
System and Device Programming

UNIX Signals
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino



2System and Device Programming – Stefano Quer

Definition

 A signal is

 A software interrupt

 An asynchronous notification sent, by the kernel or 
by another process, to a process to notify it of an 
event that occurred

 Signals 

 Allow notify asynchronous events

 Such as the occurrence of particular events (e.g., 
error conditions, memory access violations, calculation 
errors, illegal instructions, etc.)

 Can be used as a limited form of inter-process 
communication



3System and Device Programming – Stefano Quer

Characteristics

 Available from the very first versions of UNIX

 Originally managed in an unreliable way

 Standardized by the POSIX standard, they are 
now stable and relatively reliable

 Each signal has a name

 Names start with SIG...

 The file signal.h defines signal names

 Unix FreeBSD, Mac OS X and Linux support 31 
signals

 Solaris supports 38 signals



4System and Device Programming – Stefano Quer

Main signals

Name Description

SIGABRT Process abort, generated by system call abort

SIGALRM Alarm clock, generated by system call alarm

SIGFPE Floating-Point exception

SIGILL Illegal instruction

SIGKILL Kill (non maskable)

SIGPIPE Write on a pipe with no reader

SIGSEGV Invalid memory segment access

SIGCHLD Child process stopped or exited

SIGUSR1
SIGUSR2

User-defined signal ½
default action = terminate the process
Available for use in user applications

The command kill –l displays
a complete list of signals



5System and Device Programming – Stefano Quer

Signal management

 Signal management goes through three phases

 Signal generation

 When the kernel or a source process causes an 
event that generate a signal

 Signal delivery

 A not yet delivered signal remains pending

 At signal delivery a process executes the actions 
related to that signal

 Reaction to a signal

 To properly react to the asynchronous arrival of a 
given type of signal, a process must inform the 
kernel about the action that it will perform when it 
will receive a signal of that type

There is no signal queue.
The kernel sets a flag in 

the process table



6System and Device Programming – Stefano Quer

 Signal management can be carried out with the 
following system calls

 signal

 Instantiates a signal handler

 kill (and raise)

 Sends a signal

 pause

 Suspends a process, waiting the arrive of a signal

 alarm

 Sends a SIGALARM signal, after a preset time

 sleep

 Suspends the process for a specified amount of time

(waits for signal SIGALRM)

Signal management

The terms signal and kill are 
relatively inappropriate.

signal does not send a signal!!



7System and Device Programming – Stefano Quer

System call signal

 Allow to instantiate a signal handler

 Specifies the signal to be managed (sig)

 The function use to manage it (func), i.e., the 
signal handler

 Arguments

 sig indicates the type of signal to be caught

 func specifices the address (i.e., pointer) to the 
function that will be executed when a

#include <signal.h>

void (*signal (int sig,
void (*func)(int)))(int);

Return value:
The previous signal 
handler, on success
SIG_ERR, on failure



8System and Device Programming – Stefano Quer

Reaction to a signal

 The signal system call allows setting three 
different reactions to the delivery of a signal

 Accept the default behavior

 signal (SIGname, SIG_DFL)

 Ignore signal delivery

 signal (SIGname, SIG_IGN)

 Catch the signal

 signal (SIGname, signalHandlerFunction)



9System and Device Programming – Stefano Quer

...
void manager (int sig) {

if (sig==SIGUSR1)
printf ("Received SIGUSR1\n");

else if (sig==SIGUSR2)
printf ("Received SIGUSR2\n");

else printf ("Received %d\n", sig);
return;

}
...
int main () {

...
signal (SIGUSR1, manager);
signal (SIGUSR2, manager);
...

}

Example

Same signal handler 
for more than one 

signal type

Both signal types 
must be declared 

Setting a program
to deal with 2 

signals



10System and Device Programming – Stefano Quer

Example

static void sigChld (int signo) {
if (signo == SIGCHLD)

printf ("Received SIGCHLD\n");
return;

}
...
signal(SIGCHLD, sigChld);
if (fork() == 0) {

// child
...
exit (i);

} else {
// father
...

}

Asynchronous
manipulation of 

SIGCHLD (with no wait)

There is no
pid = wait (&code);



11System and Device Programming – Stefano Quer

System call kill 

 Send signal (sig) to a process or to a group of 
processes (pid)

 To send a signal to a process, you must have the 
rights

 A user process can send signals only to processes 

having the same UID

 The superuser can send signal to any process

#include <signal.h>

int kill (pid_t pid, int sig);



12System and Device Programming – Stefano Quer

System call kill 

If pid is Send sig

>0 To process with PID equal to pid

==0 To all processes with GID equal to its GID (if it has the 
rights)

<0 To all processes with GID equal to the absolute value of 
pid (if it has the rights)

==−1 To all processes (if it has the rights)

int kill (pid_t pid, int sig);

 Arguments

 Return value

 The value 0, if successful

 The value −1, in case of error



13System and Device Programming – Stefano Quer

System call raise

 The raise system call allows a process to send a 
signal to itself

 The system call

 raise (sig)

is equivalent to 

 Kill (getpid(), sig);

#include <signal.h>

int raise (int sig);



14System and Device Programming – Stefano Quer

System call pause 

 Suspends the calling process until a signal is 
received 

 Returns after the completion of the signal 
handler

 In this case the function returns -1

#include <unistd.h>

int pause (void);



15System and Device Programming – Stefano Quer

System call alarm 

 Activate a timer (i.e., a count-down)

 The seconds parameter specifies the count-down 
value (in seconds)

 At the end of the countdown the signal SIGALRM is 
generated

 If the system call is executed before the previous 
call has originated the corresponding signal, the 
count-down restarts from a new value

#include <unistd.h>

unsigned int alarm (unsigned int seconds);

Return value:
The number of 

seconds remaining or 0



16System and Device Programming – Stefano Quer

Signal limitations

 Signals do not convey any information

 The memory of the "pending" signals is limited

 Max one signal pending (sent but not delivered) 
per type

 Forthcoming signals of the same type are lost

 Signals can be ignored

 Signals require functions that must be reentrant

 Produce race conditions

 Some limitations are avoided in POSIX.4



17System and Device Programming – Stefano Quer

Reentrant functions

 A signal has the following behavior

 The interruption of the current execution flow

 The execution of the signal handler

 The return to the standard execution flow at the 
end of the signal handler

 Consequently

 The kernel knows where a signal handler returns, 
but the signal handler does not know

 The signal handler must operate in a compatible 
way with the original execution flow



18System and Device Programming – Stefano Quer

Race conditions

 Race condition

 The result of more concurrent processes working 
on common data depends on the execution order 
of the processes instructions

 Concurrent programming is subject to race 
conditions

 Using signals increases the probability of race 
conditions

 Race condition should be avoided at all costs


