
System and Device Programming

UNIX Signals
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino



2System and Device Programming – Stefano Quer

Definition

 A signal is

 A software interrupt

 An asynchronous notification sent, by the kernel or 
by another process, to a process to notify it of an 
event that occurred

 Signals 

 Allow notify asynchronous events

 Such as the occurrence of particular events (e.g., 
error conditions, memory access violations, calculation 
errors, illegal instructions, etc.)

 Can be used as a limited form of inter-process 
communication



3System and Device Programming – Stefano Quer

Characteristics

 Available from the very first versions of UNIX

 Originally managed in an unreliable way

 Standardized by the POSIX standard, they are 
now stable and relatively reliable

 Each signal has a name

 Names start with SIG...

 The file signal.h defines signal names

 Unix FreeBSD, Mac OS X and Linux support 31 
signals

 Solaris supports 38 signals



4System and Device Programming – Stefano Quer

Main signals

Name Description

SIGABRT Process abort, generated by system call abort

SIGALRM Alarm clock, generated by system call alarm

SIGFPE Floating-Point exception

SIGILL Illegal instruction

SIGKILL Kill (non maskable)

SIGPIPE Write on a pipe with no reader

SIGSEGV Invalid memory segment access

SIGCHLD Child process stopped or exited

SIGUSR1
SIGUSR2

User-defined signal ½
default action = terminate the process
Available for use in user applications

The command kill –l displays
a complete list of signals



5System and Device Programming – Stefano Quer

Signal management

 Signal management goes through three phases

 Signal generation

 When the kernel or a source process causes an 
event that generate a signal

 Signal delivery

 A not yet delivered signal remains pending

 At signal delivery a process executes the actions 
related to that signal

 Reaction to a signal

 To properly react to the asynchronous arrival of a 
given type of signal, a process must inform the 
kernel about the action that it will perform when it 
will receive a signal of that type

There is no signal queue.
The kernel sets a flag in 

the process table



6System and Device Programming – Stefano Quer

 Signal management can be carried out with the 
following system calls

 signal

 Instantiates a signal handler

 kill (and raise)

 Sends a signal

 pause

 Suspends a process, waiting the arrive of a signal

 alarm

 Sends a SIGALARM signal, after a preset time

 sleep

 Suspends the process for a specified amount of time

(waits for signal SIGALRM)

Signal management

The terms signal and kill are 
relatively inappropriate.

signal does not send a signal!!



7System and Device Programming – Stefano Quer

System call signal

 Allow to instantiate a signal handler

 Specifies the signal to be managed (sig)

 The function use to manage it (func), i.e., the 
signal handler

 Arguments

 sig indicates the type of signal to be caught

 func specifices the address (i.e., pointer) to the 
function that will be executed when a

#include <signal.h>

void (*signal (int sig,
void (*func)(int)))(int);

Return value:
The previous signal 
handler, on success
SIG_ERR, on failure



8System and Device Programming – Stefano Quer

Reaction to a signal

 The signal system call allows setting three 
different reactions to the delivery of a signal

 Accept the default behavior

 signal (SIGname, SIG_DFL)

 Ignore signal delivery

 signal (SIGname, SIG_IGN)

 Catch the signal

 signal (SIGname, signalHandlerFunction)



9System and Device Programming – Stefano Quer

...
void manager (int sig) {

if (sig==SIGUSR1)
printf ("Received SIGUSR1\n");

else if (sig==SIGUSR2)
printf ("Received SIGUSR2\n");

else printf ("Received %d\n", sig);
return;

}
...
int main () {

...
signal (SIGUSR1, manager);
signal (SIGUSR2, manager);
...

}

Example

Same signal handler 
for more than one 

signal type

Both signal types 
must be declared 

Setting a program
to deal with 2 

signals



10System and Device Programming – Stefano Quer

Example

static void sigChld (int signo) {
if (signo == SIGCHLD)

printf ("Received SIGCHLD\n");
return;

}
...
signal(SIGCHLD, sigChld);
if (fork() == 0) {

// child
...
exit (i);

} else {
// father
...

}

Asynchronous
manipulation of 

SIGCHLD (with no wait)

There is no
pid = wait (&code);



11System and Device Programming – Stefano Quer

System call kill 

 Send signal (sig) to a process or to a group of 
processes (pid)

 To send a signal to a process, you must have the 
rights

 A user process can send signals only to processes 

having the same UID

 The superuser can send signal to any process

#include <signal.h>

int kill (pid_t pid, int sig);



12System and Device Programming – Stefano Quer

System call kill 

If pid is Send sig

>0 To process with PID equal to pid

==0 To all processes with GID equal to its GID (if it has the 
rights)

<0 To all processes with GID equal to the absolute value of 
pid (if it has the rights)

==−1 To all processes (if it has the rights)

int kill (pid_t pid, int sig);

 Arguments

 Return value

 The value 0, if successful

 The value −1, in case of error



13System and Device Programming – Stefano Quer

System call raise

 The raise system call allows a process to send a 
signal to itself

 The system call

 raise (sig)

is equivalent to 

 Kill (getpid(), sig);

#include <signal.h>

int raise (int sig);



14System and Device Programming – Stefano Quer

System call pause 

 Suspends the calling process until a signal is 
received 

 Returns after the completion of the signal 
handler

 In this case the function returns -1

#include <unistd.h>

int pause (void);



15System and Device Programming – Stefano Quer

System call alarm 

 Activate a timer (i.e., a count-down)

 The seconds parameter specifies the count-down 
value (in seconds)

 At the end of the countdown the signal SIGALRM is 
generated

 If the system call is executed before the previous 
call has originated the corresponding signal, the 
count-down restarts from a new value

#include <unistd.h>

unsigned int alarm (unsigned int seconds);

Return value:
The number of 

seconds remaining or 0



16System and Device Programming – Stefano Quer

Signal limitations

 Signals do not convey any information

 The memory of the "pending" signals is limited

 Max one signal pending (sent but not delivered) 
per type

 Forthcoming signals of the same type are lost

 Signals can be ignored

 Signals require functions that must be reentrant

 Produce race conditions

 Some limitations are avoided in POSIX.4



17System and Device Programming – Stefano Quer

Reentrant functions

 A signal has the following behavior

 The interruption of the current execution flow

 The execution of the signal handler

 The return to the standard execution flow at the 
end of the signal handler

 Consequently

 The kernel knows where a signal handler returns, 
but the signal handler does not know

 The signal handler must operate in a compatible 
way with the original execution flow



18System and Device Programming – Stefano Quer

Race conditions

 Race condition

 The result of more concurrent processes working 
on common data depends on the execution order 
of the processes instructions

 Concurrent programming is subject to race 
conditions

 Using signals increases the probability of race 
conditions

 Race condition should be avoided at all costs


