System and Device Programming

Classical Synchronization Problems

Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

System and Device Programming - Stefano Quer: 2

Producer-Consumer

%+ Producer and consumer with limited memory

> It uses a circular buffer of dimension SIZE to store
the elements to be produced and consumed

» The circular buffer implements a FIFO queue
(First-In First-Out)

4 FIFO h
full, head
empty, (out)
partially full %
- >
tail
(in)

System and Device Programming - Stefano Quer 3

< In the sequential access enqueue and dequeue
are concurrent

< In the parallel access we can have two cases

» Only 1 producer and only 1 consumer

= The operations enqueue and dequeue act on
different extremes of the queue, however the n
variable is shared

» P producers and C consumers

= In addition to the previous case, concurrent access
operations to the same extreme of the queue are
possible

System and Device Programming - Stefano Quer 4

<+ With P producer and C consumer, we need

» To count full and empty elements in the queue

= A semaphore "full" counts the number of filled
elements

= A semaphore "empty" counts the number of empty
elements
» Mutual exclusion among producers and among
consumers, as they act on opposite extremes of
the buffer
= Producers and consumers can work concurrently

= As long as the queue is not completely full or
completely empty

System and Device Programming - Stefano Quer 5

4 _ N 4 M
#define Sl ZE ...
voi d enqueue (int val) {

i nt queue[SI ZE]; queue[tail] = val;

int tail, head; tai |l =(tail+1) %8l ZE;
o ret urn;
void init () {)
tail = 0O;
} head = O; N y
- g FIFO standard (non ADT) ~ ™
L without the variable n
voi d dequeue (int *val) {
head *val =queue[head] ;
(out) head=(head+1) %5l ZE;
ret urn;
» }
t_ail

(in) L J

System and Device Programming - Stefano Quer

init (full, 0);
init (enmpty, SIZE);
init (Mep, 1);
init (Mec, 1);

J

(&

//Producer () {

I nt val ;

while (TRUE) {
produce (&val);
wal t (enpty);
wai t (MEp);
enqueue (val);
si gnal (MEp);
signal (full);

J

-
Mutual exclusion
T between P and C
Y,

~

/(# full elements
em elements

— pty

|

’/Consuner () {

I nt val ;

while (TRUE) {
wait (full);
wait (MEC),;
dequeue (&val);
si gnal (Mec);
signal (enpty);
consune (val);

System and Device Programming - Stefano Quer 7

Readers & Writers

% Classical problem (1971) in which data is shared
between two sets of concurrent processes

> A set of Readers, which can access concurrently
to the data

> A set of Writers, which can access in mutual
exclusion, both with other Writers and Readers
processes, to the data

% There are two versions of the problem
> Precedence to Readers
> Precedence to Writers

System and Device Programming - Stefano Quer: 8

Precedence to Readers

Reader
/
wait (nmeR);
NR++;
I f (nR==1)
wai t (w);
signal (nmeR);
;ééding
wait (meR):
nR- - ;
I f (nR==0)
signal (w);

signal (nmeR);

.

nR = O;

init (meR, 1);
init (mew 1);
init (w, 1);

J

To enforce the precedence to R
(the signal(w) unblocks an R)

///// Writer
-

‘wait (mew:

wait (W ;

writing

signal (W)

\signal (meW ;

System and Device Programming - Stefano Quer

9

Precedence to Writers

nR = n\W= 0;

init (w, 1); init (r, 1);

init (meR 1); init (nmeW 1);

4 Readef\

wait (r);
wait (nmeR);
NR++;
I f (nR == 1)
wait (w);
signal (neR);
signal (r);

}ééding
ﬁéit (meR);
nR- -;

if (nR == 0)

signal (w;
signal (neR);

. /

/

wait (meW;
N\W-+;
I f (nW==1)
wait (r);
signal (nmeW;
wait (w);
writing
signal (w
wait (meW;
nW-;
I f (nW== 0)

signal (nmeWw;

(&

signal (r);

Writer)

System and Device Programming - Stefano Quer 10

The "Alternate direction tunnel”

»» In an alternate direction tunnel

» Allow any number of cars (processes) to proceed
in the same direction

> If there is traffic in one direction, block traffic in
the opposite direction

ofey
N I

B —.

OO0

System and Device Programming - Stefano Quer 11

The "Alternate direction tunnel”

< Extension to the Readers-Writers problem, with
two sets of Readers
2> Data structure

» Two global counters (n1 and n2), one for each
direction

» Two semaphores (s1 and s2), one for each
direction

> A global semaphore for wait (busy)
< In its basic implementation, it can cause

starvation of cars (in one direction with respect
to the other)

System and Device Programming - Stefano Quer 12

‘nl = n2 = 0; \
init (s1, 1); init (s2, 1);
init (busy, 1);

J

4 Ieft2right\ 4 right2|eft\
wait (sl); wait (s2);
nl++; n2++;
1 f (nl1 == 1) I f (n2 == 1)
wait (busy); wait (busy);
signal (sl); signal (s2);
Run (left to right) Run (left to right)
wait (sl); wait (s2);
nl--; n2--;
1 f (n1l == 0) i f (n2 == 0)
si gnal (busy); si gnal (busy);
signal (sl); signal (s2);

- AN /

System and Device Programming - Stefano Quer 13

Dining (5) philosophers problem

%+ Model in which different resources are common
to different concurrent processes

> Due to Dijkstra [1965]

» Definition of the problem

> A table is set with
= 5 rice dishes

®

0

®

0

» Around the table sit 5 philosophers

> Philosophers think or eat
= To eat each philosopher needs two chopsticks
= Chopsticks can be obtained one at a time

System and Device Programming - Stefano Quer 14

+s» Data structures

> A state for each philosopher (THINKING, HUNGRY,
EATING)

» A semaphore for each philosopher (for access to
food)

» Another semaphore to manage the access in
mutual exclusion to the philosopher state variable

~ D
while (TRUE) {

Thi nk () ;

t akeForks (i);

Eat (),

put Forks (1i);

}

(& J

System and Device Programming - Stefano Quer

|

i nt state[N|
Init (mutex, 1);

init (senf0], 0); ...; init (senf4], 0);

s N O

t akeForks (int i) { put Forks (int 1) {
wait (nutex); wai t (nmutex);
state[i] = HUNGRY, state[i] = THI NKI NG
test (i); test (LEFT);
si gnal (nutex); test (RIGHT);
wait (senii]); si gnal (nutex);

\} / \}

"t est (int 1) {
I f (state[i]==HUNGRY && st at e[LEFT] ! =EATI NG &&
st at e[Rl GHT] ! =EATI NG) {
state[i] = EATI NG

signal (senfi]);
}

}

(&

