
System and Device Programming

UNIX IPC
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino



2System and Device Programming – Stefano Quer

Inter-Process Communication

 Information sharing among processes is referred 

to as IPC or InterProcess Communication

 The main communication models are based on

 Message exchange

 Shared memory



3System and Device Programming – Stefano Quer

Communication models 

 Message exchange

 Communication takes place 
through the exchange of 
messages

 Need to setup of a 
communication channel

 Useful for exchanging limited 
amounts of data

 Uses system calls

 Require kernel intervention

 Introduce overhead

Process A

Process B

Kernel

Pipe: Direct, Synchronous, 
Limited capacity



4System and Device Programming – Stefano Quer

Communication models 

Process A

Process B

Shared 
Memory Area

Kernel

 Shared memory

 Used for sharing a large amount 
of data

 Based on sharing a memory area 
and writing of data in this area

 Most common methods

 File sharing

● Sharing the name or the file 
pointer or descriptor before 
fork/exec

 Mapped file in memory

● A file mapped in memory 
associates a shared memory 
region to a file



5System and Device Programming – Stefano Quer

 UNIX makes available

 Half-duplex pipes

 FIFOs

 Full-duplex pipes

 Named full-duplex pipes

 Message queues

 Semaphores

 Sockets

 STREAMS

Communication channels

Network process communication. 
Each process is identified by a 

socket to which it is associated a 
network address 

Extensions of the original half-
duplex pipes

For process synchronization

Not all the types of 
communication are supported 

by all the UNIX versions
Used starting from UNIX System V



6System and Device Programming – Stefano Quer

Pipes

 Pipes are the oldest form of communication in 
UNIX-like operating systems

 Allow creating a data stream among processes

 The user interface to a pipe is similar to file access

 A pipe is accessed by means of two descriptors 
(integers), one for each end of the pipe

 A process (P1) writes to an end of the pipe, 
another process (P2) reads from the other end

P1 P2



7System and Device Programming – Stefano Quer

Pipes

 Historically, they have been 

 Half-duplex

 Data can flow in both directions (from P1 to P2 or 
from P2 to P1), but not at the same time

 Full-duplex models have been proposed more 
recently, but they have limited portability

 A pipe can be used for communication among a 
parent and its childs, or among processes with a 
common ancestor

 The file descriptor must be common, therefore the 
processes must have a common ancestor

Simplex: Mono-directional
Half-Duplex: One-way, or bidirectional, but alternate (walkie-talkie)

Full-Duplex: Bidirectional (telephone)



8System and Device Programming – Stefano Quer

System call pipe

 The system call pipe creates a pipe

 A pipe allows a parent and a child to communicate

 It returns two file descriptors in vector fileDescr

 fileDescr[0]: Typically used for reading

 fileDesrc[1]: Typically used for writing

 The input stream written on fileDescr[1] 
corresponds to the output stream read on 
fileDescr[0]

#include <unistd.h>

int pipe (int fileDescr[2]);
Return value:
0, on success
-1, on failure



9System and Device Programming – Stefano Quer

System call pipe

 Methodology

 A process creates pipe

 Then it performs a fork

 The child process inherits the file descriptors

 One process writes into the pipe, the other reads 
from the pipe

 The unused descriptor should be closed

fd[0]          fd[1]

Parent process

pipe

fd[0]          fd[1]

Child process

Kernel

fd[0]           fd[1]

Process

pipe



10System and Device Programming – Stefano Quer

Pipe I/O

 The descriptor of the pipe is an integer number

 R/W on pipes do not differ to R/W on files

 Use read and write system calls

 Read blocks the process if the pipe is empty

 Write blocks the process if the pipe is full

 It is possible to have more than one reader and 
writer on a pipe, but

 The standard case is to have a single writer and a 
single reader

 Data can be interlaced using more than one writer

 Using more readers, it is undetermined which reader 
will read the next data from the pipe



11System and Device Programming – Stefano Quer

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main () {
int n;
int file[2];
char cW = 'x';
char cR;
pid_t pid;
if (pipe(file) == 0) {

pid = fork ();
if (pid == -1) {

fprintf(stderr, "Fork failure");
exit(EXIT_FAILURE);

}   

Example

Firstly, create the pipe

Then, fork the process

Use a pipe to transfer 
1 character from the 
father to the child



12System and Device Programming – Stefano Quer

if (pid == 0) {
// Child reads
close (file[1]);
n = read (file[0], &cR, 1);
printf ("Read %d bytes: %c\n", n, cR);
exit(EXIT_SUCCESS);

} else {
// Parent writes
close (file[0]);
n = write (file[1], &cW, 1);
printf ("Wrote %d bytes: %c\n", n, cW);

}
}
exit(EXIT_SUCCESS);

}

Example

Close unused end
(good practice)

Child reads

Parent writes

The two process synchronize 
because read and write are 

possibly blocking More complex data communication 
requires a communication protocol


