
System and Device Programming

Classical Synchronization Problems
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2System and Device Programming – Stefano Quer

Producer-Consumer

 Producer and consumer with limited memory

 It uses a circular buffer of dimension SIZE to store
the elements to be produced and consumed

 The circular buffer implements a FIFO queue
(First-In First-Out)

b

P

C

B

P

C

a

B

c

P

C

B

head
(out)

tail
(in)

FIFO
full,

empty,
partially full

3System and Device Programming – Stefano Quer

Solution

 In the sequential access enqueue and dequeue
are concurrent

 In the parallel access we can have two cases

 Only 1 producer and only 1 consumer

 The operations enqueue and dequeue act on
different extremes of the queue, however the n
variable is shared

 P producers and C consumers

 In addition to the previous case, concurrent access
operations to the same extreme of the queue are
possible

4System and Device Programming – Stefano Quer

Solution

 With P producer and C consumer, we need

 To count full and empty elements in the queue

 A semaphore "full" counts the number of filled
elements

 A semaphore "empty" counts the number of empty
elements

 Mutual exclusion among producers and among
consumers, as they act on opposite extremes of
the buffer

 Producers and consumers can work concurrently

 As long as the queue is not completely full or
completely empty

5System and Device Programming – Stefano Quer

#define SIZE ...
...
int queue[SIZE];
int tail, head;
...
void init () {

tail = 0;
head = 0;

}

void dequeue (int *val) {
*val=queue[head];
head=(head+1)%SIZE;
return;

}

void enqueue (int val) {
queue[tail] = val;
tail=(tail+1)%SIZE;
return;

}

FIFO standard (non ADT)
without the variable n

Solution

head
(out)

tail
(in)

6System and Device Programming – Stefano Quer

Consumer () {
int val;
while (TRUE) {

wait (full);
wait (MEc);
dequeue (&val);
signal (MEc);
signal (empty);
consume (val);

}
}

Producer () {
int val;
while (TRUE) {

produce (&val);
wait (empty);
wait (MEp);
enqueue (val);
signal (MEp);
signal (full);

}
}

init (full, 0);
init (empty, SIZE);
init (MEp, 1);
init (MEc, 1); Mutual exclusion

between P and C

Solution

full elements
empty elements

7System and Device Programming – Stefano Quer

Readers & Writers

 Classical problem (1971) in which data is shared
between two sets of concurrent processes

 A set of Readers, which can access concurrently
to the data

 A set of Writers, which can access in mutual
exclusion, both with other Writers and Readers
processes, to the data

 There are two versions of the problem

 Precedence to Readers

 Precedence to Writers

8System and Device Programming – Stefano Quer

wait (meW);
wait (w);
...
writing
...
signal (w);
signal (meW);

wait (meR);
nR++;
if (nR==1)

wait (w);
signal (meR);
...
reading
...
wait (meR);

nR--;
if (nR==0)

signal (w);
signal (meR);

Reader

Precedence to Readers

nR = 0;
init (meR, 1);
init (meW, 1);
init (w, 1);

Writer

To enforce the precedence to R
(the signal(w) unblocks an R)

9System and Device Programming – Stefano Quer

wait (meW);
nW++;
if (nW == 1)
wait (r);

signal (meW);
wait (w);
...
writing
...

signal (w)
wait (meW);
nW--;
if (nW == 0)
signal (r);

signal (meW);

wait (r);
wait (meR);
nR++;
if (nR == 1)
wait (w);

signal (meR);
signal (r);
...
reading
...
wait (meR);
nR--;
if (nR == 0)
signal (w);

signal (meR);

Precedence to Writers

Reader Writer

nR = nW = 0;
init (w, 1); init (r, 1);
init (meR, 1); init (meW, 1);

10System and Device Programming – Stefano Quer

The "Alternate direction tunnel"

 In an alternate direction tunnel

 Allow any number of cars (processes) to proceed
in the same direction

 If there is traffic in one direction, block traffic in
the opposite direction

11System and Device Programming – Stefano Quer

The "Alternate direction tunnel"

 Extension to the Readers-Writers problem, with
two sets of Readers

 Data structure

 Two global counters (n1 and n2), one for each
direction

 Two semaphores (s1 and s2), one for each
direction

 A global semaphore for wait (busy)

 In its basic implementation, it can cause
starvation of cars (in one direction with respect
to the other)

12System and Device Programming – Stefano Quer

wait (s2);
n2++;
if (n2 == 1)

wait (busy);
signal (s2);
...
Run (left to right)
...
wait (s2);

n2--;
if (n2 == 0)

signal (busy);
signal (s2);

wait (s1);
n1++;
if (n1 == 1)

wait (busy);
signal (s1);
...
Run (left to right)
...
wait (s1);

n1--;
if (n1 == 0)

signal (busy);
signal (s1);

Solution

left2right right2left

n1 = n2 = 0;
init (s1, 1); init (s2, 1);
init (busy, 1);

13System and Device Programming – Stefano Quer

Dining (5) philosophers problem

 Model in which different resources are common
to different concurrent processes

 Due to Dijkstra [1965]

 Definition of the problem

 A table is set with

 5 rice dishes

 5 (Chinese) chopsticks each between two plates

 Around the table sit 5 philosophers

 Philosophers think or eat

 To eat each philosopher needs two chopsticks

 Chopsticks can be obtained one at a time

14System and Device Programming – Stefano Quer

Solution

while (TRUE) {
Think ();
takeForks (i);
Eat ();
putForks (i);

}

 Data structures

 A state for each philosopher (THINKING, HUNGRY,
EATING)

 A semaphore for each philosopher (for access to
food)

 Another semaphore to manage the access in
mutual exclusion to the philosopher state variable

15System and Device Programming – Stefano Quer

takeForks (int i) {
wait (mutex);
state[i] = HUNGRY;
test (i);
signal (mutex);
wait (sem[i]);

}

Solution

int state[N]
init (mutex, 1);
init (sem[0], 0); ...; init (sem[4], 0);

test (int i) {
if (state[i]==HUNGRY && state[LEFT]!=EATING &&

state[RIGHT]!=EATING) {
state[i] = EATING;
signal (sem[i]);

}
}

putForks (int i) {
wait (mutex);
state[i] = THINKING;
test (LEFT);
test (RIGHT);
signal (mutex);

}

