

Outline

- Politecnico di Torino Reachability Analysis and Verification (PdTRAV)
- Hardware Model Checking Competition (HWMCC)

Outline

- Politecnico di Torino Reachability Analysis and Verification (PdTRAV)
- Hardware Model Checking Competition (HWMCC)

PdTRAV (1/3)

- Politecnico di Torino Reachabity Analysis & Verification (PdTRAV)
 - Prototype academic tool for development and benchmarking of advanced model and equivalence checking algorithms
 - The tool is being (and will be) tested through publicly available as well as industrial problems
 - Made available to SRC industries
- New MC algorithms for industrial problems addressed

PdTRAV (2/3)

- Includes several formal verification engines
- NOT a complete design/verification tool/chain
- Set of algorithms/engines oriented to evaulation/benchmarking

PdTRAV (3/3)

> Bit-level Symbolic Formal Verification

- Bounded Model CheckingUnbounded Model Checking
- Core Techniques/Engines

Equivalence checking

- Reachability with Binary Decision Diagrams (BDDs)
- Bounded Model Checking (BMC) with SATisfiability (SAT)
- Abstraction techniques (e.g., localization, CEGAR)
- Induction-based Unbounded Model Checking
- Interpolation-based Unbounded Model Checking
- Property Driven Reachability (IC3)
- ...

Outline

- Politecnico di Torino Reachability Analysis and Verification (PdTRAV)
- Hardware Model Checking Competition (HWMCC)

Hardware Model Checking Competition

- Revive interest in improving symbolic model checking technology
 - Symbolic model checking does not scale enough
 - Academic research kind of stalled
 - Benchmarks were lacking
- Repeat success story of the SAT competition
 - Simple standardized input format
 - Motivation for young researchers
 - Competition benchmarks used in publications

HWMCC: History

- > 1st HWMCC
 - CAV 2007, Berlin
 - Biere, Cimatti, Claessen, McMillan, Somenzi
- > 2nd HWMCC
 - CAV 2008, Princeton
 - Biere, Cimatti, Claessen, Jussila, McMillan, Somenzi
- > 3rd HWMCC
 - CAV 2010, Edimburgh
 - Biere, Claessen

HWMCC: Benchmarks

>1st HWMCC

- 344 benchmarks
- 4 suites: 175 L2S, 118 TIP, 42 Intel, 9 AMBA
- > 2nd HWMCC
 - 344 old, 301 new, 645 total
 - New: 18 Intel, 35 B. Jobstmann, 207 VIS/PdT, 28 PdT, 13 NEC

> 3rd HWMCC

- 645 old, 173 new, 818 total
- New: 14 PicoJava 2, 96 Bob Brayton, 48 PdT, 15 Mentor Graphics

HWMCC: Model Checkers (1/2)

> 2007

- 19 model checkers
- 3 JKU Litz, 2 ETH Zurich, 2 IRST Trento, 4 PdT, 2 CMU Pittsburg, 1 Cadence Berkeley, 1 Chalmers Cotheburg, 4 CU-Boulder
- > 2008
 - I6 model checkers, 2 old, 14 new

> 2010

21 model checkers

HWMCC: Model Checkers (2/2)

- ABC: Bob Brayton's group (Berkeley), 4 variants
- BIP: Niklas E´en (Berkeley)
- CIP + MBMC Stefan Kupferschmid (Freiburg)
- IC3 Aaron Bradley (Boulder) based on inductive clauses
- MCSTI by Anders Franz´en (Sweden)
- TIP Niklas S^{**}orensson (Sweden), 3 variants
- PDTRAV Torino (Cabodi, Nocco, Quer)
- Old checkers: AigTrav + McAiger from JKU, NuSMV from Trento

HWMCC: Setup

> Single safety property benchmarks

- One output serves as "bad state detector"
- Bad state $reachable \Rightarrow$ instance satisfiable
- Bad state *unreachable* \Rightarrow instance *unsatisfiable*
- > AIGER format (http://fmv.jku.at/aiger)
 - AIGER = And-Inverter-Graphs (AIGs) with latches
 - All submitted solvers can read AIGER now except NuSMV

> 900 seconds time limit, 7 GB memory limit

HWMCC: Winners (1/3)

> 1st HWMCC

- SAT: 1 nusmv (193), 2 tip/vis (183), 3 aiger (182)
- UNSAT: 1/4 PdTrav (83, 83, 79, 78), 5 vis (75), 6 smv-cadence (73)
- SAT+UNSAT: 1/2 pdtrav (251, 248), 3 vis (236), 4 tip (222)

14

13

