
System and Device Programming

UNIX Thread
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2System and Device Programming – Stefano Quer

 Processes involve

 High data transfer cost for cooperating processes

 A significant increase in the memory used

 Creation time overhead

 Expensive context switching operations (with
kernel intervention)

 There are several cases where it would be useful
to have

 Lower creation and management costs

 A single address space

 Multiple execution threads (concurrency) within
that address space

Threads

3System and Device Programming – Stefano Quer

Threads

 In 1996 the 1003.1c POSIX standard introduces
the concept of threads

 The thread model allows a program to control
multiple different flows of operations (scheduled
and executed independently) that overlap in
time

 Threads

 Share the code section, the data section (variables,
file descriptors, etc.), and operating system
resources (e.g., signals)

 Have private program counter, hardware registers,
stack (i.e., local variables and execution history)

4System and Device Programming – Stefano Quer

A process with a
single thread

A process with three threads
Sharing requires protection !

Threads

5System and Device Programming – Stefano Quer

Pros and Cons

 The use of threads allows

 Advantages

 Shorter response time

 Shared resources

 Lower costs for resource management

 Increased scalability

 Disadvantages

 There is no protection for threads

● If the threads are not synchronized, access to shared
data is not thread safe

 There is not a parent-child hierarchical relationship
between thread

6System and Device Programming – Stefano Quer

Multithread programming models

 There are three thread models

 Kernel-level thread

 Thread implemented at kernel-level

 The kernel directly supports the thread concept

 User-level thread

 Thread implemented at user-level

 The kernel is not aware that threads exist

 Mixed or hybrid solution

 The operating system provides both user-level and
kernel threads

The choice is moderately
controversial

The kernel effort to
manage threads reduced

7System and Device Programming – Stefano Quer

Thread libraries

 It provides the programmer the interface to use
the threads

 The management can be done

 At user-level (by functions)

 At kernel-level (by system calls)

 The most used thread libraries are

 POSIX threads (Pthreads)

 C

 Windows 32/64

 Java

Implemented at user
and kernel level

Implemented at
kernel-level

Implemented through the thread
library of the system hosting Java

8System and Device Programming – Stefano Quer

Pthreads

 POSIX threads or Pthreads

 Is the standard UNIX library for threads (1003.1c
born in 1996, revised in 2004)

 Defined for C language, but available in other
languages (e.g., FORTRAN)

 A thread is a function that is executed in
concurrency with the main thread

 It defines more than 60 functions

 All functions have a pthread_* prefix

● pthread_equal, pthread_self,
pthread_create, pthread_exit,
pthread_join, pthread_cancel,
pthread_detach

9System and Device Programming – Stefano Quer

Library linkage

 The Pthread system calls are defined in
pthreads.h

 Insert in all *.c files

 #include <pthread.h>

 Link programs with the pthread library

 gcc -Wall -g -o <exeName> <file.c> -lpthread

10System and Device Programming – Stefano Quer

Thread Identifier

 A thread is uniquely identified

 By a type identifier pthread_t

 Similar to the PID of a process (pid_t)

 The type pthread_t is opaque

 Its definition is implementation dependent

 Can be used only by functions specifically defined in
Pthreads

 It is not possible compare directly two identifiers or
print their values

 It has meaning only within the process where the
thread is executed

 Remember that the PID is global within the system

11System and Device Programming – Stefano Quer

System call pthread_equal

int pthread_equal (
pthread_t tid1,
pthread_t tid2

);

 Compares two thread identifiers

 Arguments

 Two thread identifiers

 Returned values

 Nonzero if the two threads are equal

 Zero otherwise

12System and Device Programming – Stefano Quer

System call pthread_create

pthread_t pthread_self (
void

);

 Returns the thread identifier of the calling thread

 It can be used by a thread (with pthread_equal)

to self-identify

Self-identification can be important to properly
access the data of a specific thread

13System and Device Programming – Stefano Quer

System call pthread_create

 Arguments

 Identifier of the generated thread (tid)

 Thread attributes (attr)

 NULL is the default attribute

 C function executed by the thread (startRoutine)

 Argument passed to the start routine (arg)

 NULL if no argument

int pthread_create (
pthread_t *tid,
const pthread_attr_t *attr,
void *(*startRoutine)(void *),
void *arg

);

A single argument

Return value:
0, on success

error code, on failure

14System and Device Programming – Stefano Quer

System call pthread_exit

 A whole process (with all its threads) terminates if

 Its thread calls exit (or _exit or _Exit)

 The main thread execute return

 The main thread receives a signal whose action is to
terminate

 A single thread can terminate (without affecting
the other process threads)

 Executing return from its start function

 Executing pthread_exit

 Receiving a cancellation request performed by
another thread using pthread_cancel

15System and Device Programming – Stefano Quer

System call pthread_exit

void pthread_exit (
void *valuePtr

);

 It allows a thread to terminate returning a
termination status

 Arguments

 The ValuePtr value is kept by the kernel until a
thread calls pthread_join

 This value is available to the thread that calls
pthread_join

16System and Device Programming – Stefano Quer

Example

pthread_t t[NUM_THREADS];
struct tS v[NUM_THREADS];
...
for (t=0; t<NUM_THREADS; t++) {
v[t].tid = t;
strcpy (v[t].str, str);
rc = pthread_create (&t[t], NULL, tF, (void *) &v[t]);
...
}

...

void *tF (void *par) {
struct tS *tD;
int tid; char str[L];

tD = (struct tS *) par;
tid = tD->tid; strcpy (str, tD->str);
...

struct tS {
int tid;
char str[N];

};
Cast to a vector

of structs

Creation of N
threads with 1

struct

Address of a struct

17System and Device Programming – Stefano Quer

System call pthread_join

 At its creation a thread can be declared

 Joinable

 Another thread may "wait" (pthread_join) for its
termination, and collect its exit status

 The termination status of the trhead is retained until
another thread performs a pthread_join for that
thread

 Detached

 No thread can explicitly wait for its termination (not
joinable)

 The termination status of the thread is immediately
released

18System and Device Programming – Stefano Quer

System call pthread_join

int pthread_join (
pthread_t tid,
void **valuePtr

);

 Arguments

 Identifier (tid) of the waited-for thread

 The void pointer ValuePtr will be the value
returned by thread tid

 Returned by pthread_exit or by return

 PTHREAD_CANCELED if the thread was deleted

 Can be set to NULL if you are not interested in the
return value

Return value:
0, on success

error code, on failure

19System and Device Programming – Stefano Quer

Example

void *status;
long int s;
...
/* Wait for threads */
for (t=0; t<NUM_THREADS; t++) {

rc = pthread_join (th[t], &status);
s = (long int) status;
if (rc) { ... }

}
...

void *tF (void *par) {
long int tid;
...
tid = (long int) par;
...
pthread_exit ((void *) tid);

}

Waits each thread,
and collects its exit

status

Returns the exit status
(tid in this example)

th[t] collects the tids

20System and Device Programming – Stefano Quer

System call pthread_cancel

int pthread_cancel (
pthread_t tid

);

 Terminates the target thread

 The thread calling pthread_cancel does not
wait for termination of the target thread (it
continues immediately after the calling)

 Arguments

 Target thread (tid) identifier

Return value:
0, on success

error code, on failure

21System and Device Programming – Stefano Quer

System call pthread_detach

int pthread_detach (
pthread_t tid

);

 Declares thread tid as detached

 The status information will not be kept by the
kernel at the termination of the thread

 No thread can join with that thread

 Calls to pthread_join should fail

 Arguments

 Thread (tid) identifier

Return value:
0, on success

error code, on failure

22System and Device Programming – Stefano Quer

Example

pthread_t tid;
int rc;
void *status;

rc = pthread_create (&tid, NULL, PrintHello, NULL);
if (rc) { ... }

pthread_detach (tid);

rc = pthread_join (tid, &status);
if (rc) {

// Error
exit (-1);

}

pthread_exit (NULL);

Detach a thread

Error if try to join

Create a thread and
then make it detached

23System and Device Programming – Stefano Quer

Example

pthread_attr_t attr;
void *status;

pthread_attr_init (&attr);
pthread_attr_setdetachstate (&attr,

PTHREAD_CREATE_DETACHED);
//PTHREAD_CREATE_JOINABLE);

rc = pthread_create (&t[t], &attr, tF, NULL);
if (rc) {...}

pthread_attr_destroy (&attr);

rc = pthread_join (thread[t], &status);
if (rc) {

// Error
exit (-1);

}

Creates a detached
thread

Destroys the attribute
object

Error if try to join

Create a detached
thread using the

attribute field

24System and Device Programming – Stefano Quer

Exercise

 Implement, using threads, the following
precedence graph using threads

A

F

C

D

B

G

E

Each circle represents
an instruction or a set

of instructions

25System and Device Programming – Stefano Quer

Solution

void waitRandomTime (int max){
sleep ((int)(rand() % max) + 1);

}

int main (void) {
pthread_t th_cf, th_e;
void *retval;

srand (getpid());
waitRandomTime (10);
printf ("A\n");

A

F

C

D

B

G

E

26System and Device Programming – Stefano Quer

Solution

waitRandomTime (10);
pthread_create (&th_cf, NULL, CF, NULL);
waitRandomTime (10);
printf ("B\n");
waitRandomTime (10);
pthread_create (&th_e, NULL, E, NULL);
waitRandomTime (10);
printf ("D\n");
pthread_join (th_e, &retval);
pthread_join (th_cf, &retval);
waitRandomTime (10);
printf ("G\n");

return 0;
}

A

F

C

D

B

G

E

27System and Device Programming – Stefano Quer

Solution

static void *CF () {
waitRandomTime (10);
printf ("C\n");
waitRandomTime (10);
printf ("F\n");
return ((void *) 1); // Return code

}

static void *E () {
waitRandomTime (10);
printf ("E\n");
return ((void *) 2); // Return code

}

A

F

C

D

B

G

E

