
System and Device Programming

The UNIX File System
Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2System and Device Programming – Stefano Quer

File System

 The file system is one of the most visible aspects
of an OS

 It provides mechanisms to save data
(permanently)

 It includes management of

 Files

 Direttories

 Disks and disk partitions

3System and Device Programming – Stefano Quer

Files

 Information is store for a long period of time

 Independently from

 Termination of programs/processes, power supply,
etc.

 From the logical point of view a file is

 A set of correlated information

 All information (i.e., numbers, characters, images,
etc.) are stored in a (electronic) device using a
coding system

 Contiguous address space

How is this information
encoded?

What is the actual
organization of this space?

4System and Device Programming – Stefano Quer

ASCII encoding

 De-facto standard

 ASCII, American Standard

Code for Information Interchange

 Originally based on the English alphabet

 128 characters are coded in 7-bit (binary numbers)

 Extended ASCII (or high ASCII)

 Extension of ASCII to 8-bit and 255 characters

 Several versions exist

● ISO 8859-1 (ISO Latin-1), ISO 8859-2 (Eastern
European languages), ISO 8859-5 for Cyrillic
languages, etc.

128 total characters
32 not printable

96 printable

The alphabet of the Klingom
language is not supported

by Extended ASCII

5System and Device Programming – Stefano Quer

ASCII encoding

128 total
32 non printable

96 printable chars

ASCII Table

6System and Device Programming – Stefano Quer

ASCII encoding

Extended ASCII Table

7System and Device Programming – Stefano Quer

From ASCII to Unicode

 C was originally developed in an English-speaking
environment

 7-bit ASCII was sufficient

 8-bt ASCII become the most common encoding

 Unfortunately software for international use must
be able to represent more characters

 A variety of multi-byte encoding schemes have
been internationally used for long time to
represent non-Latin alphabets and non-alphabetic
Chinese, Japanese, Korean, etc.

8System and Device Programming – Stefano Quer

From ASCII to Unicode

 In 1994 ISO-C standardized two ways of
representing large character sets

 Wide characters

● Same width is used for every character is a character
set

● UTF-16 and UTF-32 are implemented in wchar_t (at
least 16 or 32 bit wide)

 Multi-byte characters

● Each character may be represented by one or several
bytes

● UTF-8 uses from 1 to 4 bytes to represent a character
as wchar_t, char16_t, char32_t

 C provides standard functions fo convert formats

9System and Device Programming – Stefano Quer

Unicode

 An industry standard for the consistent encoding,
representation, and handling of text expressed in
most of the world’s writing systems

 The most recent version is Unicode 9.0

 from June 2016, ISO/IEC 10646:2014 plus
Amendments 1 & 2

 The current version is 6.3, using 110,187 of the
available 1.1 million code points

 Covers 100 scripts and multiple symbol sets

The first version started out with 65536
codes, encoded in 16 bits

The second 2 more than 1.1 millions

10System and Device Programming – Stefano Quer

Unicode

 Unicode is a superset of ASCII

 The numbers 0–128 have the same meaning in ASCII
and Unicode

 Because Unicode characters don’t generally fit into
one 8-bit byte, there are numerous ways of storing
Unicode characters in byte sequences

 Unicode can be implemented by different encoding

 An encoding maps (possibly a subset of) the codes to
sequences of values in some fixed-size range

 Known encodings

 UCS (now obsolete) and UTF

11System and Device Programming – Stefano Quer

Unicode

 UTF encodings

 UTF-1, UTF-7 obsolete versions

 UTF-8

 An 8-bit, variable-width encoding

 Uses from one to four 8-bit units

 The first 128 characters coincides with ASCII

 UTF-16

 A 16-bit, variable-width encoding

 Uses one or two 16-bit units

 UTF-32

 A 32-bit, fixed-width encoding

 Easy indexing (fixed-width) but space inefficient

Minimum 8 bits

Minimum 16 bits

Exactly 32 bits

12System and Device Programming – Stefano Quer

Unicode problems

 A few problems still remain

 In UTF-16/32 encodings the order of the bytes
depend on the endianness of the machine that
created the text stream

 Big Endian

● The most significant byte (the "big end") of the data is
placed at the byte with the lowest address

● 0x12345678 12 34 56 78

 Little Endian

● The least significant byte (the "little end") of the data
is placed at the byte with the lowest address

● 0x12345678 78 56 34 12

The other bytes are placed in order
in the next three bytes in memory

32 bits

32 bits

Increasing Adress

Increasing Adress

13System and Device Programming – Stefano Quer

Unicode

 Which UTF choice is the “best” one? Which one is
used on the current system?

 One counter-measure is the definition of a BOM
(Byte Order Mark)

 BOM = a special code-point (U+FEFF, zero width
space) at the beginning of a text stream that
indicates how the rest of the stream is encoded

 It indicates both the UTF encoding and the
endianess and is neutral to a text rendering engine

 Unfortunately it is optional and many programmers
claim their right to omit it, so accidents are still
pretty common

14System and Device Programming – Stefano Quer

Text and binary files

 A file is basically a sequence of bytes written one
after the other on a physical device

 Each byte includes 8 (or more) bits, with possible
values 0 or 1

 As a consequence all files are binary

 However, most people classify files in two
categories

 Text files (or ASCII)

 Binary files

C sources, C++,
Java, Python, etc.

Executables,
Word, Excel, etc.

Remark:
The UNIX/Linux kernel
does not distinguish
between binary and

textual files

15System and Device Programming – Stefano Quer

Text files

 Files consisting of data encoded in ASCII (or
Unicode)

 Sequence of 0 and 1, which (in groups of 8 or more
bits) codify ASCII (or Unicode) symbols

 ASCII files

 Are stored as a sequence of binary values, i.e., a
sequence of 1's and 0's

 Are basically binary files, because they store binary
numbers

 Are binary files that store ASCII (Unicode)
codes

16System and Device Programming – Stefano Quer

Text files

 Text file are usually line-oriented

 A newline is a set of bytes which convince the
computer to go at the beginning of the next row

 In UNIX/Linux and Mac OSX a newline is
represented by a single character

● Line Feed (go to next line, LF, 1010)

 In Windows a newline is represented by two
characters (as former mechanical typewriters)

● Line Feed (go to next line, LF, 1010)

● Carriage Return (push the carriage at the beginning of
the line, CR , 1310)

17System and Device Programming – Stefano Quer

 A sequence of 0 and 1, not “byte-oriented”

 The smallest unit that can be read/write is the bit

 Non easy the management of the single bit

 It's difficult to edit a binary file as individual bits
should be edited

 They usually include every possible sequence of 8
bits, which do not necessarily correspond to
printable characters, new-line, etc.

Binary Files

18System and Device Programming – Stefano Quer

 Why do people use binary files anyway?

 Compactness

 Example

● Number 10000010

● Text/ASCII format

o 6 characters, i.e., 6 bytes

● Binary format

o 10000010 is an integer value and it can be stored using 4
bytes

Binary Files

19System and Device Programming – Stefano Quer

“ciao”

‘c’ ‘i’ ‘a’ ‘o’

9910 105 10 9710 111 10

01100011 2 01101001 2 01100100 2 01101111 2

“231”

‘2’ ‘3’ ‘1’

5010 5110 4910

00110010 2 00110011 2 00110001 2

“231”

“231 10”

11100111 2

Example

String
Textual or binary file

Integer number
Text file

Integer number
Binary file

20System and Device Programming – Stefano Quer

 In the context of data storage, serialization is
the process of translating data structure or
objects into a format that can be stored as a
single entity

 The process of serializing an object is also called
marschalling an object

 The opposite operation, extracting a data
structure from a series of bytes, is
deserialization

 Deserialization is also called unmarschalling

Serialization

21System and Device Programming – Stefano Quer

 Using serialization

 A structure can be stored in a file (or transmitted
across a network connection link) as a unique
entity

 Manipulating single fields is not required !

 When it is reconstructed (or received) later the
same serialization format must be used to create a
semantically identical clone of the original object

Serialization

struct mys {

int id;

char name[L];

...

} s;

22System and Device Programming – Stefano Quer

 Serialization breaks the opacity of an abstract
data type (ADT) by potentially exposing private
implementation details

 Trivial implementations which serialize all data
members may violate encapsulation

 For complex objects, such as those that uses
references, this process is not straightforward

 Several languages directly

 support object serialization

 (or object archival)

Serialization

struct mys {

int id;

char *name;

...

} s;

23System and Device Programming – Stefano Quer

struct mys {

int id;

long int rn;

char n[L], s[L];

int mark;

} s;

...

_tprintf(_T("%d %ld %s %s"),

s.id, s.rn, s.n, s.s, s.mark);

hOut = GetStdHandle (STD_OUTPUT_HANDLE);

WriteFile (hOut, &s, sizeof(struct mys),

&nOut, NULL);

Example

Binary write on
standard output

Text write on
standard output

Binary
manipulation of a

structure as a
unique object

24System and Device Programming – Stefano Quer

1 100000 Romano Antonio 25

† Romano ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

Antonio ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

??? †?R?o?m?a?n?o???ÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌA?n?t?o?n?i?o???ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

Example

Text:
Single fields

Characters on 8 bits (ASCII)

Binary:
Entire structure

Ctr on 8 bits (ASCII)

Binary:
Engire structure

Ctr on 16 bits (UNICODE)
(note file size)

struct mys {

int id;

long int rn;

char n[L], c[L];

int mark;

} s;

25System and Device Programming – Stefano Quer

ISO C Standard Library

 I/O operations with ANSI C can be performed
through different categories of functions

 Character by character

 getc, fgetc, putc, fputc

 Row by row

 gets, fgets, puts, fputs

 Formatted I/O

 scanf, fscanf, printf, fprint

 Binary I/O

 fread, fwrite

26System and Device Programming – Stefano Quer

ISO C Standard Library

 The I/Oc standard is “fully buffered”

 Each I/O is done only when the I/O buffer is full

 Each “flush” operation writes the I/O buffer on
the I/O device

#include <stdio.h>

void setbuf (FILE *fp, char *buf);

int fflush (FILE *fp);

For concurrent process, use
setbuf (stdout, 0);

fflush (stdout);

The standard error is never
buffered

27System and Device Programming – Stefano Quer

POSIX Standard Library

 I/O in UNIX can be entirely performed with only
5 functions

 open, read, write, lseek, close

 This type of access

 Is part of POSIX and of the Single UNIX
Specification, but not of ISO C

 It is normally defined with the term "unbuffered
I/O", in the sense that each read or write
operation corresponds to a system call

28System and Device Programming – Stefano Quer

System call open()

 In the UNIX kernel a "file descriptor" is a non-
negative integer

 Conventionally (also for shells)

 Standard input

 0 = STDIN_FILENO

 Standard output

 1 = STDOUT_FILENO

 Standard error

 2 = STDERR_FILENO

These descriptors are defined
in the headers file unistd.h

29System and Device Programming – Stefano Quer

System call open()

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open (const char *path, int flags);

int open (const char *path, int flags,
mode_t mode);

 It opens a file defining the permissions

 Return value

 The descriptor of the file, on success

 The value -1, on error

30System and Device Programming – Stefano Quer

System call open()

 It can have 2 or 3 parameters

 The mode parameter is optional

 Path indicates the file to open

 Flags has multiple options

 Can be obtained with the OR bit-by-bit of
constants defined in the header file fcntl.h

 One of the following three constants is mandatory

 O_RDONLY open for read-only access

 O_WRONLY open for write-only access

 O_RDWR open for read-write access

int open (
const char *path,
int flags,
mode_t mode

);

31System and Device Programming – Stefano Quer

System call open()

 Optional constants

 O_CREAT creates the files if not exist

 O_EXCL error if O_CREAT is set and the file
exists

 O_TRUNC remove the content of the file

 O_APPEND append to the file

 O_SYNC each write waits that the physical

write operation is finished

before continuing

 ...

int open (
const char *path,
int flags,
mode_t mode

);

32System and Device Programming – Stefano Quer

System call open()

 Mode specifies permission

access

 S_I[RWX]USR rwx --- ---

 S_I[RWX]GRP --- rwx ---

 S_I[RWX]OTH --- --- rwx

int open (
const char *path,
int flags,
mode_t mode

);

When a file is created, actual permissions are
obtained from the umask of the user owner

of the process

33System and Device Programming – Stefano Quer

System call read()

#include <unistd.h>

int read (int fd, void *buf, size_t nbytes);

 Read from file fd a number of bytes equal to
nbytes, storing them in buf

 Returned values

 The number of read bytes, on success

 The value -1, on error

 The value 0, in the case of EOF

34System and Device Programming – Stefano Quer

System call write()

 Write nbytes bytes from buf in the file identified
by descriptor fd

 Returned values

 The number of written bytes (i.e., normally
nbytes), in the case of success

 The value -1, on error

#include <unistd.h>

int write (int fd, void *buf, size_t nbytes);

35System and Device Programming – Stefano Quer

System call write()

int write (int fd, void *buf, size_t nbytes);

 Remarks

 Function write writes on the system buffer, not on
the disk

 fd = open (file, O_WRONLY | O_SYNC);

 O_SYNC forces the sync of the buffers, but only
for ext2 file systems

36System and Device Programming – Stefano Quer

Examples

float data[10];

if (write(fd, data, 10*sizeof(float))==(-1)) {
fprintf (stderr, "Error: Write %d).\n", n);

}

struct {
char name[L];
int n;
float avg;

} item;

if (write(fd,&item,sizeof(item)))==(-1)) {
fprintf (stderr, "Error: Write %d).\n", n);

}

Write a structured item
(with 3 fields) in binary form

Write a data array (of float values)

37System and Device Programming – Stefano Quer

System call lseek()

 The current position of the file offset is
associated to each file

 This position indicates the one from which the next
read/write operation starts

 The system call lseek assigns the value offset to
the file offset

#include <unistd.h>

off_t lseek (int fd, off_t offset, int whence);

38System and Device Programming – Stefano Quer

System call lseek()

 Whence specifies the interpretation of offset

 If whence==SEEK_SET

● The offset is evaluated from the beginning of the file

 If whence==SEEK_CUR

● The offset is evaluated from the current position

 If whence==SEEK_END

● The offset is evaluated from the end of the file

off_t lseek (int fd, off_t offset, int whence);

The value of offset
can be positive or

negative It is possible to leave
"holes" in a file

(filled with zeros)

39System and Device Programming – Stefano Quer

System call lseek()

 Return value

 New offset, on success

 -1, on error

off_t lseek (int fd, off_t offset, int whence);

40System and Device Programming – Stefano Quer

System call close()

#include <unistd.h>

int close (int fd);

 It closes the file of descriptor fd

 Notice that, all the open files are closed
automatically when the process terminates

 Return value

 The value 0, on success

 The value -1, on error

41System and Device Programming – Stefano Quer

Example

#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

#define BUFFSIZE 4096

int main(void) {
int nR, nW, fdR, fdW;
char buf[BUFFSIZE];
fdR = open (argv[1], O_RDONLY);
fdW = open (argv[2], O_WRONLY | O_CREAT | O_TRUNC,

S_IRUSR | S_IWUSR);
if (fdR==(-1) || fdW==(-1)) {

fprintf (stdout, “Error Opening a File.\n“);
exit (1);

}

42System and Device Programming – Stefano Quer

Example

while ((nR = read (fdR, buf, BUFFSIZE)) > 0) {
nW = write (fdW, buf, nR);
if (nR!=nW)

fprintf (stderr,
"Error: Read %d, Write %d).\n", nR, nW);

}

if (nR < 0)
fprintf (stderr, "Write Error.\n");

close (fdR);
close (fdW);

exit(0);
}

Error check on the last
reading operation

This program works indifferently on text and
binary files

43System and Device Programming – Stefano Quer

File system management

 The POSIX standard provides a set of functions
to perform the manipulation of directories

 The function stat

 Allows to understand the type of "entry" (file,
directory, link, etc.)

 This operation is permitted using the C data
structure returned by the function, i.e. struct stat

 Some other functions to manage the file system

 getcwd, chdir

 mkdir, rmdir

 opendir, readdir, closedir

Returned
data

structure

Positioning

Creation
Cancellation

Visit / Inspection

44System and Device Programming – Stefano Quer

stat ()

#include <sys/types.h>
#include <sys/stat.h>

int stat (const char *path, struct stat *sb);
int lstat (const char *path, struct stat *sb);
int fstat (int fd, struct stat *sb);

 The function stat returns a reference to the

structure sb (struct stat) for the file (or file

descriptor) passed as a parameter

 Return value

 The value 0, on success

 The value -1, on error

Path to return
information

about

Returned
data

structure

45System and Device Programming – Stefano Quer

stat ()

 The function

 lstat returns information about the symbolic link,
not the file pointed by the link (when the path is
referred to a link)

 fstat returns information about a file already
opened (it receives the file descriptor instead of a
path)

int stat (const char *path, struct stat *sb);
int lstat (const char *path, struct stat *sb);
int fstat (int fd, struct stat *sb);

46System and Device Programming – Stefano Quer

stat ()

 The second argument of stat is the pointer to
the structure stat

 The field st_mode encodes the file type

struct stat {
mode_t st_mode; /* file type & mode */
ino_t st_ino; /* i-node number */
dev_t st_dev; /* device number */
dev_t st_rdev; /* device number */
...

};

47System and Device Programming – Stefano Quer

stat ()

 Some macros allow to understand the type of the
file

 S_ISREG regular file, S_ISDIR directory,
S_ISBLK block special file, S_ISCHR character
special file, S_ISFIFO FIFO, S_ISSOCK socket,
S_ISLNK symbolic link

struct stat {
mode_t st_mode; /* file type & mode */
ino_t st_ino; /* i-node number */
dev_t st_dev; /* device number */
dev_t st_rdev; /* device number */
...

};

48System and Device Programming – Stefano Quer

Example

struct stat buf;
...
if (lstat(argv[i], &buf) < 0) {

fprintf (stdout, "lstat error.\n");
exit(1);

}
if (S_ISREG(buf.st_mode)) ptr = "regular";
else if (S_ISDIR(buf.st_mode)) ptr = "directory";
else if (S_ISCHR(buf.st_mode)) ptr = "char special" ;
else if (S_ISBLK(buf.st_mode)) ptr = "block special ";
else if (S_ISFIFO(buf.st_mode)) ptr = "fifo";
else if (S_ISLNK(buf.st_mode)) ptr = "symbolic link ";
else if (S_ISSOCK(buf.st_mode)) ptr = "socket";

printf("%s\n", ptr);
}

Allow to
understand

if it is a
directory !

Check the
directory entry

type

49System and Device Programming – Stefano Quer

getcwd () and chdir ()

#include <unistd.h>

char *getcwd (char *buf, int size);

int chdir (char *path);

 Get (change) the path of the working directory

 Returned values

 getcwd

 The buffer buf on success; NULL on error

 chdir

 0 on success; -1 on error

Dimension of
buf

Change
Directory

Get Current
Working Directory

50System and Device Programming – Stefano Quer

Example

#define N 100

char name[N];

if (getcwd (name, N) == NULL)
fprintf (stderr, "getcwd failed.\n");

else
fprintf (stdout, "dir %s\n", name);

if (chdir(argv[1]) < 0)
fprintf (stderr, "chdir failed.\n");

else
fprintf (stdout, "dir changed to %s\n", argv[1]);

How to use
getcwd and

chdir

51System and Device Programming – Stefano Quer

mkdir () and rmdir ()

#include <unistd.h>
#include <sys/stat.h>

int mkdir (const char *path, mode_t mode);

int rmdir (const char *path);

 mkdir creates a new (empty) directory

 rmdir deletes a directory (if it is empty)

 Returned values

 0 on success

 -1 on error

See system call
open

52System and Device Programming – Stefano Quer

opendir (), dirent () and closedir ()

#include <dirent.h>

DIR *opendir (
const char *filename

);

struct dirent *readdir (
DIR *dp

);

int closedir (
DIR *dp

);

Open a directory for reading
Return value:

The pointer to the directory, on success
The NULL pointer, on error

Proceed with the reading of the
directory. Return value:

The pointer to the directory, on success
The NULL pointer, on error or at the

end of the reading operation

Terminate the reading
Return value:
0, on success
-1, on error

53System and Device Programming – Stefano Quer

dirent structure

struct dirent {
inot_t d_no;
char d_name[NAM_MAX+1];
...

}

 The structure dirent (DIR *) returned by
readdir

 Has a format that depends on the specific
implementation

 It contains at least the following fields

 The i-node number

 The file name (null-terminated)

54System and Device Programming – Stefano Quer

Example

#define N 100
...
struct stat buf;
DIR *dp;
char fullName[N];
struct dirent *dirp;
int i;
...
if (lstat(argv[1], &buf) < 0) {

fprintf (stderr, "Error.\n"); exit (1);
}
if (S_ISDIR(buf.st_mode) == 0) {

fprintf (stderr, "Error.\n"); exit (1);
}
if ((dp = opendir(argv[1])) == NULL) {

fprintf (stderr, "Error.\n"); exit (1);
}

Ask information
about the path in

argv[1]

If it is not a
directory, the

program terminates

Otherwise, the
directory is open

Structure for readdir

Structure for lstat

Directory "handle"

Visit a directory
and print its

content

55System and Device Programming – Stefano Quer

Example

i = 0;
while ((dirp = readdir(dp)) != NULL) {

sprintf (fullName, "%s/%s", argv[1], dirp->d_name);
if (lstat(fullName, &buf) < 0) {

fprintf (stderr, "Error.\n"); exit (1);
}
if (S_ISDIR(buf.st_mode) == 0) {

fprintf (stdout, "File %d: %s\n", i, fullName);
} else {

fprintf (stdout, "Dir %d: %s\n", i, fullName);
}
i++;

}
if (closedir(dp) < 0) {

fprintf (stderr, "Error.\n"); exit (1);
}

Read the directory
(iterating over all entries)

Request
information

about the entry
fullName

Display data

Closure and termination

