Synchronization

Synchronization Basics
Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

System and Device Programming - Stefano Quer - 2

Critical sections

% Critical Section (CS) or Critical Region (CR)

> A section of code, common to multiple processes
(or threads), in which these entities can access
(read and write) shared objects

> A section of code in which multiple processes (or
threads) are competing for the use (read and
write) of shared resources (e.g., data or devices)

+»» Solution

» Establish an access protocol that enforces
mutual exclusion for each CS
= Before a CS, there should be a reservation section
= After the CS, thre should be a release section

System and Device Programming - Stefano Quer 3

Access protocol

H/ﬂ ﬂ/ﬂ
o - £ @ ™\
while (TRUE) { while (TRUE) {
reservati on code reservati on code
Critical Section Critical Section
rel ease code rel ease code
non critical section non critical section
\}) \} J

< Every CS is protected by an
» Enter code (reservation, or prologue)
> Exit code (release, or epilogue)

“» Non-critical sections should not be protected

System and Device Programming - Stefano Quer 4

Synchronization

% To synchronize entities (Ps or Ts) OSs provide
appropriate primitives
<+ Among these primitives, we have semaphores
» Introduced by Dijkstra in 1965

» Each semaphore is associated to a queue

= Semaphores do not busy waiting, therefore they do
not waste resources

= Queues are implemented in kernel space by means
of a queue of Thread Control Blocks

= The kernel scheduler decides the queue
management strategy (not necessarily FIFO)

System and Device Programming - Stefano Quer 5

% A semaphore S is a shared structure including
» A counter
» A waiting queue, managed by the kernel
» Both protected by a lock

~

t ypedef struct semaphore tag {
char | ock;
Int cnt; Lock variable
process_t *head,; Counter

} semaphore_t; Semaphore list

-

< Operations on S are atomic
» Atomicity is managed by the OS

> It is impossible for two threads to perform
simultaneous operations on the same semaphore

System and Device Programming - Stefano Quer 6

Manipulation functions

< Typical operations on a semaphore S

> init (S, k)
= Defines and initializes the semaphore S to the value k
> wait (S) N | sleep, down, P J

= Allows (in the reservation code) to obtain the access
of the CS protected by the semaphore S

> signal (S) | wakeup, up, V]

= Allows (in the release code) to release the CS
protected by the semaphore S

> destroy (S)
= Frees the semaphore S

They are not the "wait" and
"signal" seen with processes

System and Device Programming - Stefano Quer 7

Synchronization with semaphores

% The use of semaphores is not limited to the
critical section access protocol

<+ Semaphores can be used to solve any
synchronization problem using

» An appropriate positioning of semaphores in the
code

» Possibly, more than one semaphore
» Possibly, additional shared variables

System and Device Programming - Stefano Quer

|

init (S, 1);
s N O 2
whil e (TRUE) { P/ T | [while (TRUE) { Py [T;
wait (S); wait (S);
CS CS
signal (S); signal (9S);
non critical section non critical section
\} / k} J
Remind:
wait (S) {
whi | e (S<=0);
S
}
signal (S {
S++;

}

é N

init (S, 1) L U Ts > quete
. 1
It (S); .
\Acgl (5) walit 0
signal (S); | ¢5, wait 1 T,
L J

signal

L

At most one T/P
at a time in the

critical section signal 1
- /

':,z

System and Device Programming - Stefano Quer 10

Critical sections of N threads

()
it (S, 2): T, T, 15 S queue
. 2
1t (S); :
V\Cg' (5) walt 1
signal (S): | cs. wait 0
N J cs,

[Threads 1and 2in :
their CSs signal
_
(Threads 2 and 3 i X
reads 2 and 3 in :
their CSs signal 1
- 2

signal
{At most two T/P

at a time in the
critical section

System and Device Programming - Stefano Quer: 11

Pure synchronization

% Synchronize two T/P so that
> T, waits T,
> Then, T, waits T;
» It is a client-server schema

init (S1, 0);]
init (S2, 0);

g T/P) [T,/ P}
while (TRUE) { while (TRUE) {
prepare data T wait (S1);
signal (S1); process data
wait (S2); e———————— sjgnal (S2);
get processed data

: —

S \)

System and Device Programming - Stefano Quer:

*+» Given the code of these three threads

12

[. o o h [. o o h [. o o \
while (1) { T while (1) { Uz while (1) { L
wait (S1); wait (S2); wait (S2);
T, code T, code T; code
si gnal (S2); signal (S2); signal (S1);
} } }
looc).)L)
init (S1, 1);
init (S2, 0);

s+ Which is the possible
execution order?

of:
G

System and Device Programming - Stefano Quer 13

< Implement this precedence G
graph using semaphores

» Ts/Ps are not cyclic G e

T O
init (S1, 0); wai t (S1);
init (S2, 0): T, code
signal (S2);
Ve > (I 4)
. Tq i T3 o Ty
1 wali ; : :
si gnal (S1); T, cod(e) wal t §§§g ,
signal (S1); i : tezl :
g (S1) si gnal (S2); T, code
_) \. B J (S J

System and Device Programming - Stefano Quer 14

< Implement this precedence graph

using semaphores S2 G
> All Ts/Ps are cyclic GQG
()

f!n!t (S1, 1); fwhile(l) { sz

init (S2, 0); wait (S2); |

I Nl :E (22’ 8) ! T, code "~ T, and T cannot use

oL e G \ signal ($4); the same semaphore
-

4 I \ J)
while (1) { Tq o ?\/v;ile(l) { Ty
wait (S1):; while (1) { 3 wai t (34);

T, code wai t (S3); wait ($4);

signal (S2); T; code T, code
si gnal (S3); \ signal ($4); signal (S1);
} }

(S J - J A\ J

System and Device Programming - STefanoQi";: . 15

<+ Implement this

precedence graph G
using semaphores
> Ts/Ps are not cyclic G G G

System and Device Programming - Stefano Quer 16

~)
TO
T, code
si gnal (S1) ;
si gnal (S2);
si gnal (S3);
_ J
D 4 N ()
T, T T
wai t (S1); Wai t (S2) ; wai t (S3) ;
;1 gﬁgle(S4) T, code Ts code
; : . si gnal (S7);
i onal (559 KS|gnaI(85), I\ gnal (S7))
- | . -) f_l_)
init (Sl, 0); T, wai t (S5) ;
i nit (gg 8): wai t (S4) ; Wait(SS):
init (S3, 0); T, code T. code |
T . : 5
\) si gnal (S6) ; si gnal (S6) ;
L J si gnal (S7) ;)

System and Device Programming - Stefano Quer I

4 A 4 2
Q T T,
wai t (S6) ; wai t (S7) ;
wai t (S6) ; wai t (S7) ;
G @ G T_ code T_7 code
Q G KS|gnaI(S8),) KS|gnaI(S8),)
4)
1) () T
¥ wai t (S8) ;
(T wai t (S8) ;
Tg code
L J

This solution is correct, but the number of
semaphores is not minimal

System and Device Programming - Stefano Quer - 18

Real implementations

% There are several semaphores implementations

> Semaphores by means of a pipe

> POSIX Pthread

= Condition variables

= Semaphores
e The most important

= Mutex (for mutual exclusion) _ N
System call: semget,
.. . semop, semctl (in
. .h) th
> Linux semaphores L Sysfsem.h) they are

complex to use
% Notice that semaphores are
> Global share objects (see sem_init)

» They are allocated by a thread, but they are kernel
objects

J

System and Device Programming - Stefano Quer - 19

POSIX semaphores

% Kernel and OS independent system calls (POSIX)

» Header file
= #include <semaphore.h>
% A semaphore is a type sem_t variable
» sem_t *seml, *sem?2, ...;

% All semaphore system calls

» Have name sem_* N
» On error, they return the i/ System calls:
sem_Init

value -1 sem_wait
sem_trywait

sem_post
sem_getvalue

\ sem_destroy /

System and Device Programming - Stefano Quer 20

(. . . \
Int seminit (

semt *sem
| nt pshar ed,
unsi gned i nt val ue

)

(S J

% Initializes the semaphore counter at value value

% The value pshared identifies the semaphore type

> If equal to 0, the semaphore is local to the threads
of the current process

» Otherwise, the semaphore can be shared between
different processes (parent that initializes the

semaphore and its children)
Linux does not currently support
shared semaphores

System and Device Programming - Stefano Quer 21

[)

Int semwait (
semt *sem
) ;

(& J

*» Standard wait

> If the semaphore is equal to 0, it blocks the caller
until it can decrease the value of the semaphore

System and Device Programming - Stefano Quer 22

sem_trywait ()

[)

Int semtrywait (
semt *sem

) ;

(& J

<+ Non-blocking wait
> If the semaphore counter has a value greater than
0, perform the decrement, and returns 0

> If the semaphore is equal to 0, returns -1 (instead
of blocking the caller as sem_wait does)

System and Device Programming - Stefano Quer 23

sem_post ()

[)

| nt sem post (
semt *sem
) ;

(& J

% Standard signal

» Increments the semaphore counter, or wakes up a
blocked thread if present

System and Device Programming - Stefano Quer 24

sem_getvalue ()

,
| Nt sem get val ue (1

semt *sem

. . - -
) ; Tt ~vel Better not use this function. From Linux manual:
’ "The value of the semaphore may already have
- L changed by the time sem_getvalue() returns”)
% Allows obtaining the value of the semaphore
counter

» The value is assigned to *valP
> If there are waiting threads

= 0 is assigned to *valP (Linux)

= Or a negative number whose absolute value is equal
to the number of processes waiting (POSIX)

System and Device Programming - Stefano Quer 25

sem_destroy ()

(")

Il Nt sem destroy (
semt *sem

) ;

(& J

% Destroys the semaphore at the address pointed
by sem
» Destroying a semaphore that other threads are

currently blocked on produces undefined behavior
(on error, -1 is returned)

» Using a semaphore that has been destroyed
produces undefined results, until the semaphore
has been reinitialized

System and Device Programming - Stefano Quer 26

Use of sem_*
rimitives to

p
/ synchRonize threads \

#ihclude "semaphore. h"

semt *sem
sem = (semt *) malloc(sizeof(semt));
seminit (sem 0, 1);
create threads ...
semwait (sem,;
... CS ...
sem post (semnm;

-s.e-m_dest roy (sem;
\C /

