
Synchronization

Synchronization Basics
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2System and Device Programming – Stefano Quer

Critical sections

 Critical Section (CS) or Critical Region (CR)

 A section of code, common to multiple processes
(or threads), in which these entities can access
(read and write) shared objects

 A section of code in which multiple processes (or
threads) are competing for the use (read and
write) of shared resources (e.g., data or devices)

 Solution

 Establish an access protocol that enforces
mutual exclusion for each CS

 Before a CS, there should be a reservation section

 After the CS, thre should be a release section

3System and Device Programming – Stefano Quer

while (TRUE) {
...

reservation code
Critical Section
release code
...
non critical section

}

while (TRUE) {
...
reservation code
Critical Section
release code
...
non critical section

}

 Every CS is protected by an

 Enter code (reservation, or prologue)

 Exit code (release, or epilogue)

 Non-critical sections should not be protected

Pi / Ti Pj / Tj

Access protocol

4System and Device Programming – Stefano Quer

Synchronization

 To synchronize entities (Ps or Ts) OSs provide
appropriate primitives

 Among these primitives, we have semaphores

 Introduced by Dijkstra in 1965

 Each semaphore is associated to a queue

 Semaphores do not busy waiting, therefore they do
not waste resources

 Queues are implemented in kernel space by means
of a queue of Thread Control Blocks

 The kernel scheduler decides the queue
management strategy (not necessarily FIFO)

5System and Device Programming – Stefano Quer

Definition

 A semaphore S is a shared structure including

 A counter

 A waiting queue, managed by the kernel

 Both protected by a lock

 Operations on S are atomic

 Atomicity is managed by the OS

 It is impossible for two threads to perform
simultaneous operations on the same semaphore

typedef struct semaphore_tag {
char lock;
int cnt;
process_t *head;

} semaphore_t;

Lock variable
Counter

Semaphore list

6System and Device Programming – Stefano Quer

Manipulation functions

 Typical operations on a semaphore S

 init (S, k)

 Defines and initializes the semaphore S to the value k

 wait (S)

 Allows (in the reservation code) to obtain the access
of the CS protected by the semaphore S

 signal (S)

 Allows (in the release code) to release the CS
protected by the semaphore S

 destroy (S)

 Frees the semaphore S

sleep, down, P

wakeup, up, V

They are not the "wait" and
"signal" seen with processes

7System and Device Programming – Stefano Quer

Synchronization with semaphores

 The use of semaphores is not limited to the
critical section access protocol

 Semaphores can be used to solve any
synchronization problem using

 An appropriate positioning of semaphores in the
code

 Possibly, more than one semaphore

 Possibly, additional shared variables

8System and Device Programming – Stefano Quer

while (TRUE) {
wait (S);
CS
signal (S);
non critical section

}

while (TRUE) {
wait (S);
CS
signal (S);
non critical section

}

Pi / Ti Pj / Tj

Mutual exclusion with semaphore

init (S, 1);

Remind:

wait (S) {
while (S<=0);
S--;

}

signal (S) {
S++;

}

9System and Device Programming – Stefano Quer

Critical sections of N threads

init (S, 1);
...
wait (S);
CS
signal (S);

T1 T2 T3 S queue

1

wait 0

CS1 wait -1 T2

b
lo

ck
e
d wait -2 T2, T3

b
lo

ck
e
d

-2 T2, T3

signal -2 T2, T3

CS2 -1 T3

signal 0

CS3 0

signal 1

At most one T/P
at a time in the
critical section

10System and Device Programming – Stefano Quer

Critical sections of N threads

init (S, 2);
...
wait (S);
CS
signal (S);

T1 T2 T3 S queue

2

wait 1

CS1 wait 0

CS2 wait -1 T3

b
lo

ck
e
d -1 T3

signal 0

CS3 0

signal 1

signal 2

Threads 1 and 2 in
their CSs

Threads 2 and 3 in
their CSs

At most two T/P
at a time in the
critical section

11System and Device Programming – Stefano Quer

while (TRUE) {
wait (S1);
process data
signal (S2);
...

}

Pure synchronization

while (TRUE) {
prepare data
signal (S1);
wait (S2);
get processed data

}

 Synchronize two T/P so that

 Tj waits Ti

 Then, Ti waits Tj

 It is a client-server schema

init (S1, 0);
init (S2, 0);

Ti / Pi Tj / Pj

12System and Device Programming – Stefano Quer

Exercise

 Given the code of these three threads

 Which is the possible

execution order?

...
while (1) {

wait (S1);
T1 code
signal (S2);

}
...

...
while (1) {

wait (S2);
T3 code
signal (S1);

}
...

...
while (1) {

wait (S2);
T2 code
signal (S2);

}
...

init (S1, 1);
init (S2, 0);

T1 T2 T3

T1

T3

T2

S2

S2

S2

S2

S1

13System and Device Programming – Stefano Quer

Exercise

T1 code
signal (S1);
signal (S1);
...

...
wait (S2);
wait (S2);
T4 code

...
wait (S1);
T2 code
signal (S2);
...

...
wait (S1);
T3 code
signal (S2);
...

init (S1, 0);
init (S2, 0);

T1 T3

T2

T4

T2

T1

T4

T3

 Implement this precedence
graph using semaphores

 Ts/Ps are not cyclic

14System and Device Programming – Stefano Quer

while (1) {
wait (S4);
wait (S4);
T4 code
signal (S1);

}

while (1) {
wait (S3);
T3 code
signal (S4);

}

Exercise

init (S1, 1);
init (S2, 0);
init (S3, 0);
init (S4, 0);

while (1) {
wait (S1);
T1 code
signal (S2);
signal (S3);

}

while (1) {
wait (S2);
T2 code
signal (S4);

}

T1
T3

T2

T4

 Implement this precedence graph
using semaphores

 All Ts/Ps are cyclic
T2

T1

T4

T3
S4

S1S3S2

T2 and T3 cannot use
the same semaphore

15System and Device Programming – Stefano Quer

Exercise

 Implement this
precedence graph
using semaphores

 Ts/Ps are not cyclic

T0

T2
T1

T5

T7T6

T8

T3

T4

16System and Device Programming – Stefano Quer

Solution

init (S1, 0);
init (S2, 0);
init (S3, 0);
...

T0
T0 code
signal(S1);
signal(S2);
signal(S3);

T0

T2
T1

T5

T7T6

T8

T3

T4

T1
wait(S1);
T1 code
signal(S4);
signal(S5);

T2
wait(S2);
T2 code
signal(S5);

T3
wait(S3);
T3 code
signal(S7);

T4
wait(S4);
T4 code
signal(S6);

T5
wait(S5);
wait(S5);
T5 code
signal(S6);
signal(S7); …

17System and Device Programming – Stefano Quer

Solution

T0

T2
T1

T5

T7T6

T8

T3

T4

T6
wait(S6);
wait(S6);
T6 code
signal(S8);

T7
wait(S7);
wait(S7);
T7 code
signal(S8);

T8
wait(S8);
wait(S8);
T8 code

This solution is correct, but the number of
semaphores is not minimal

18System and Device Programming – Stefano Quer

Real implementations

 There are several semaphores implementations

 Semaphores by means of a pipe

 POSIX Pthread

 Condition variables

 Semaphores

● The most important

 Mutex (for mutual exclusion)

 …

 Linux semaphores

 Notice that semaphores are

 Global share objects (see sem_init)

 They are allocated by a thread, but they are kernel
objects

System call: semget,
semop, semctl (in

sys/sem.h) they are
complex to use

19System and Device Programming – Stefano Quer

 Kernel and OS independent system calls (POSIX)

 Header file

 #include <semaphore.h>

 A semaphore is a type sem_t variable

 sem_t *sem1, *sem2, ...;

 All semaphore system calls

 Have name sem_*

 On error, they return the

value -1

POSIX semaphores

System calls:
sem_init
sem_wait

sem_trywait
sem_post

sem_getvalue
sem_destroy

20System and Device Programming – Stefano Quer

sem_init ()

int sem_init (
sem_t *sem,
int pshared,
unsigned int value

);

 Initializes the semaphore counter at value value

 The value pshared identifies the semaphore type

 If equal to 0, the semaphore is local to the threads

of the current process

 Otherwise, the semaphore can be shared between
different processes (parent that initializes the
semaphore and its children)

Linux does not currently support
shared semaphores

21System and Device Programming – Stefano Quer

sem_wait ()

int sem_wait (
sem_t *sem

);

 Standard wait

 If the semaphore is equal to 0, it blocks the caller
until it can decrease the value of the semaphore

22System and Device Programming – Stefano Quer

sem_trywait ()

int sem_trywait (
sem_t *sem

);

 Non-blocking wait

 If the semaphore counter has a value greater than
0, perform the decrement, and returns 0

 If the semaphore is equal to 0, returns -1 (instead
of blocking the caller as sem_wait does)

23System and Device Programming – Stefano Quer

sem_post ()

int sem_post (
sem_t *sem

);

 Standard signal

 Increments the semaphore counter, or wakes up a
blocked thread if present

24System and Device Programming – Stefano Quer

sem_getvalue ()

int sem_getvalue (
sem_t *sem,
int *valP

);

 Allows obtaining the value of the semaphore
counter

 The value is assigned to *valP

 If there are waiting threads

 0 is assigned to *valP (Linux)

 or a negative number whose absolute value is equal
to the number of processes waiting (POSIX)

Better not use this function. From Linux manual:
"The value of the semaphore may already have
changed by the time sem_getvalue() returns"

25System and Device Programming – Stefano Quer

sem_destroy ()

int sem_destroy (
sem_t *sem

);

 Destroys the semaphore at the address pointed
by sem

 Destroying a semaphore that other threads are
currently blocked on produces undefined behavior
(on error, -1 is returned)

 Using a semaphore that has been destroyed
produces undefined results, until the semaphore
has been reinitialized

26System and Device Programming – Stefano Quer

Example

...
#include "semaphore.h"
...
sem_t *sem;
...
sem = (sem_t *) malloc(sizeof(sem_t));
sem_init (sem, 0, 1);
...
... create threads ...
...
sem_wait (sem);
... CS ...
sem_post (sem);
...
sem_destroy (sem);

Use of sem_*
primitives to

synchRonize threads

