
System and Device Programming

UNIX Thread
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2System and Device Programming – Stefano Quer

 Processes involve

 High data transfer cost for cooperating processes

 A significant increase in the memory used

 Creation time overhead

 Expensive context switching operations (with
kernel intervention)

 There are several cases where it would be useful
to have

 Lower creation and management costs

 A single address space

 Multiple execution threads (concurrency) within
that address space

Threads

3System and Device Programming – Stefano Quer

Threads

 In 1996 the 1003.1c POSIX standard introduces
the concept of threads

 The thread model allows a program to control
multiple different flows of operations (scheduled
and executed independently) that overlap in
time

 Threads

 Share the code section, the data section (variables,
file descriptors, etc.), and operating system
resources (e.g., signals)

 Have private program counter, hardware registers,
stack (i.e., local variables and execution history)

4System and Device Programming – Stefano Quer

A process with a
single thread

A process with three threads
Sharing requires protection !

Threads

5System and Device Programming – Stefano Quer

Pros and Cons

 The use of threads allows

 Advantages

 Shorter response time

 Shared resources

 Lower costs for resource management

 Increased scalability

 Disadvantages

 There is no protection for threads

● If the threads are not synchronized, access to shared
data is not thread safe

 There is not a parent-child hierarchical relationship
between thread

6System and Device Programming – Stefano Quer

Multithread programming models

 There are three thread models

 Kernel-level thread

 Thread implemented at kernel-level

 The kernel directly supports the thread concept

 User-level thread

 Thread implemented at user-level

 The kernel is not aware that threads exist

 Mixed or hybrid solution

 The operating system provides both user-level and
kernel threads

The choice is moderately
controversial

The kernel effort to
manage threads reduced

7System and Device Programming – Stefano Quer

Thread libraries

 It provides the programmer the interface to use
the threads

 The management can be done

 At user-level (by functions)

 At kernel-level (by system calls)

 The most used thread libraries are

 POSIX threads (Pthreads)

 C

 Windows 32/64

 Java

Implemented at user
and kernel level

Implemented at
kernel-level

Implemented through the thread
library of the system hosting Java

8System and Device Programming – Stefano Quer

Pthreads

 POSIX threads or Pthreads

 Is the standard UNIX library for threads (1003.1c
born in 1996, revised in 2004)

 Defined for C language, but available in other
languages (e.g., FORTRAN)

 A thread is a function that is executed in
concurrency with the main thread

 It defines more than 60 functions

 All functions have a pthread_* prefix

● pthread_equal, pthread_self,
pthread_create, pthread_exit,
pthread_join, pthread_cancel,
pthread_detach

9System and Device Programming – Stefano Quer

Library linkage

 The Pthread system calls are defined in
pthreads.h

 Insert in all *.c files

 #include <pthread.h>

 Link programs with the pthread library

 gcc -Wall -g -o <exeName> <file.c> -lpthread

10System and Device Programming – Stefano Quer

Thread Identifier

 A thread is uniquely identified

 By a type identifier pthread_t

 Similar to the PID of a process (pid_t)

 The type pthread_t is opaque

 Its definition is implementation dependent

 Can be used only by functions specifically defined in
Pthreads

 It is not possible compare directly two identifiers or
print their values

 It has meaning only within the process where the
thread is executed

 Remember that the PID is global within the system

11System and Device Programming – Stefano Quer

System call pthread_equal

int pthread_equal (
pthread_t tid1,
pthread_t tid2

);

 Compares two thread identifiers

 Arguments

 Two thread identifiers

 Returned values

 Nonzero if the two threads are equal

 Zero otherwise

12System and Device Programming – Stefano Quer

System call pthread_create

pthread_t pthread_self (
void

);

 Returns the thread identifier of the calling thread

 It can be used by a thread (with pthread_equal)

to self-identify

Self-identification can be important to properly
access the data of a specific thread

13System and Device Programming – Stefano Quer

System call pthread_create

 Arguments

 Identifier of the generated thread (tid)

 Thread attributes (attr)

 NULL is the default attribute

 C function executed by the thread (startRoutine)

 Argument passed to the start routine (arg)

 NULL if no argument

int pthread_create (
pthread_t *tid,
const pthread_attr_t *attr,
void *(*startRoutine)(void *),
void *arg

);

A single argument

Return value:
0, on success

error code, on failure

14System and Device Programming – Stefano Quer

System call pthread_exit

 A whole process (with all its threads) terminates if

 Its thread calls exit (or _exit or _Exit)

 The main thread execute return

 The main thread receives a signal whose action is to
terminate

 A single thread can terminate (without affecting
the other process threads)

 Executing return from its start function

 Executing pthread_exit

 Receiving a cancellation request performed by
another thread using pthread_cancel

15System and Device Programming – Stefano Quer

System call pthread_exit

void pthread_exit (
void *valuePtr

);

 It allows a thread to terminate returning a
termination status

 Arguments

 The ValuePtr value is kept by the kernel until a
thread calls pthread_join

 This value is available to the thread that calls
pthread_join

16System and Device Programming – Stefano Quer

Example

pthread_t t[NUM_THREADS];
struct tS v[NUM_THREADS];
...
for (t=0; t<NUM_THREADS; t++) {
v[t].tid = t;
strcpy (v[t].str, str);
rc = pthread_create (&t[t], NULL, tF, (void *) &v[t]);
...
}

...

void *tF (void *par) {
struct tS *tD;
int tid; char str[L];

tD = (struct tS *) par;
tid = tD->tid; strcpy (str, tD->str);
...

struct tS {
int tid;
char str[N];

};
Cast to a vector

of structs

Creation of N
threads with 1

struct

Address of a struct

17System and Device Programming – Stefano Quer

System call pthread_join

 At its creation a thread can be declared

 Joinable

 Another thread may "wait" (pthread_join) for its
termination, and collect its exit status

 The termination status of the trhead is retained until
another thread performs a pthread_join for that
thread

 Detached

 No thread can explicitly wait for its termination (not
joinable)

 The termination status of the thread is immediately
released

18System and Device Programming – Stefano Quer

System call pthread_join

int pthread_join (
pthread_t tid,
void **valuePtr

);

 Arguments

 Identifier (tid) of the waited-for thread

 The void pointer ValuePtr will be the value
returned by thread tid

 Returned by pthread_exit or by return

 PTHREAD_CANCELED if the thread was deleted

 Can be set to NULL if you are not interested in the
return value

Return value:
0, on success

error code, on failure

19System and Device Programming – Stefano Quer

Example

void *status;
long int s;
...
/* Wait for threads */
for (t=0; t<NUM_THREADS; t++) {

rc = pthread_join (th[t], &status);
s = (long int) status;
if (rc) { ... }

}
...

void *tF (void *par) {
long int tid;
...
tid = (long int) par;
...
pthread_exit ((void *) tid);

}

Waits each thread,
and collects its exit

status

Returns the exit status
(tid in this example)

th[t] collects the tids

20System and Device Programming – Stefano Quer

System call pthread_cancel

int pthread_cancel (
pthread_t tid

);

 Terminates the target thread

 The thread calling pthread_cancel does not
wait for termination of the target thread (it
continues immediately after the calling)

 Arguments

 Target thread (tid) identifier

Return value:
0, on success

error code, on failure

21System and Device Programming – Stefano Quer

System call pthread_detach

int pthread_detach (
pthread_t tid

);

 Declares thread tid as detached

 The status information will not be kept by the
kernel at the termination of the thread

 No thread can join with that thread

 Calls to pthread_join should fail

 Arguments

 Thread (tid) identifier

Return value:
0, on success

error code, on failure

22System and Device Programming – Stefano Quer

Example

pthread_t tid;
int rc;
void *status;

rc = pthread_create (&tid, NULL, PrintHello, NULL);
if (rc) { ... }

pthread_detach (tid);

rc = pthread_join (tid, &status);
if (rc) {

// Error
exit (-1);

}

pthread_exit (NULL);

Detach a thread

Error if try to join

Create a thread and
then make it detached

23System and Device Programming – Stefano Quer

Example

pthread_attr_t attr;
void *status;

pthread_attr_init (&attr);
pthread_attr_setdetachstate (&attr,

PTHREAD_CREATE_DETACHED);
//PTHREAD_CREATE_JOINABLE);

rc = pthread_create (&t[t], &attr, tF, NULL);
if (rc) {...}

pthread_attr_destroy (&attr);

rc = pthread_join (thread[t], &status);
if (rc) {

// Error
exit (-1);

}

Creates a detached
thread

Destroys the attribute
object

Error if try to join

Create a detached
thread using the

attribute field

24System and Device Programming – Stefano Quer

Exercise

 Implement, using threads, the following
precedence graph using threads

A

F

C

D

B

G

E

Each circle represents
an instruction or a set

of instructions

25System and Device Programming – Stefano Quer

Solution

void waitRandomTime (int max){
sleep ((int)(rand() % max) + 1);

}

int main (void) {
pthread_t th_cf, th_e;
void *retval;

srand (getpid());
waitRandomTime (10);
printf ("A\n");

A

F

C

D

B

G

E

26System and Device Programming – Stefano Quer

Solution

waitRandomTime (10);
pthread_create (&th_cf, NULL, CF, NULL);
waitRandomTime (10);
printf ("B\n");
waitRandomTime (10);
pthread_create (&th_e, NULL, E, NULL);
waitRandomTime (10);
printf ("D\n");
pthread_join (th_e, &retval);
pthread_join (th_cf, &retval);
waitRandomTime (10);
printf ("G\n");

return 0;
}

A

F

C

D

B

G

E

27System and Device Programming – Stefano Quer

Solution

static void *CF () {
waitRandomTime (10);
printf ("C\n");
waitRandomTime (10);
printf ("F\n");
return ((void *) 1); // Return code

}

static void *E () {
waitRandomTime (10);
printf ("E\n");
return ((void *) 2); // Return code

}

A

F

C

D

B

G

E

