
System and Device Programming

Classical Synchronization Problems
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2System and Device Programming – Stefano Quer

Producer-Consumer

 Producer and consumer with limited memory

 It uses a circular buffer of dimension SIZE to store
the elements to be produced and consumed

 The circular buffer implements a FIFO queue
(First-In First-Out)

b

P

C

B

P

C

a

B

c

P

C

B

head
(out)

tail
(in)

FIFO
full,

empty,
partially full

3System and Device Programming – Stefano Quer

Solution

 In the sequential access enqueue and dequeue
are concurrent

 In the parallel access we can have two cases

 Only 1 producer and only 1 consumer

 The operations enqueue and dequeue act on
different extremes of the queue, however the n
variable is shared

 P producers and C consumers

 In addition to the previous case, concurrent access
operations to the same extreme of the queue are
possible

4System and Device Programming – Stefano Quer

Solution

 With P producer and C consumer, we need

 To count full and empty elements in the queue

 A semaphore "full" counts the number of filled
elements

 A semaphore "empty" counts the number of empty
elements

 Mutual exclusion among producers and among
consumers, as they act on opposite extremes of
the buffer

 Producers and consumers can work concurrently

 As long as the queue is not completely full or
completely empty

5System and Device Programming – Stefano Quer

#define SIZE ...
...
int queue[SIZE];
int tail, head;
...
void init () {

tail = 0;
head = 0;

}

void dequeue (int *val) {
*val=queue[head];
head=(head+1)%SIZE;
return;

}

void enqueue (int val) {
queue[tail] = val;
tail=(tail+1)%SIZE;
return;

}

FIFO standard (non ADT)
without the variable n

Solution

head
(out)

tail
(in)

6System and Device Programming – Stefano Quer

Consumer () {
int val;
while (TRUE) {

wait (full);
wait (MEc);
dequeue (&val);
signal (MEc);
signal (empty);
consume (val);

}
}

Producer () {
int val;
while (TRUE) {

produce (&val);
wait (empty);
wait (MEp);
enqueue (val);
signal (MEp);
signal (full);

}
}

init (full, 0);
init (empty, SIZE);
init (MEp, 1);
init (MEc, 1); Mutual exclusion

between P and C

Solution

full elements
empty elements

7System and Device Programming – Stefano Quer

Readers & Writers

 Classical problem (1971) in which data is shared
between two sets of concurrent processes

 A set of Readers, which can access concurrently
to the data

 A set of Writers, which can access in mutual
exclusion, both with other Writers and Readers
processes, to the data

 There are two versions of the problem

 Precedence to Readers

 Precedence to Writers

8System and Device Programming – Stefano Quer

wait (meW);
wait (w);
...
writing
...
signal (w);
signal (meW);

wait (meR);
nR++;
if (nR==1)

wait (w);
signal (meR);
...
reading
...
wait (meR);

nR--;
if (nR==0)

signal (w);
signal (meR);

Reader

Precedence to Readers

nR = 0;
init (meR, 1);
init (meW, 1);
init (w, 1);

Writer

To enforce the precedence to R
(the signal(w) unblocks an R)

9System and Device Programming – Stefano Quer

wait (meW);
nW++;
if (nW == 1)
wait (r);

signal (meW);
wait (w);
...
writing
...

signal (w)
wait (meW);
nW--;
if (nW == 0)
signal (r);

signal (meW);

wait (r);
wait (meR);
nR++;
if (nR == 1)
wait (w);

signal (meR);
signal (r);
...
reading
...
wait (meR);
nR--;
if (nR == 0)
signal (w);

signal (meR);

Precedence to Writers

Reader Writer

nR = nW = 0;
init (w, 1); init (r, 1);
init (meR, 1); init (meW, 1);

10System and Device Programming – Stefano Quer

The "Alternate direction tunnel"

 In an alternate direction tunnel

 Allow any number of cars (processes) to proceed
in the same direction

 If there is traffic in one direction, block traffic in
the opposite direction

11System and Device Programming – Stefano Quer

The "Alternate direction tunnel"

 Extension to the Readers-Writers problem, with
two sets of Readers

 Data structure

 Two global counters (n1 and n2), one for each
direction

 Two semaphores (s1 and s2), one for each
direction

 A global semaphore for wait (busy)

 In its basic implementation, it can cause
starvation of cars (in one direction with respect
to the other)

12System and Device Programming – Stefano Quer

wait (s2);
n2++;
if (n2 == 1)

wait (busy);
signal (s2);
...
Run (left to right)
...
wait (s2);

n2--;
if (n2 == 0)

signal (busy);
signal (s2);

wait (s1);
n1++;
if (n1 == 1)

wait (busy);
signal (s1);
...
Run (left to right)
...
wait (s1);

n1--;
if (n1 == 0)

signal (busy);
signal (s1);

Solution

left2right right2left

n1 = n2 = 0;
init (s1, 1); init (s2, 1);
init (busy, 1);

13System and Device Programming – Stefano Quer

Dining (5) philosophers problem

 Model in which different resources are common
to different concurrent processes

 Due to Dijkstra [1965]

 Definition of the problem

 A table is set with

 5 rice dishes

 5 (Chinese) chopsticks each between two plates

 Around the table sit 5 philosophers

 Philosophers think or eat

 To eat each philosopher needs two chopsticks

 Chopsticks can be obtained one at a time

14System and Device Programming – Stefano Quer

Solution

while (TRUE) {
Think ();
takeForks (i);
Eat ();
putForks (i);

}

 Data structures

 A state for each philosopher (THINKING, HUNGRY,
EATING)

 A semaphore for each philosopher (for access to
food)

 Another semaphore to manage the access in
mutual exclusion to the philosopher state variable

15System and Device Programming – Stefano Quer

takeForks (int i) {
wait (mutex);
state[i] = HUNGRY;
test (i);
signal (mutex);
wait (sem[i]);

}

Solution

int state[N]
init (mutex, 1);
init (sem[0], 0); ...; init (sem[4], 0);

test (int i) {
if (state[i]==HUNGRY && state[LEFT]!=EATING &&

state[RIGHT]!=EATING) {
state[i] = EATING;
signal (sem[i]);

}
}

putForks (int i) {
wait (mutex);
state[i] = THINKING;
test (LEFT);
test (RIGHT);
signal (mutex);

}

