System and Device Programming

UNIX Signals
Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

System and Device Programming - Stefano Quer 2

Definition

“ A signal is
> A software interrupt

» An asynchronous notification sent, by the kernel or
by another process, to a process to notify it of an
event that occurred

< Signals
» Allow notify asynchronous events

= Such as the occurrence of particular events (e.g.,
error conditions, memory access violations, calculation
errors, illegal instructions, etc.)

» Can be used as a limited form of inter-process
communication

System and Device Programming - Stefano Quer 3

Characteristics

<+ Available from the very first versions of UNIX
» Originally managed in an unreliable way
% Standardized by the POSIX standard, they are
now stable and relatively reliable
%+ Each signal has a name
» Names start with SIG...

> The file signal.h defines signal names

= Unix FreeBSD, Mac OS X and Linux support 31
signals

= Solaris supports 38 signals

System and Device Programming - Stefano Quer

p

The command kill =l displays

a complete list of signals

Name
SIGABRT
SIGALRM
SIGFPE
SIGILL
SIGKILL
SIGPIPE
SIGSEGV
SIGCHLD

SIGUSR1
SIGUSR2

Description
Process abort, generated by system call abort
Alarm clock, generated by system call alarm
Floating-Point exception
Illegal instruction
Kill (non maskable)
Write on a pipe with no reader
Invalid memory segment access

Child process stopped or exited

User-defined signal 12
default action = terminate the process
Available for use in user applications

System and Device Programming - Stefano Quer 5

Signhal management

<+ Signal management goes through three phases

» Signal generation

= When the kernel or a source process causes an
event that generate a signal

> Signal delivery
= A not yet delivered signal remains pending
= At signal delivery a process executes the actions

related to that signal ﬁ There is no signal queue. J
: : The kernel sets a flag in
» Reaction to a signal the process table

= To properly react to the asynchronous arrival of a
given type of signal, a process must inform the
kernel about the action that it will perform when it
will receive a signal of that type

System and Device Programming - Stefano Quer 6

Signhal management

< Signal management can be carried out with the
following system calls
> signal
= Instantiates a signal handler

> kill (and raise) ~ The terms signal and kill are
. : relatively inappropriate.
Sends a Slgnal \Lsignal does not send a signal!!
> pause

= Suspends a process, waiting the arrive of a signal
> alarm

= Sends a SIGALARM signal, after a preset time
> sleep

= Suspends the process for a specified amount of time
(waits for signal SIGALRM)

System and Device Programming - Stefano Quer 74

System call signal

Return value:

: : The previous signal
#1 ncl ude <signal . h> handler, on success

SIG_ERR, on failure

[

void (*signal (int sig,
void (*func)(int)))(int);

A J

< Allow to instantiate a signal handler
» Specifies the signal to be managed (sig)

» The function use to manage it (func), i.e., the
signal handler

< Arguments
> sig indicates the type of signal to be caught

» func specifices the address (i.e., pointer) to the
function that will be executed when a

System and Device Programming - Stefano Quer 8

Reaction to a signal

< The signal system call allows setting three
different reactions to the delivery of a signal

» Accept the default behavior
= signal (SIGname, SIG_DFL)

» Ignore signal delivery
= signal (SIGname, SIG_IGN)

» Catch the signal
= signal (SIGname, signalHandlerFunction)

System and Device Programming - Stefano Quer

{ Setting a program

to deal with 2

/ signals 0

Same signal handler

voi d manager (| nt si g) { for more than one
| f (sig==SI GUSR1) signal type
printf ("Recelved SI GUSR1\n");
else i f (sig==SI GUSR2)
printf ("Received SI GUSR2\n");
el se printf ("Received %\n", sig);
return;

}
o | Both signal types
int main () { must be declared

S| Qnal (SI GUSR1, manager);
si gnal (SI GQUSR2, manager);

}

A /

System and Device Programming - Stefano Quer

Asynchronous
manipulation of

a SIGCHLD (with no wait)

static void sigChld (int signo) {
| f (signo == S| GCHLD)
printf ("Received SI GCHLD\n");
return;

}

si gnal (SI GCHLD, si gChl d)
if (fork() == 0) {
/1 child

eX| t (1); There is no
} else { pid = wait (&code);
[] father

)
U

10

System and Device Programming - Stefano Quer 11

System call kill

4)

#i ncl ude <signal . h>

int kill (pidt pid, int sig);

(& J

< Send signal (sig) to a process or to a group of
processes (pid)

% To send a signal to a process, you must have the
rights

» A user process can send signals only to processes
having the same UID

» The superuser can send signal to any process

System and Device Programming - Stefano Quer: 12

System call kill

< Arguments

If pid is Send sig
>0 To process with PID equal to pi d
==0 To all processes with GID equal to its GID (if it has the
rights)
<0 To all processes with GID equal to the absolute value of
pi d (if it has the rights)
==-1 To all processes (if it has the rights)

% Return value
» The value 0, if successful
» The value -1, in case of error

int kill (pid_t pid, int sig);

System and Device Programming - Stefano Quer 13

System call raise

4)

#i ncl ude <signal . h>

Int raise (int sig);

(. J

% The raise system call allows a process to send a
signal to itself

» The system call
= raise (sig)
IS equivalent to
= Kill (getpid(), sig);

System and Device Programming - Stefano Quer 14

System call pause

4)

#1 ncl ude <uni std. h>

| nt pause (void);

S J

% Suspends the calling process until a signal is
received

< Returns after the completion of the signal
handler

> In this case the function returns -1

System and Device Programming - Stefano Quer: 15

System call alarm
” Return value:
_ _ The number of
#i ncl ude <uni std. h> seconds remaining or 0

unsi gned i nt alarm (unsigned int seconds);

< J

% Activate a timer (i.e., a count-down)

» The seconds parameter specifies the count-down
value (in seconds)

= At the end of the countdown the signal SIGALRM is
generated

> If the system call is executed before the previous
call has originated the corresponding signal, the
count-down restarts from a new value

System and Device Programming - Stefano Quer: 16

Signal limitations

% Signals do not convey any information
<+ The memory of the "pending" signals is limited

» Max one signal pending (sent but not delivered)

per type
= Forthcoming signals of the same type are lost

» Signals can be ignored
< Signals require functions that must be reentrant
% Produce race conditions
% Some limitations are avoided in POSIX.4

System and Device Programming - Stefano Quer - I

Reentrant functions

< A signal has the following behavior
» The interruption of the current execution flow
» The execution of the signal handler

> The return to the standard execution flow at the
end of the signal handler

% Consequently

» The kernel knows where a signal handler returns,
but the signal handler does not know

» The signal handler must operate in a compatible
way with the original execution flow

System and Device Programming - Stefano Quer - 18

+* Race condition

» The result of more concurrent processes working
on common data depends on the execution order
of the processes instructions

% Concurrent programming is subject to race
conditions

» Using signals increases the probability of race
conditions

*+» Race condition should be avoided at all costs

