
System and Device Programming

UNIX IPC
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2System and Device Programming – Stefano Quer

Inter-Process Communication

 Information sharing among processes is referred

to as IPC or InterProcess Communication

 The main communication models are based on

 Message exchange

 Shared memory

3System and Device Programming – Stefano Quer

Communication models

 Message exchange

 Communication takes place
through the exchange of
messages

 Need to setup of a
communication channel

 Useful for exchanging limited
amounts of data

 Uses system calls

 Require kernel intervention

 Introduce overhead

Process A

Process B

Kernel

Pipe: Direct, Synchronous,
Limited capacity

4System and Device Programming – Stefano Quer

Communication models

Process A

Process B

Shared
Memory Area

Kernel

 Shared memory

 Used for sharing a large amount
of data

 Based on sharing a memory area
and writing of data in this area

 Most common methods

 File sharing

● Sharing the name or the file
pointer or descriptor before
fork/exec

 Mapped file in memory

● A file mapped in memory
associates a shared memory
region to a file

5System and Device Programming – Stefano Quer

 UNIX makes available

 Half-duplex pipes

 FIFOs

 Full-duplex pipes

 Named full-duplex pipes

 Message queues

 Semaphores

 Sockets

 STREAMS

Communication channels

Network process communication.
Each process is identified by a

socket to which it is associated a
network address

Extensions of the original half-
duplex pipes

For process synchronization

Not all the types of
communication are supported

by all the UNIX versions
Used starting from UNIX System V

6System and Device Programming – Stefano Quer

Pipes

 Pipes are the oldest form of communication in
UNIX-like operating systems

 Allow creating a data stream among processes

 The user interface to a pipe is similar to file access

 A pipe is accessed by means of two descriptors
(integers), one for each end of the pipe

 A process (P1) writes to an end of the pipe,
another process (P2) reads from the other end

P1 P2

7System and Device Programming – Stefano Quer

Pipes

 Historically, they have been

 Half-duplex

 Data can flow in both directions (from P1 to P2 or
from P2 to P1), but not at the same time

 Full-duplex models have been proposed more
recently, but they have limited portability

 A pipe can be used for communication among a
parent and its childs, or among processes with a
common ancestor

 The file descriptor must be common, therefore the
processes must have a common ancestor

Simplex: Mono-directional
Half-Duplex: One-way, or bidirectional, but alternate (walkie-talkie)

Full-Duplex: Bidirectional (telephone)

8System and Device Programming – Stefano Quer

System call pipe

 The system call pipe creates a pipe

 A pipe allows a parent and a child to communicate

 It returns two file descriptors in vector fileDescr

 fileDescr[0]: Typically used for reading

 fileDesrc[1]: Typically used for writing

 The input stream written on fileDescr[1]
corresponds to the output stream read on
fileDescr[0]

#include <unistd.h>

int pipe (int fileDescr[2]);
Return value:
0, on success
-1, on failure

9System and Device Programming – Stefano Quer

System call pipe

 Methodology

 A process creates pipe

 Then it performs a fork

 The child process inherits the file descriptors

 One process writes into the pipe, the other reads
from the pipe

 The unused descriptor should be closed

fd[0] fd[1]

Parent process

pipe

fd[0] fd[1]

Child process

Kernel

fd[0] fd[1]

Process

pipe

10System and Device Programming – Stefano Quer

Pipe I/O

 The descriptor of the pipe is an integer number

 R/W on pipes do not differ to R/W on files

 Use read and write system calls

 Read blocks the process if the pipe is empty

 Write blocks the process if the pipe is full

 It is possible to have more than one reader and
writer on a pipe, but

 The standard case is to have a single writer and a
single reader

 Data can be interlaced using more than one writer

 Using more readers, it is undetermined which reader
will read the next data from the pipe

11System and Device Programming – Stefano Quer

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main () {
int n;
int file[2];
char cW = 'x';
char cR;
pid_t pid;
if (pipe(file) == 0) {

pid = fork ();
if (pid == -1) {

fprintf(stderr, "Fork failure");
exit(EXIT_FAILURE);

}

Example

Firstly, create the pipe

Then, fork the process

Use a pipe to transfer
1 character from the
father to the child

12System and Device Programming – Stefano Quer

if (pid == 0) {
// Child reads
close (file[1]);
n = read (file[0], &cR, 1);
printf ("Read %d bytes: %c\n", n, cR);
exit(EXIT_SUCCESS);

} else {
// Parent writes
close (file[0]);
n = write (file[1], &cW, 1);
printf ("Wrote %d bytes: %c\n", n, cW);

}
}
exit(EXIT_SUCCESS);

}

Example

Close unused end
(good practice)

Child reads

Parent writes

The two process synchronize
because read and write are

possibly blocking More complex data communication
requires a communication protocol

