-DOS behind completely

= New kernel (hybrid micro-kernel architecture derived
from the UNIX system)

System and Device Programming - Stefano Quer 7

Operating System Standards

“ Known standards The C language and UNIX are
» The C Library strictly connected as UNIX was

developed in C

» Unix (Linux) Systems
Linux is a free version of UNIX.
The kernel identifies Linux’'s OS

» Win32/Win64 or Windows
» C++

» Different standards have different APIs
» API = Application Programming Interface

System and Device Programming - Stefano Quer 8

The UNIX (Linux) Standards

ISO C 1972: UNIX is moved from assembre to C.
Several versions are developed during the years: ANSI
C (1989), ISO C 0 C90 (1990), ISO C 0 C99 (1999), ISO
C11 (2011), ISO C18 (2018)

POSIX POSIX = Portable Operating System Interface
A family of standards born to facilitate the UNIX
portability at a word-wide level. It defines the services
each UNIX operating systems is suppose to deliver and
to satisfy to be "POSIX compliant".
It includes the ISO C standard.

SUS SUS = Single UNIX Specification
A project born in mid ‘80, super-set of POSIX. It
defines what an operating system has to do and
how these things must be defined to be "UNIX-
like” operating system.

System and Device Programming - Stefano Quer 9

The Windows Standards

< Win32/Win64 (or simply Windows) API
» Supported by Microsoft
= Microsoft is the sole arbiter and implementor
» Widely used by Windows operating systems

» Has its own set of conventions and programming
techniques, which are driven by Microsoft

» Support different processors to be able to be
ported under different architectures

> Are defined in C language (not in C++)

&

System and Device Programming - Stefano Qi er 10

The Windows Standards

» Go beyond standard C
= Reduce code portability
= Increase code functionality

= For example

e The C library is always available but we cannot fully
exploit Windows with it

e For example in C it is not possible to
0 Lock afile or a part of it

0 Mapping a file into main memory
o Organize inter-process communication

In this unit, we concentrate on
how to develop applications
using the Windows API

System and Device Programming - Stefano Quer 11

Programming Principles

%+ Windows APIs
> Are different from other standard (POSIX, etc.)
» Require is own coding style and technique
» Use threads (not processes) as basic unit of
execution

= A process can contain one or more threads

= Each process has its own code and data address
space

= Threads share the process address space

= Threads are “lightweight” and more efficient than
processes

System and Device Programming - Stefano Quer 12

Programming Principles

<+ When programming in the Microsoft Visual Studio
C++ environment, please remember to include
» windows.h
» This header includes most of the required data,
such as
= winnt.h
= winbase.h
= elc.

System and Device Programming - Stefano Quer 13

Programming Principles

» Windows is rich and flexible

» Many functions perform the same or similar
operations

= There are sccasional artifacts from 16-bit Windows

e Windows 32 was created from scratch but designed to
be backward-compatible (with Windows 3.1 Win 16)

= SetFilePointer, SetFilePointerEx, GetFileSize,
GetFileSizeEx, etc.

» Function names are long and descriptive
= WaitForSingleObject, WaitForMultipleObjects, etc.

System and Device Programming - Stefano Quer 14

Programming Principles

» Each function has numerous parameters and flags

= HANDLE fileHandle, LPVOID dataBuffer, DWORD
numberOfByteToRead, LPDWORD
numberOfByteRead, LPOVERLAPPED
overlappedDataStructure

» Parameter and variable names are long and
descriptive and often use "Hungarian” notation

= |pFileName, IpBuffer, nNumberOfBytesToRead, etc.

Long Pointer
[to a zero terminated string]

» Symbolic constants and flags explain their meaning
= INVALID_HANDLE_VALUE, GENERIC_READ, etc.

System and Device Programming - Stefano Quer

15

|

Read a file (text or binay format)

> API C style

{si

ze t fread (void *ptr, size t size,
size.t nCbj, FILE *fp);

» API POSIX style

int read (int fd, void *buffer, size_ t nbytes);

> API Win32/64

p
BOOL ReadFile (

HANDLE fi | eHandl e,

LPVO D dat aBuffer,

DWORD nunber O Byt eToRead,

LPDWORD nunber O Byt eRead,
LPOVERLAPPED over | appedDat aSt ruct ur e

System and Device Programming - Stefano Quer

16

{ Create a thread

» API POSIX style

Ci nt pt hread create (

pthread t *tid,

const pthread attr t *attr,
void *(*startRoutine)(void *),
void *arg

i

=

> API Win32/64

“HANDLE Cr eat eThr ead(

LPSECURI TY_ATTRI BUTES | psa,

DWORD cbSt ack,
LPTHREAD START ROUTI NE | pSt art Addr,
LPVO D | pvThr eadPar m

DWORD dwCr eat e,

LPDWORD | pl DThr ead

System and Device Programming - Stefano Quer 17

Programming Principles

% Nearly every resource is a kernel object
% Objects are identified and referenced by handle

< Handle objects are of type HANDLEt[Similar to umx}

file descriptor
or process id

» HANDLE objects include

= Files, pipes, processes, memory mapping, threads,
events, mutexes, semaphores

» HANDLESs are gray boxes

= Kernel objects must be manipulated by Windows
APIs

System and Device Programming - Stefano Quer 18

Programming Principles

“» Specific names are reserved for Microsoft Visual C
and the Microsoft compiler

» _ keywordName
> _functionName

** Functions
» CloseHandle applies to (nearly) all objects

> ReadFile, WriteFile, and many other return Boolean
values

» GetLastError returns system error codes

System and Device Programming - Stefano Quer 19

Programming Principles

% Predefined descriptive data types

» Are expressed in upper case
= BOOL, DWORD, LPDWORD, etc.

» Avoid the "*" operator and make (name)
distinctions
= | PTSTR
e Long Pointer To STRing defined as TCHAR *

= | PCTSTR

e Long Pointer Constant To STRing defined as const
TCHAR *

names even when the macro is

["LP" is obsolete and
for 64 bits

"WIN32" appears in macro
inconsistently used

System and Device Programming - Stefano Quer 20

/ \
% Windows Data Types >ee WEB sources

INT8

INT16

INT32

INT64

An 8-bit signed integer.

This type is declared in BaseTsd.h as follows:

typedef signed char INTS;

A 16-bit signed integer. This type is declared in BaseTsd.h as follows:
typedef signed short INT16;

(Windows Data Types)
for a complete list

J

A 32-bit signed integer. The range is -2147483648 through 2147483647 decimal.
This type is declared in BaseTsd.h as follows: typedef signed int INT32;

A 64-bit signed integer. The range is -9223372036854775808 through
9223372036854775807 decimal. This type is declared in BaseTsd.h as follows:
typedef signed __int64 INT64;

UINTS

UINT16

UINT32

UINT64

ULONG

ULONGL
ONG

An unsigned INTS8. This type is declared in BaseTsd.h as follows: typedef
unsigned char UINTS;

An unsigned INT16. This type is declared in BaseTsd.h as follows: typedef
unsigned short UINT16;

An unsigned INT32. The range is 0 through 4294967295 decimal. This
type is declared in BaseTsd.h as follows: typedef unsigned int UINT32;

An unsigned INT64. The range is 0 through 18446744073709551615
decimal. typedef usigned __int 64 UINT64;

An unsigned LONG. The range is 0 through 4294967295 decimal. This
type is declared in WinDef.h as follows: typedef unsigned long ULONG;

A 64-bit unsigned integer. The range is 0 through 18446744073709551615
decimal. This type is declared in WinNT.h as follows:

System and Device Programming - Stefano Quer 21

Coding Systems

%+ Windows supports executable code build in
» 16 (Win16), 32 (Win32), 64 (Win64) bits
= 16-bit versions are maintained only for backward
compatibility
= 32-bit versions run on 64-bit architecture but cannot
exploit the larger address space

» It is usually fairly simple to build applications able
to run uder either Win32 and Win64

% Most of the difference concern the pointer size
» Avoid any assumption about pointer length

» Win64 uses 64-bit pointers

= DWORD32, DWORD64, POINTER_32, POINTER_64,
LONG32, LONG64, etc.

System and Device Programming - Stefano Quer 22

Character Coding Systems

 For characters and strings, four different coding
strategies are possible

» 8-bit only
» Unicode only
» 8-bit and Unicode with generic code

This is generally the
wiser and safer solution

> 8-bit and Unicode with run-time selection

System and Device Programming - Stefano Quer 23

Character Coding Systems

» 8-bit only

= Use char (or CHAR) and C library such as printf,
scanf, strcmp, etc.

» Unicode only

= Use only 16-bit chars by defining proper variable
(UNICODE and _UNICODE)

» 8-bit and Unicode with generic code

= Use generic functions

= These functions are automatically mapped on 8-bit
or on the corresponding unicode functions

» 8-bit and Unicode with run-time selection
= Use 8-bit or unicode functions on purpose
= The selection is made by the programmer

System and Device Programming - Stefano Quer 24

Character Coding Systems

% To assure maximum flexibility and source
portability
» Define all characters and strings using generic type
TCHAR
» Calculate lengths using sizeof(TCHAR)

» TCHAR is mapped on

= ANSI ASCII coding when it is on 8-bits
e char (or CHAR)

= Unicode UTF-16 coding when it is mapped on 16-bits
e WCHAR or (wchar_t)

System and Device Programming - Stefano Quer 25

String Coding Systems

% Constant strings are expressed in one of three

forms /[ANSI C |
> "This string uses 8-bit characters" ’

% A macro J
» _T("This string uses generic characters"

= Expands to "T...” if UNICODE is not defined

= Expenad to L"T...” if UNICODE is defined

= The TEXT macro is the same as _T\(.. coming ...]

» LPTSTR expands to either char * or wchar_t *

System and Device Programming - Stefano Quer 26

Selecting the Coding System

Different Visual
Studio versions may

have different
requirements

% To select the coding system

> Include

= #define UNICODE
e To get WCHAR in all source modules

= #undef UNICODE
e To get CHAR

= Be consistent
e Define UNICODE before #include <windows.h>

4)
#i f def UNI CODE (
4define TCHAR WCHAR \Symbol deflnltlonsJ
#el se
#def i ne TCHAR CHAR
#endi f

- J

System and Device Programming - Stefano Quer 27

The generic C library

<+ To make available a wide class of string
processing and I/O functions
> Include
» #define _UNICODE
» Consistently with UNICODE
» This enables functions such as
= fgettc, _itot, _ttoi, _totupper, _totlower
= And many more, nearly the complete library
» Also, locale-specific functions (seven in all)
= |strlen, Istrcmp, Istrcpy, Istrcat, ...

System and Device Programming - Stefano Quer 28

The generic C library

% To get generic C library text macros and
functions

» After windows.h, include tchar.h, i.e.,
= #include <tchar.h>

» Use the generic C library for all string functions

= _tprintf in place of printf
= _stprintf in place of sprintf
= _tcslen in place of strlen
= _jtot in place of itoa

= ... and MANY more

» Generic versions of some functions are not
provided (e.g., memchr)

System and Device Programming - Stefano Quer 29

/#ifndef TCHAR H tchar.h J
#define TCHAR H

#i f def _UNI CODE |
/* Uni code functions */ Windows standard
#define _tprintf wprintf library functions

#define ftprintf fwprintf

#define _stprintf sworintf

#el se

/* Non-uni code (standard) functions */
#define _tprintf printf

#define ftprintf fprintf -

#define _stprintf sprintf ANSI C standard Iibrary}

Ca functions
#endi f
\<ﬁendif 4/)

System and Device Programming - Stefano Quer 30

Main Program Definition

% Pay attention on how the main header is defined
> int main (int argc, char * argv[])
= Is for 8-bit characters only
» int main (int argc, w_char * argv[])
= 8-bit definition header but with wide-characters
= ASCII is no entirely accurate but it is used sometimes
» int wmain (int argc, w_char *argv[])
= Is for Unicode characters only
» 1nt _tmain (int argc, LPTSTR argv[]) {

= Expands to main or wmain depending on definition
of _UNICODE

= This assures correct operations in all combinations

System and Device Programming - Stefano Quer £

o
Generic code Remove Warnings from
(mapped on 16-bits) projects in Visual Studio
#def i ne UNI CODE C library and macros
#define _CRT_SECURE_NO WARNI NGS
#1 ncl ude <w ndows. h>
#i ncl ude <tchar. h> / Windows and standard
L C libraries
Int trmain (int argc, LPTSTR argv[]) {
}
L Generic header

. (mapped on 8 or 16 bits)

System and Device Programming - Stefano Quer 5%

One Example: Copy a File

<+ Write a simple C program copying an input file
into an output file

» Input and output file names are passed to the
program on the command line

» The file can be in binary or in text form

Functions such as
fscanf cannot be used

= If in text form can be in ASCII or UNICODE format

» Check and debug the program on the Visual Studio
environment

System and Device Programming - Stefano Quer 33

One Example: Copy a File

%+ Write 4 versions of the program, using
» The standard C library
» The UNIX library
» The Windows API
» The Windows API with convenience functions

N

Windows API is reach and many
operations can be done in several

different ways
L J

System and Device Programming - Stefano Quer 34

C Library Implementation

- J N

: : Can also read single bytes
#1 ncl ude <stdio. h> (avoided for the sake of efficiency)

#defi ne N 256

Int main (int argc, char *argv []) {
FILE *fpln, *fpQut;
char str[N;
size t nln, nQut;

‘b’": Binary mode
(no meaning for UNIX)

fpln = fopen (argv[1l], "rb");
fpQut = fopen (argv[2], "wb");

I f (fpln==NULL || fpQut==NULL) {
printf ("Error opening file.\n");
return 1;

System and Device Programming - Stefano Quer 35

C Library Implementation

N 4
Number of objects Parameters:
read or written Data structure pointer, Size of the structure,
Number of elements, File pointer

W

while ((nln = fread (str, 1, N, fpln)) > 0) {
nQut = fwite (str, 1, nln, fpQut);
I f (nQut!=nln) {
printf ("I/O Error.\n");

return 2;
} Synchronous I/O (wait to terminate)
} . .
No file security control
fclose (fpln); No file locking

fclose (fpQut);

return O;

System and Device Programming - Stefano Quer

36

|

/aﬁinclude

#1 ncl ude
#1 ncl ude
#1 ncl ude
#1 ncl ude

Il Nt nain
| nt fdl
ssi ze t
char st

fdin =
fdQut =
1 f (fdl

retur

N

<sys/types. h>
<sys/stat. h>
<fcntl.h>
<stdi 0. h>
<errno. h>

#defi ne N 256

(int argc, char *argv []) {

n, fdQut;
nln, nQut;

r[N;

open(argv[1l], O RDONLY);

open(argv[2], O WRONLY| O CREAT, 0666);
==-1 || fdOQut==-1) {
printf ("Error opening file.\n");

n 1;

Return file descriptor
or -1 on error

Parameters: Pathname, OR-ing
constant from fnctl.h, Access mode

System and Device Programming - Stefano Quer 3

UNIX Implementation

Number of objects \
read or written

while ((nln = read (fdln, str, N)) > 0) {
nQut = wite (fdQut, str, (size_t) nln);

1 f (nQut!=nln) {
printf ("I/O Error.\n"); ~
return 2;

) Parameters: File descriptor,

} Data structure pointer,
Number of elements

cl ose (fdln); \ ~

close (fdCut);

return O;

System and Device Programming - Stefano Quer 38

Windows Implementation 1

NO #define UNICODE, #define _UNICODE,
#include <tchar.h>, etc.

For now: J \

#i ncl ude <w ndows. h>
#i ncl ude <stdi o. h>

#def i N 256
erine Standard main header]

| NT main (INT argc, LPTSTR argv []) {
HANDLE hln, hQut;
DWORD nl n, nQut;
CHAR str[N ;

Windows API standard types]

(U

System and Device Programming - Stefano Quer

39

|

e

Parameters: File name, Access type, Share
mode, Security attribute, Creation mode

Flags, Template

hin = CreateFile (argv[1l], GENER C READ,
O, NULL, OPEN EXI STI NG,
FI LE ATTRI BUTE_NORMAL, NULL) ;
hQut = CreateFile (argv[2], GENERI C WRI TE,
O, NULL, CREATE_ALWAYS,
FI LE ATTRI BUTE_NORMAL, NULL) ;
I f (hl n==1 NVALI D HANDLE VALUE | |
hQut ==I NVALI D HANDLE VALUE) {
printf ("Error opening file.\n");
return 1;

}
Using standard C library

System and Device Programming - Stefano Quer 40

Windows Implementation 1

- N

while (
ReadFile (hin, str, N, &ln, NULL) &% nln > 0) {
WiteFile (hQut, str, nln, &Qut, NULL);

}
Cl oseHandl e (hln); x
d oseHandl e (hQut);)
_ Parameters: similar to C & UNIX
return O; Error code is returned, number of
J bytes is a parameter
_ J

System and Device Programming - Stefano Quer 41

Windows Implementation 2

- N

#i ncl ude <w ndows. h>
#i ncl ude <stdi o. h>

Int main (int argc, LPTSTR argv []) {
I f (!CopyFile (argv[1l], argv[2], FALSE)) {
printf ("Error opening file.\n");
return 1;

}

return O;

}

Convenience function
Parameters: Input file name,
Output file name, Overwrite or
< not (yes iff FALSE)

k >

