
Synchronization

Synchronization Basics
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2System and Device Programming – Stefano Quer

Critical sections

 Critical Section (CS) or Critical Region (CR)

 A section of code, common to multiple processes
(or threads), in which these entities can access
(read and write) shared objects

 A section of code in which multiple processes (or
threads) are competing for the use (read and
write) of shared resources (e.g., data or devices)

 Solution

 Establish an access protocol that enforces
mutual exclusion for each CS

 Before a CS, there should be a reservation section

 After the CS, thre should be a release section

3System and Device Programming – Stefano Quer

while (TRUE) {
...

reservation code
Critical Section
release code
...
non critical section

}

while (TRUE) {
...
reservation code
Critical Section
release code
...
non critical section

}

 Every CS is protected by an

 Enter code (reservation, or prologue)

 Exit code (release, or epilogue)

 Non-critical sections should not be protected

Pi / Ti Pj / Tj

Access protocol

4System and Device Programming – Stefano Quer

Synchronization

 To synchronize entities (Ps or Ts) OSs provide
appropriate primitives

 Among these primitives, we have semaphores

 Introduced by Dijkstra in 1965

 Each semaphore is associated to a queue

 Semaphores do not busy waiting, therefore they do
not waste resources

 Queues are implemented in kernel space by means
of a queue of Thread Control Blocks

 The kernel scheduler decides the queue
management strategy (not necessarily FIFO)

5System and Device Programming – Stefano Quer

Definition

 A semaphore S is a shared structure including

 A counter

 A waiting queue, managed by the kernel

 Both protected by a lock

 Operations on S are atomic

 Atomicity is managed by the OS

 It is impossible for two threads to perform
simultaneous operations on the same semaphore

typedef struct semaphore_tag {
char lock;
int cnt;
process_t *head;

} semaphore_t;

Lock variable
Counter

Semaphore list

6System and Device Programming – Stefano Quer

Manipulation functions

 Typical operations on a semaphore S

 init (S, k)

 Defines and initializes the semaphore S to the value k

 wait (S)

 Allows (in the reservation code) to obtain the access
of the CS protected by the semaphore S

 signal (S)

 Allows (in the release code) to release the CS
protected by the semaphore S

 destroy (S)

 Frees the semaphore S

sleep, down, P

wakeup, up, V

They are not the "wait" and
"signal" seen with processes

7System and Device Programming – Stefano Quer

Synchronization with semaphores

 The use of semaphores is not limited to the
critical section access protocol

 Semaphores can be used to solve any
synchronization problem using

 An appropriate positioning of semaphores in the
code

 Possibly, more than one semaphore

 Possibly, additional shared variables

8System and Device Programming – Stefano Quer

while (TRUE) {
wait (S);
CS
signal (S);
non critical section

}

while (TRUE) {
wait (S);
CS
signal (S);
non critical section

}

Pi / Ti Pj / Tj

Mutual exclusion with semaphore

init (S, 1);

Remind:

wait (S) {
while (S<=0);
S--;

}

signal (S) {
S++;

}

9System and Device Programming – Stefano Quer

Critical sections of N threads

init (S, 1);
...
wait (S);
CS
signal (S);

T1 T2 T3 S queue

1

wait 0

CS1 wait -1 T2

b
lo

ck
e
d wait -2 T2, T3

b
lo

ck
e
d

-2 T2, T3

signal -2 T2, T3

CS2 -1 T3

signal 0

CS3 0

signal 1

At most one T/P
at a time in the
critical section

10System and Device Programming – Stefano Quer

Critical sections of N threads

init (S, 2);
...
wait (S);
CS
signal (S);

T1 T2 T3 S queue

2

wait 1

CS1 wait 0

CS2 wait -1 T3

b
lo

ck
e
d -1 T3

signal 0

CS3 0

signal 1

signal 2

Threads 1 and 2 in
their CSs

Threads 2 and 3 in
their CSs

At most two T/P
at a time in the
critical section

11System and Device Programming – Stefano Quer

while (TRUE) {
wait (S1);
process data
signal (S2);
...

}

Pure synchronization

while (TRUE) {
prepare data
signal (S1);
wait (S2);
get processed data

}

 Synchronize two T/P so that

 Tj waits Ti

 Then, Ti waits Tj

 It is a client-server schema

init (S1, 0);
init (S2, 0);

Ti / Pi Tj / Pj

12System and Device Programming – Stefano Quer

Exercise

 Given the code of these three threads

 Which is the possible

execution order?

...
while (1) {

wait (S1);
T1 code
signal (S2);

}
...

...
while (1) {

wait (S2);
T3 code
signal (S1);

}
...

...
while (1) {

wait (S2);
T2 code
signal (S2);

}
...

init (S1, 1);
init (S2, 0);

T1 T2 T3

T1

T3

T2

S2

S2

S2

S2

S1

13System and Device Programming – Stefano Quer

Exercise

T1 code
signal (S1);
signal (S1);
...

...
wait (S2);
wait (S2);
T4 code

...
wait (S1);
T2 code
signal (S2);
...

...
wait (S1);
T3 code
signal (S2);
...

init (S1, 0);
init (S2, 0);

T1 T3

T2

T4

T2

T1

T4

T3

 Implement this precedence
graph using semaphores

 Ts/Ps are not cyclic

14System and Device Programming – Stefano Quer

while (1) {
wait (S4);
wait (S4);
T4 code
signal (S1);

}

while (1) {
wait (S3);
T3 code
signal (S4);

}

Exercise

init (S1, 1);
init (S2, 0);
init (S3, 0);
init (S4, 0);

while (1) {
wait (S1);
T1 code
signal (S2);
signal (S3);

}

while (1) {
wait (S2);
T2 code
signal (S4);

}

T1
T3

T2

T4

 Implement this precedence graph
using semaphores

 All Ts/Ps are cyclic
T2

T1

T4

T3
S4

S1S3S2

T2 and T3 cannot use
the same semaphore

15System and Device Programming – Stefano Quer

Exercise

 Implement this
precedence graph
using semaphores

 Ts/Ps are not cyclic

T0

T2
T1

T5

T7T6

T8

T3

T4

16System and Device Programming – Stefano Quer

Solution

init (S1, 0);
init (S2, 0);
init (S3, 0);
...

T0
T0 code
signal(S1);
signal(S2);
signal(S3);

T0

T2
T1

T5

T7T6

T8

T3

T4

T1
wait(S1);
T1 code
signal(S4);
signal(S5);

T2
wait(S2);
T2 code
signal(S5);

T3
wait(S3);
T3 code
signal(S7);

T4
wait(S4);
T4 code
signal(S6);

T5
wait(S5);
wait(S5);
T5 code
signal(S6);
signal(S7); …

17System and Device Programming – Stefano Quer

Solution

T0

T2
T1

T5

T7T6

T8

T3

T4

T6
wait(S6);
wait(S6);
T6 code
signal(S8);

T7
wait(S7);
wait(S7);
T7 code
signal(S8);

T8
wait(S8);
wait(S8);
T8 code

This solution is correct, but the number of
semaphores is not minimal

18System and Device Programming – Stefano Quer

Real implementations

 There are several semaphores implementations

 Semaphores by means of a pipe

 POSIX Pthread

 Condition variables

 Semaphores

● The most important

 Mutex (for mutual exclusion)

 …

 Linux semaphores

 Notice that semaphores are

 Global share objects (see sem_init)

 They are allocated by a thread, but they are kernel
objects

System call: semget,
semop, semctl (in

sys/sem.h) they are
complex to use

19System and Device Programming – Stefano Quer

 Kernel and OS independent system calls (POSIX)

 Header file

 #include <semaphore.h>

 A semaphore is a type sem_t variable

 sem_t *sem1, *sem2, ...;

 All semaphore system calls

 Have name sem_*

 On error, they return the

value -1

POSIX semaphores

System calls:
sem_init
sem_wait

sem_trywait
sem_post

sem_getvalue
sem_destroy

20System and Device Programming – Stefano Quer

sem_init ()

int sem_init (
sem_t *sem,
int pshared,
unsigned int value

);

 Initializes the semaphore counter at value value

 The value pshared identifies the semaphore type

 If equal to 0, the semaphore is local to the threads

of the current process

 Otherwise, the semaphore can be shared between
different processes (parent that initializes the
semaphore and its children)

Linux does not currently support
shared semaphores

21System and Device Programming – Stefano Quer

sem_wait ()

int sem_wait (
sem_t *sem

);

 Standard wait

 If the semaphore is equal to 0, it blocks the caller
until it can decrease the value of the semaphore

22System and Device Programming – Stefano Quer

sem_trywait ()

int sem_trywait (
sem_t *sem

);

 Non-blocking wait

 If the semaphore counter has a value greater than
0, perform the decrement, and returns 0

 If the semaphore is equal to 0, returns -1 (instead
of blocking the caller as sem_wait does)

23System and Device Programming – Stefano Quer

sem_post ()

int sem_post (
sem_t *sem

);

 Standard signal

 Increments the semaphore counter, or wakes up a
blocked thread if present

24System and Device Programming – Stefano Quer

sem_getvalue ()

int sem_getvalue (
sem_t *sem,
int *valP

);

 Allows obtaining the value of the semaphore
counter

 The value is assigned to *valP

 If there are waiting threads

 0 is assigned to *valP (Linux)

 or a negative number whose absolute value is equal
to the number of processes waiting (POSIX)

Better not use this function. From Linux manual:
"The value of the semaphore may already have
changed by the time sem_getvalue() returns"

25System and Device Programming – Stefano Quer

sem_destroy ()

int sem_destroy (
sem_t *sem

);

 Destroys the semaphore at the address pointed
by sem

 Destroying a semaphore that other threads are
currently blocked on produces undefined behavior
(on error, -1 is returned)

 Using a semaphore that has been destroyed
produces undefined results, until the semaphore
has been reinitialized

26System and Device Programming – Stefano Quer

Example

...
#include "semaphore.h"
...
sem_t *sem;
...
sem = (sem_t *) malloc(sizeof(sem_t));
sem_init (sem, 0, 1);
...
... create threads ...
...
sem_wait (sem);
... CS ...
sem_post (sem);
...
sem_destroy (sem);

Use of sem_*
primitives to

synchRonize threads

