| Hints on Specific Techniques |
| :---: | :---: |
| P.Camurati \quad G.Cabodi S.Nocco S.Quer |
| Formal Methods Group
 Department of Computer Engineering
 Politecnico di Torino
 Torino, Italy |

Outline

> Symbolic Function Representation

- Combinational BDD-based verification
$>$ Sequential BDD-based verification
> Satisfiability (SAT)
> Combinational Satisfiability-based verification
> Sequeential Satisfiability-based verification

Outline

> Symbolic Function Representation

Representation of Boolean Functions

$>$ What do we need?

- A good data structure for Boolean formulas !!!
>Combinational BDD-based verification
$>$ Why?
- To represent the problem
- To to manipulate the representation used, i.e., to perform Boolean Reasoning (e.g., a decision procedure to decide about SAT or UNSAT)
$>$ Representation Methods
- Classical Methods
- Canonical Forms
- NON Canonical Forms
- Non-Classical Methods

```
Classical Canonical Methods
> Truth Table
    - F = Graphical/Tabular Representation
>Canonical Disjunctive Normal Form (cDNF)
    -F = (x\mp@subsup{1}{}{*}^ x x** ^...^ xn*) \vee ...v
        (x\mp@subsup{1}{}{*}\wedge x\mp@subsup{2}{}{*}\wedge ...^ xn*)
>Canonical Conjunctive Normal Form (cCNF)
    - F = (x1* \vee x2* \vee ...v xn*)^ ... ^
        (x\mp@subsup{1}{}{*}\veex\mp@subsup{2}{}{*}\vee ...\vee xn*)
```

 Example
 \(>\) Truth Table
 >DNF
- $F=(\neg \times 1 \wedge x 2 \wedge x 3) \vee(x 1 \wedge \neg x 2 \wedge x 3) \vee(x 1 \wedge$
$\times 2 \wedge \times 3$)
$>$ CNF
$\cdot F=(x 1 \vee \times 2 \vee x 3) \wedge(x 1 \vee \times 2 \vee \neg x 3) \wedge(x 1 \vee \neg$
$x 2 \vee \times 3) \ldots$

```
>Pros
```

- Unique representation (one and only for each function)
- Constant Time Comparison (same representation)

Cons

- Exponential Size
- Complex Resolution Algorithms
- Satisfiability is NP-complete (Cook) (i.e., resolution algorithms require exponential time)
- Examples
- DNF \rightarrow satisfiability requires polynomial time, tautology is co-NP complete
- CNF \rightarrow... vice-versa ...
- Conversion CNF \leftrightarrow DNF is exponential

```
Classical Non Canonical Methods
> Disjunctive Normal Form (DNF)
    \bulletF = (x\mp@subsup{1}{}{*}^ ... <some i missing> ..^^xn*) \vee
        ...v (x\mp@subsup{1}{}{*}^\ldots.^ xn*)
Conjunctive Normal Form (CNF)
    - F = (x\mp@subsup{1}{}{*}\vee ... <some i missing> ...\vee xn*)^
        .. ^(x\mp@subsup{1}{}{*}\vee ...\vee xn*)
```


Non Classical Representation

> Decision Diagrams

- BDDs - Binary Decision Diagrams
- ZBDDs - Zero Suppressed Binary Decision Diagrams
- Etc.
>Boolean Circuits
- AIGs - And Inverter Graphs
- RBCs - Reduced Boolean Circuits
- Etc.

Binary Decision Diagrams

$>$ Idea from 70s (maybe earlier)
> Adapted by Bryant '86
\Rightarrow Take a formula
$>$ Make decision tree for fixed variable order
$>$ Reduction rules

- Merge duplicate nodes
- Both children point to same node - remove redundant node

Binary Decision Diagrams (BDD)

$>$ Graph representation of
a Boolean function f

- vertices represent decision nodes for variables
- two children represent the two subfunctions
- $f(x=0)$ and $f(x=1)$ (cofactors)
- can make a BDD representation canonical

Representing Circuit Functions

- Functions
- All outputs of 4-bit adder
- Functions of data inputs

$>$ Shared Representation
- Graph with multiple roots
- 31 nodes for 4-bit adder
- 571 nodes for 64 -bit adder

- Linear growth

Consideration on Variable Ordering

$>$ Variable order is fixed

- For each path from root to terminal node the order of "input" variables is exactly the same
$>$ Strong dependency of the BDD size (terms of nodes) and variable ordering
$>$ Ordering algorithm:
- Co-NP complete problem - heuristic approaches
- Static Variable Ordering Heuristic
- Dynamic Variable Ordering Heuristic
- ROBDDs - Reduced Ordered Binary DDs (BDDs!)

Dynamic Reordering By Sifting

- Choose candidate variable
> Try all positions in variable ordering
> Repeatedly swap with adjacent variale Best Choices
> Move to best position found

© (3) (1000 200 0					

What's good about BDDs?

>Powerful Operations

- Creating, manipulating, testing
- Each step polynomial complexity
- Graceful degradation
>Generally Stay Small Enough
- Especially for digital circuit applications
- Given good choice of variable ordering
> Extremely useful in practice
$>$ (Till 10 years ago) Weak Competition
- No other method comes close in overall strength
- Especially with quantification operations

What's bad about BDDs?

> Some formulas do not have small representation! (e.g., multipliers)
> BDD representation of a function can vary exponentially in size depending on variable ordering; users may need to play with variable orderings (less automatic)
$>$ Size limitations: a big problem
$>$ (Last 5 years) Competitive Approach

- CNF representation + SATisfiability solvers

Outline

>Symbolic Function Representation
>Combinational BDD-based verification
$>$ Sequential BDD-based verification
$>$ Satisfiability (SAT)
>Combinational Satisfiability-based verification
$>$ Sequeential Satisfiability-based verification

Combinational EC (1/2)

$>$ Industrial EC checkers often use an combinational EC paradigm

- Sequential EC is too complex, can only be applied to design with a few hundred state bits
- Combinational methods scale linearly with the design size for a given fixed size and "functional complexity" of the individual cones

Combinational EC (2/2)

> Still, pure BDDs as plain SAT solver cannot handle all cones

- BDDs can be built for about 80% of the cones of high-speed designs
- less for complex ASICs
- plain SAT blows up on a "Miter" structure
$>$ Contemporary method highly exploit structural similarity of designs to be compared

Outline

$>$ Symbolic Function Representation
>Combinational BDD-based verification
$>$ Sequential BDD-based verification
> Satisfiability (SAT)
$>$ Combinational Satisfiability-based verification
>Sequeential Satisfiability-based verification

Function Representation

(State) Set Representation

> Given a set A
$>$ We define the Characteristic Function $\chi_{A}(s)$ of the set A as
$\chi_{A}(s)=\left\{\begin{array}{lll}1 & \text { IFF } & s \in A \\ 0 & \text { IFF } & s \notin A\end{array}\right.$

Image and inverse image

$\operatorname{Img}(f, X)=f(X)=\left\{y \in B^{m} \mid x \in X \wedge y=f(x)\right\}$

Image and inverse image

$\operatorname{Img}(f, X)=f(X)=\left\{y \in B^{m} \mid x \in X \wedge y=f(x)\right\}$

Image Computation

To $(y)=\operatorname{lmg}(T R$, From $)=\exists_{s, x}[T R(s, x, y) \cdot$ From(s)]
PreImg (f, $\mathbf{Y})=\mathbf{f}^{-1}(\mathbf{Y})=\left\{\mathbf{x} \in \mathbf{B}^{\mathbf{n}} \mid \mathbf{y} \in \mathbf{Y} \wedge \mathbf{y}=\mathbf{f}(\mathbf{x})\right\}$

State Traversal

Forward Traversal
$R_{0}=$ Initial State Set
$R_{i+1}=R_{i}+\operatorname{Img}\left(T R, R_{i}\right)$
Backward Traversal
$R_{0}=$ Initial State Set
$R_{i+1}=R_{i}+\operatorname{PreImg}\left(T R, R_{i}\right)$

Exact Forward Traversal

Problems

R is

- too large
- too difficult to evaluate

Exact Backward Traversal

Aproximate Reachability

$\mathbf{R}^{+}=$
over-estimation of \mathbf{R}

Verification

1. Equivalent in $R \& R^{+}$
2. NOT Equivalent in R^{+}Equivalent in R
3. NOT Equivalent in R \& \mathbf{R}^{+}

Outline

> Symbolic Function Representation
>Combinational BDD-based verification
$>$ Sequential BDD-based verification
> Satisfiability (SAT)
$>$ Combinational Satisfiability-based verification
> Sequential Satisfiability-based verification

Boolean Satisfiability (SAT)

$>$ Given a suitable representation for a Boolean function $f(X)$

- Find an assignment X^{*} such that $f\left(X^{*}\right)=1$

SAT belongs to NP

- There is a non-deterministic Touring Machine deciding SAT in polinomial time
- On a real - deterministic computer this would require exponential time
- Prove that such an assignment does not exist, i.e., $f(X)=0$ for all possible assignments
$>$ Many decision (yes/no) problems can be formulated either directly or indirectly in terms of Boolean Satisfiability
In the "classical" SAT problem, $f(X)$ is represented as
- Product-of-sums (POS)

OR

- Conjunctive normal form (CNF)

And Inverter Graphs (AIGs)

Base data structure uses two-input AND function for vertices and INVERTER attributes at the edges (individual bit)

- Use De'Morgan's law to convert OR operation etc.
$>$ Hash table to identify and reuse structurally isomorphic circuits

Circuit (AIG) to CNF

> Naive conversion of circuit to CNF

- Multiply out expressions of circuit until two level structure
- Example
- $y=x_{1} \oplus x_{2} \oplus x_{2} \oplus \ldots \oplus x_{n}$ (Parity function)
- Circuit size is linear in the number of variables

- Generated chess-board Karnaugh map

- $\underset{\text { vars) }}{\text { (}}$ (or DNF) formula has 2^{2-1} terms (exponential in the \# vars)
Better approach
- Introduce one variable per circuit vertex
- Formulate the circuit as a conjunction of constraints Formulate the circuit as a conjunction of con
- Uses more variables but size of formula is linear in the Uses more variables
size of the circuit

Conjunctive Normal Form (CNF)

Literal \& Clause Classification

Davis-Putnam (DP) Procedure

> Search for consistent assignment to entire cone of requested vertex by systematically trying all combinations (may be partial!!!)
$>$ Keep a queue of vertices that remain to be justified

- Pick decision vertex from the queue and case split on possible assignments
- For each case
- Propagate as many implications as possible - generate more vertices to be justified
if conflicting assignment encountered undo all implications and
backtrack backrack
- Recur to next vertex from queue

Basic Case Splitting

(Backtrack Search)

A SAT Example:

Optimization of if-then-else chain

Original C code
if (!a \&\& ! b) h();
else if (!a) g();
else f();

if (!a) \{ if (!b) h(); else $g()$;
\} else f();

Optimized C code
if (a) f();
else \{ if (!b) $h()$; else $g() ;\}$

if (a) $\mathrm{f}(\mathrm{)}$;
else if (b) g();
else h();

How to check if these are equivalent?
>Represent procedures as independent
Boolean variables
Original $=$ if $(\neg a \wedge \neg b) h()$:
else if $(\neg a) g()$:
else f():
Optimized = if (a) f():
else \{ if $(-b) h()$; else g();\}
$>$ Compile the into Boolean formulae
if x then y else $z=\operatorname{ITE}(x, y, z)=(x \wedge y)(\neg x \wedge z)$
$>$ Check equivalence of Boolean formulae
Compile (Original) \equiv Compile (Optimized)

```
Original = if }\neg\mathbf{a\wedge\negb}\mathrm{ then h else if }\neg\mathrm{ a then g else f
    =(\nega}\wedge \negb) ^ h \vee \neg(\nega^^)b) ^
            if \nega then g else h
    =(\nega^\negb) ^ h \vee ᄀ(\nega^ ^ b) ^( ( a ^ g \vee a ^f)
Optimized = if a then f else if b then g else h
    =(a\wedgef)}\vee\nega\wedge if b then g else h
    = a^f
```



```
#
a^f\vee ᄀa^(b}^g\mp@code{g \negb ^ h)
is satisfiable?
```


From Circuit to AIG (CNF)

Can the circuit (maybe a PM) output be 1?

Outline

$>$ Symbolic Function Representation
> Combinational BDD-based verification
$>$ Sequential BDD-based verification
$>$ Satisfiability (SAT)
$>$ Combinational Satisfiability-based verification
> Sequential Satisfiability-based verification

Outline

$>$ Symbolic Function Representation
$>$ Combinational BDD-based verification
> Sequential BDD-based verification
> Satisfiability (SAT)
>Combinational Satisfiability-based verification
>Sequential Satisfiability-based verification

Bounded Model Checking (BMC)

$>$ Bounded Model Checking (Biere, et al., TACAS 1999)

- Property checking method based on finite unfolding of transition relation interleaved with checks of the property
- Sound: In its pure form no false positives are possible
- Incomplete: Cannot guarantee correctness of property

Bounded Model Checking (BMC)

> Given

- A finite transition system M
- A property P (representing "good" states)
- A non negative value k (bound)
$>$ Create a SAT instance
- Generate clauses for F_{k} (output a file in CNF format)
- Call SAT on the CNF instance
- A counterexample is a path from a state satisfying S_{0} to state satisfying P, where every transition satisfies TR

Example

$>$ Transition system described by a set of constraints

Model:
$C=\{$
$g=a \wedge b$,
$p_{1}=g \vee c$,
$c^{\prime}=p$
\}

Each circuit element is a constraint note: $a=a_{+}$and $a^{\prime}=a_{t+1}$
$>$ Unfold the model k times
$U_{k}=T R_{0} \wedge T R_{1} \wedge \ldots \wedge T R_{k-1}$

* Use SAT solver to check satisfiability of
$\mathrm{S}_{0} \wedge \mathrm{U}_{\mathrm{k}} \wedge \neg \mathrm{P}_{\mathrm{k}}$
* A satisfying assignment is a counterexample of k steps

Basic Methods

>CNF-based

- Use CNF-based SAT solver to represent unfolding and prove UNSAT for correctness of property
$>$ Circuit-based
- Use ATPG-like reasoning to show untestability > Hybrid
- Use circuit rewriting and SAT checking interleaved, e.g., based on AND/INV graphs

Applications

$>$ Debugging

- Can find counterexamples using a SAT solver
$>$ Proving properties
- Only possible if a bound on the length of the shortest counterexample is known
- I.e., we need a diameter bound. The diameter is the maximum length of the shortest path between any two states
- Worst case is exponential. Obtaining better bounds is sometimes possible, but generally intractable

Unbounded Model Checking (UMC)

> SAT and BMC can be also used for unbounded model checking

- K-step induction
- Abstraction
- Counterexample-based
- Non-counterexample-based
- Exact image computations
- SAT solver tests for fixed point
- SAT solver computes image
- Over-approximate image computations

Interpolants (1/3)

> McMillan CAV 2002
$>$ Given two Boolean functions A and B such that

- $A \wedge B=0$
an interpolant is a function C such that:
- $C \wedge B=0$
- $A \Rightarrow C$
- C refers only to the common variables of A and B
$>$ Interpolants can be easily computed from the refutation proof provided by SAT solvers

Interpolants (2/3)

$>$ When performing a BMC check, we choose

- $A=S_{0} \wedge \operatorname{TR}\left(S_{0}, S_{1}\right)$
- $B=\operatorname{TR}\left(S_{1}, S_{2}\right) \wedge \ldots \wedge T R\left(S_{k-1}, S_{k}\right) \wedge \neg P\left(S_{k}\right)$
$>$ Any interpolant provides an overapproximate image of the initial state S_{0}. guaranteed to be k-adequate w.r.t. $\rightarrow P\left(S_{k}\right)$.

Interpolants (3/3)

$\Rightarrow \operatorname{Re}$-do BMC, replacing S_{0} with the generated ITP, until intersection with $\rightarrow P\left(S_{k}\right)$ or fix-point found
$>$ In case of intersection, increase k and rerun
$>$ It can be proved that k is bounded to the system diameter

