
System and Device Programming

Windows API and Visual Studio
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2System and Device Programming – Stefano Quer

Main Operating Systems

 Operating systems can be classified according to
several criteria

 Application domain

 Mainframes, servers, workstations

 Desktops, laptops

 Embedded systems

 Real-time devices

 Handlet devices

Supercomputing,
scientific calculus,
services, web, etc

Everyday-life applications, e.g.
cell-phones, automotive, etc.

Safety critical
applications, e.g.,
medical devices,

avionics, etc.

Specific appllications, e.g., bar-
code scanners, Personal Digital
Assistant (PDA), smart cards,

etc.

3System and Device Programming – Stefano Quer

Main Operating Systems

All Devices

SO Market

Android 48.61%

iOS / OS X 11.04%

Windows 14.00%

Others 26.34%

Server

SO Market

Windows 49.50%

Apple 15.62%

Linux based 19.13%

Others 3.83%

Desktop, laptop, etc.

SO Market Share

Windows 7 47.21%

Windows 10 29.00%

Mac OS 6.35%

Windows 8.1 5.89%

Windos XP 5.69%

Linux 3.04%

FreeBSD 0.10%

Others 2.72%

Microsoft
Windows:
90.79%

 Diffusion

 Data update: September 2018

4System and Device Programming – Stefano Quer

Microsoft

 Microsoft

 Founded in 1975 by Bill Gates e Paul Allen

 First MS-DOS version in 1981

 First Windows version in 1985

 OS with graphical interface

 Based on windows

 Targeting Intel processors

 Market share today

 90%, including all versions still in use

 Windows 10 (29%), Windows 8 (6%), Windows 7
(47%), Windows XP (5%), Windows Vista (1%), etc.

Linux 3%, Mac OS 6%

5System and Device Programming – Stefano Quer

Microsoft

Server Windows NT 3.1, 3.5, 3.51, 4.0 (from 1993), Windows
2000, Windows Server 2003, 2003 R2, 2008, 2008 R2,
2012, 2012 R2

Device -
embedded

Windows CE, Windows Embedded, Windows Phone,
Windows Mobile, Windows RT, ...

Desktop Windows 1.01-3.2 (from 1985 to 1993)
Windows 95, 98, ME (Windows 9x) (from 1993)
Windows XP (from 2001)
Windows Vista (from 2007): available with several flavours
(home premium, business, enterprise, ultimate)
Windows 7 (from 2009): available with several flavours
(basic, premium, professional, enterprise, ultimate, thin PC)
Windows 8, 8.1 (from 2012): available in several flavours
(standard, pro, enterprise)
Windows 10 (from 2015)

6System and Device Programming – Stefano Quer

Microsoft

 16-bit Versions

 From Windows 1.0 (1985) to Windows 3.1 (1992)

 Written to be portable on several architectures

 Used mainly on Intel x86 processors

 16/32-bit Versions

 Windows 9x (1993-2000)

 Derived from MS-DOS and 16-bit versions

 New kernel

 32/64-bit Versions

 From Windows NT (NT = New Technlogy?)

 Leave MS-DOS behind completely

 New kernel (hybrid micro-kernel architecture derived
from the UNIX system)

7System and Device Programming – Stefano Quer

Operating System Standards

 Known standards

 The C Library

 Unix (Linux) Systems

 Win32/Win64 or Windows

 C++

 Different standards have different APIs

 API = Application Programming Interface

Linux is a free version of UNIX.
The kernel identifies Linux’s OS

The C language and UNIX are
strictly connected as UNIX was

developed in C

8System and Device Programming – Stefano Quer

The UNIX (Linux) Standards

ISO C 1972: UNIX is moved from assembre to C.
Several versions are developed during the years: ANSI
C (1989), ISO C o C90 (1990), ISO C o C99 (1999), ISO
C11 (2011), ISO C18 (2018)

POSIX POSIX = Portable Operating System Interface
A family of standards born to facilitate the UNIX
portability at a word-wide level. It defines the services
each UNIX operating systems is suppose to deliver and
to satisfy to be "POSIX compliant".
It includes the ISO C standard.

SUS SUS = Single UNIX Specification
A project born in mid ’80, super-set of POSIX. It
defines what an operating system has to do and
how these things must be defined to be ″UNIX-
like″ operating system.

9System and Device Programming – Stefano Quer

The Windows Standards

 Win32/Win64 (or simply Windows) API

 Supported by Microsoft

 Microsoft is the sole arbiter and implementor

 Widely used by Windows operating systems

 Has its own set of conventions and programming
techniques, which are driven by Microsoft

 Support different processors to be able to be
ported under different architectures

 Are defined in C language (not in C++)

10System and Device Programming – Stefano Quer

The Windows Standards

 Go beyond standard C

 Reduce code portability

 Increase code functionality

 For example

● The C library is always available but we cannot fully
exploit Windows with it

● For example in C it is not possible to

o Lock a file or a part of it
o Mapping a file into main memory
o Organize inter-process communication

In this unit, we concentrate on
how to develop applications

using the Windows API

11System and Device Programming – Stefano Quer

 Windows APIs

 Are different from other standard (POSIX, etc.)

 Require is own coding style and technique

 Use threads (not processes) as basic unit of
execution

 A process can contain one or more threads

 Each process has its own code and data address
space

 Threads share the process address space

 Threads are “lightweight” and more efficient than
processes

Programming Principles

12System and Device Programming – Stefano Quer

Programming Principles

 When programming in the Microsoft Visual Studio
C++ environment, please remember to include

 windows.h

 This header includes most of the required data,
such as

 winnt.h

 winbase.h

 etc.

13System and Device Programming – Stefano Quer

Programming Principles

 Windows is rich and flexible

 Many functions perform the same or similar
operations

 There are sccasional artifacts from 16-bit Windows

● Windows 32 was created from scratch but designed to
be backward-compatible (with Windows 3.1 Win 16)

 SetFilePointer, SetFilePointerEx, GetFileSize,
GetFileSizeEx, etc.

 Function names are long and descriptive

 WaitForSingleObject, WaitForMultipleObjects, etc.

14System and Device Programming – Stefano Quer

 Each function has numerous parameters and flags

 HANDLE fileHandle, LPVOID dataBuffer, DWORD
numberOfByteToRead, LPDWORD
numberOfByteRead, LPOVERLAPPED
overlappedDataStructure

 Parameter and variable names are long and
descriptive and often use ″Hungarian″ notation

 lpFileName, lpBuffer, nNumberOfBytesToRead, etc.

 Symbolic constants and flags explain their meaning

 INVALID_HANDLE_VALUE, GENERIC_READ, etc.

Programming Principles

Long Pointer
[to a zero terminated string]

15System and Device Programming – Stefano Quer

 API C style

 API POSIX style

 API Win32/64

Examples

BOOL ReadFile (
HANDLE fileHandle,
LPVOID dataBuffer,
DWORD numberOfByteToRead,
LPDWORD numberOfByteRead,
LPOVERLAPPED overlappedDataStructure

);

int read (int fd, void *buffer, size_t nbytes);

size_t fread (void *ptr, size_t size,
size_t nObj, FILE *fp);

Read a file (text or binay format)

16System and Device Programming – Stefano Quer

 API POSIX style

 API Win32/64

Examples

HANDLE CreateThread(
LPSECURITY_ATTRIBUTES lpsa,
DWORD cbStack,
LPTHREAD_START_ROUTINE lpStartAddr,
LPVOID lpvThreadParm,
DWORD dwCreate,
LPDWORD lpIDThread

);

int pthread_create (
pthread_t *tid,
const pthread_attr_t *attr,
void *(*startRoutine)(void *),
void *arg

);

Create a thread

17System and Device Programming – Stefano Quer

Programming Principles

 Nearly every resource is a kernel object

 Objects are identified and referenced by handle

 Handle objects are of type HANDLE

 HANDLE objects include

 Files, pipes, processes, memory mapping, threads,
events, mutexes, semaphores

 HANDLEs are gray boxes

 Kernel objects must be manipulated by Windows
APIs

Similar to UNIX
file descriptor
or process id

18System and Device Programming – Stefano Quer

 Specific names are reserved for Microsoft Visual C
and the Microsoft compiler

 _ keywordName

 _functionName

 Functions

 CloseHandle applies to (nearly) all objects

 ReadFile, WriteFile, and many other return Boolean
values

 GetLastError returns system error codes

Programming Principles

19System and Device Programming – Stefano Quer

 Predefined descriptive data types

 Are expressed in upper case

 BOOL, DWORD, LPDWORD, etc.

 Avoid the ″*″ operator and make (name)
distinctions

 LPTSTR

● Long Pointer To STRing defined as TCHAR *

 LPCTSTR

● Long Pointer Constant To STRing defined as const
TCHAR *

Programming Principles

″LP″ is obsolete and
inconsistently used

″WIN32″ appears in macro
names even when the macro is

for 64 bits

20System and Device Programming – Stefano Quer

Examples

 Windows Data Types

INT8
An 8-bit signed integer.
This type is declared in BaseTsd.h as follows:
typedef signed char INT8;

INT16
A 16-bit signed integer. This type is declared in BaseTsd.h as follows:
typedef signed short INT16;

INT32
A 32-bit signed integer. The range is -2147483648 through 2147483647 decimal.
This type is declared in BaseTsd.h as follows: typedef signed int INT32;

INT64
A 64-bit signed integer. The range is -9223372036854775808 through
9223372036854775807 decimal. This type is declared in BaseTsd.h as follows:
typedef signed __int64 INT64;

UINT8
An unsigned INT8. This type is declared in BaseTsd.h as follows: typedef
unsigned char UINT8;

UINT16
An unsigned INT16. This type is declared in BaseTsd.h as follows: typedef
unsigned short UINT16;

UINT32
An unsigned INT32. The range is 0 through 4294967295 decimal. This
type is declared in BaseTsd.h as follows: typedef unsigned int UINT32;

UINT64
An unsigned INT64. The range is 0 through 18446744073709551615
decimal. typedef usigned __int 64 UINT64;

ULONG
An unsigned LONG. The range is 0 through 4294967295 decimal. This
type is declared in WinDef.h as follows: typedef unsigned long ULONG;

ULONGL
ONG

A 64-bit unsigned integer. The range is 0 through 18446744073709551615
decimal. This type is declared in WinNT.h as follows:

…

See WEB sources
(Windows Data Types)

for a complete list

…

21System and Device Programming – Stefano Quer

Coding Systems

 Windows supports executable code build in

 16 (Win16), 32 (Win32), 64 (Win64) bits

 16-bit versions are maintained only for backward
compatibility

 32-bit versions run on 64-bit architecture but cannot
exploit the larger address space

 It is usually fairly simple to build applications able
to run uder either Win32 and Win64

 Most of the difference concern the pointer size

 Avoid any assumption about pointer length

 Win64 uses 64-bit pointers

 DWORD32, DWORD64, POINTER_32, POINTER_64,
LONG32, LONG64, etc.

22System and Device Programming – Stefano Quer

Character Coding Systems

 For characters and strings, four different coding
strategies are possible

 8-bit only

 Unicode only

 8-bit and Unicode with generic code

 8-bit and Unicode with run-time selection

This is generally the
wiser and safer solution

23System and Device Programming – Stefano Quer

Character Coding Systems

 8-bit only

 Use char (or CHAR) and C library such as printf,
scanf, strcmp, etc.

 Unicode only

 Use only 16-bit chars by defining proper variable
(UNICODE and _UNICODE)

 8-bit and Unicode with generic code

 Use generic functions

 These functions are automatically mapped on 8-bit
or on the corresponding unicode functions

 8-bit and Unicode with run-time selection

 Use 8-bit or unicode functions on purpose

 The selection is made by the programmer

24System and Device Programming – Stefano Quer

Character Coding Systems

 To assure maximum flexibility and source
portability

 Define all characters and strings using generic type
TCHAR

 Calculate lengths using sizeof(TCHAR)

 TCHAR is mapped on

 ANSI ASCII coding when it is on 8-bits

● char (or CHAR)

 Unicode UTF-16 coding when it is mapped on 16-bits

● WCHAR or (wchar_t)

25System and Device Programming – Stefano Quer

String Coding Systems

 Constant strings are expressed in one of three
forms

 "This string uses 8-bit characters"

 L"This string uses 16-bit characters"

 _T("This string uses generic characters")

 Expands to “T…” if UNICODE is not defined

 Expenad to L”T…” if UNICODE is defined

 The TEXT macro is the same as _T

 LPTSTR expands to either char * or wchar_t *

ANSI C

ANSI C

A macro

.. coming …

26System and Device Programming – Stefano Quer

Selecting the Coding System

 To select the coding system

 Include

 #define UNICODE

● To get WCHAR in all source modules

 #undef UNICODE

● To get CHAR

 Be consistent

● Define UNICODE before #include <windows.h>

#ifdef UNICODE
#define TCHAR WCHAR

#else
#define TCHAR CHAR

#endif

Symbol definitions

Different Visual
Studio versions may

have different
requirements

27System and Device Programming – Stefano Quer

The generic C library

 To make available a wide class of string
processing and I/O functions

 Include

 #define _UNICODE

 Consistently with UNICODE

 This enables functions such as

 _fgettc, _itot, _ttoi, _totupper, _totlower

 And many more, nearly the complete library

 Also, locale-specific functions (seven in all)

 lstrlen, lstrcmp, lstrcpy, lstrcat, …

28System and Device Programming – Stefano Quer

 To get generic C library text macros and
functions

 After windows.h, include tchar.h, i.e.,

 #include <tchar.h>

 Use the generic C library for all string functions

 _tprintf in place of printf

 _stprintf in place of sprintf

 _tcslen in place of strlen

 _itot in place of itoa

 … and MANY more

 Generic versions of some functions are not
provided (e.g., memchr)

The generic C library

29System and Device Programming – Stefano Quer

Examples

#ifndef _TCHAR_H_
#define _TCHAR_H_
...
#ifdef _UNICODE
/* Unicode functions */
#define _tprintf wprintf
#define _ftprintf fwprintf
#define _stprintf swprintf
...
#else
/* Non-unicode (standard) functions */
#define _tprintf printf
#define _ftprintf fprintf
#define _stprintf sprintf
...
#endif
#endif

tchar.h

Windows standard
library functions

ANSI C standard library
functions

30System and Device Programming – Stefano Quer

Main Program Definition

 Pay attention on how the main header is defined

 int main (int argc, char * argv[])

 Is for 8-bit characters only

 int main (int argc, w_char * argv[])

 8-bit definition header but with wide-characters

 ASCII is no entirely accurate but it is used sometimes

 int wmain (int argc, w_char *argv[])

 Is for Unicode characters only

 int _tmain (int argc, LPTSTR argv[]) {

 Expands to main or wmain depending on definition
of _UNICODE

 This assures correct operations in all combinations

31System and Device Programming – Stefano Quer

Examples

#define UNICODE
#define _UNICODE

#define _CRT_SECURE_NO_WARNINGS

#include <windows.h>
#include <tchar.h>
...

int _tmain (int argc, LPTSTR argv[]) {
...
}

Generic code
(mapped on 16-bits)

Windows and standard
C libraries

Generic header
(mapped on 8 or 16 bits)

C library and macros
available

Remove Warnings from
projects in Visual Studio

32System and Device Programming – Stefano Quer

One Example: Copy a File

 Write a simple C program copying an input file
into an output file

 Input and output file names are passed to the
program on the command line

 The file can be in binary or in text form

 If in text form can be in ASCII or UNICODE format

 Check and debug the program on the Visual Studio
environment

Functions such as
fscanf cannot be used

33System and Device Programming – Stefano Quer

One Example: Copy a File

 Write 4 versions of the program, using

 The standard C library

 The UNIX library

 The Windows API

 The Windows API with convenience functions

Windows API is reach and many
operations can be done in several

different ways

34System and Device Programming – Stefano Quer

#include <stdio.h>

#define N 256

int main (int argc, char *argv []) {
FILE *fpIn, *fpOut;
char str[N];
size_t nIn, nOut;

fpIn = fopen (argv[1], "rb");
fpOut = fopen (argv[2], "wb");

if (fpIn==NULL || fpOut==NULL) {
printf (″Error opening file.\n″);
return 1;

}

C Library Implementation

‘b’: Binary mode
(no meaning for UNIX)

Can also read single bytes
(avoided for the sake of efficiency)

35System and Device Programming – Stefano Quer

while ((nIn = fread (str, 1, N, fpIn)) > 0) {
nOut = fwrite (str, 1, nIn, fpOut);
if (nOut!=nIn) {
printf (″I/O Error.\n″);
return 2;

}
}

fclose (fpIn);
fclose (fpOut);

return 0;
}

C Library Implementation

Parameters:
Data structure pointer, Size of the structure,

Number of elements, File pointer

Number of objects
read or written

Synchronous I/O (wait to terminate)
No file security control

No file locking

36System and Device Programming – Stefano Quer

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <errno.h>

#define N 256

int main (int argc, char *argv []) {
int fdIn, fdOut;
ssize_t nIn, nOut;
char str[N];

fdIn = open(argv[1], O_RDONLY);
fdOut = open(argv[2], O_WRONLY|O_CREAT, 0666);
if (fdIn==-1 || fdOut==-1) {
printf (″Error opening file.\n″);
return 1;

}

UNIX Implementation

Return file descriptor
or -1 on error

Parameters: Pathname, OR-ing
constant from fnctl.h, Access mode

37System and Device Programming – Stefano Quer

while ((nIn = read (fdIn, str, N)) > 0) {
nOut = write (fdOut, str, (size_t) nIn);
if (nOut!=nIn) {
printf (″I/O Error.\n″);
return 2;

}
}

close (fdIn);
close (fdOut);

return 0;
}

UNIX Implementation

Parameters: File descriptor,
Data structure pointer,
Number of elements

Number of objects
read or written

38System and Device Programming – Stefano Quer

#include <windows.h>
#include <stdio.h>

#define N 256

INT main (INT argc, LPTSTR argv []) {
HANDLE hIn, hOut;
DWORD nIn, nOut;
CHAR str[N];

Windows Implementation 1

For now:
NO #define UNICODE, #define _UNICODE,

#include <tchar.h>, etc.

Standard main header

Windows API standard types

39System and Device Programming – Stefano Quer

hIn = CreateFile (argv[1], GENERIC_READ,
0, NULL, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, NULL);

hOut = CreateFile (argv[2], GENERIC_WRITE,
0, NULL, CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL, NULL);

if (hIn==INVALID_HANDLE_VALUE ||
hOut==INVALID_HANDLE_VALUE) {
printf (″Error opening file.\n″);
return 1;

}

Windows Implementation 1

Parameters: File name, Access type, Share
mode, Security attribute, Creation mode

Flags, Template

Using standard C library

40System and Device Programming – Stefano Quer

while (
ReadFile (hIn, str, N, &nIn, NULL) && nIn > 0) {
WriteFile (hOut, str, nIn, &nOut, NULL);

}

CloseHandle (hIn);
CloseHandle (hOut);

return 0;
}

Windows Implementation 1

Parameters: similar to C & UNIX
Error code is returned, number of

bytes is a parameter

41System and Device Programming – Stefano Quer

#include <windows.h>
#include <stdio.h>

int main (int argc, LPTSTR argv []) {
if (!CopyFile (argv[1], argv[2], FALSE)) {
printf (″Error opening file.\n″);
return 1;

}
return 0;

}

Windows Implementation 2

Convenience function
Parameters: Input file name,

Output file name, Overwrite or
not (yes iff FALSE)

