
Hints on Specific Techniques

P.Camurati G.Cabodi S.Nocco S.Quer

Formal Methods Group
Department of Computer Engineering

Politecnico di Torino
Torino, Italy

Outline

Symbolic Function Representation
Combinational BDD-based verification
Sequential BDD-based verification
Satisfiability (SAT)
Combinational Satisfiability-based 

verification
Sequeential Satisfiability-based verification

Outline

Symbolic Function Representation
Combinational BDD-based verification
Sequential BDD-based verification
Satisfiability (SAT)
Combinational Satisfiability-based 

verification
Sequeential Satisfiability-based verification

What do we need?
 A good data structure for Boolean formulas !!!

Why?
 To represent the problem
 To to manipulate the representation used, i.e., 

to perform Boolean Reasoning (e.g., a decision 
procedure to decide about SAT or UNSAT)

Representation Methods
 Classical Methods

• Canonical Forms
• NON Canonical Forms

 Non-Classical Methods

Representation of Boolean Functions

Truth Table
 F = Graphical/Tabular Representation

Canonical Disjunctive Normal Form (cDNF)
 F = (x1*  x2*  ...  xn*)  ... 

(x1*  x2*  ...  xn*)

Canonical Conjunctive Normal Form (cCNF)
 F = (x1*  x2*  ...  xn*)  ... 

(x1*  x2*  ...  xn*)
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Truth Table
DNF
 F = (x1  x2  x3)  (x1   x2  x3)  (x1 

x2  x3)
CNF
 F = (x1  x2  x3) (x1  x2   x3) (x1  

x2  x3) ...

Example



 Pros
 Unique representation (one and only for each

function)
 Constant Time Comparison (same representation) 

Cons
 Exponential Size
 Complex Resolution Algorithms
 Satisfiability is NP-complete (Cook) (i.e., 

resolution algorithms require exponential time)
 Examples

• DNF  satisfiability requires polynomial time, 
tautology is co-NP complete

• CNF  … vice-versa …
• Conversion CNF  DNF is exponential

Disjunctive Normal Form (DNF)
 F = (x1*  ... <some i missing> ...  xn*) 

...  (x1*  ...  xn*)
Conjunctive Normal Form (CNF)
 F = (x1*  ... <some i missing> ...  xn*) 

...  (x1*  ...  xn*)

Classical Non Canonical Methods

 Pros
 Non-Exponential Representation’s Size

Cons
 Non-Unique representation (more representations

for each function)
 Complex Algorithms for Comparison
 Complex Algorithms for Conversions

Decision Diagrams
 BDDs - Binary Decision Diagrams
 ZBDDs - Zero Suppressed Binary Decision 

Diagrams
 Etc.

Boolean Circuits
 AIGs – And Inverter Graphs
 RBCs – Reduced Boolean Circuits
 Etc.

Non Classical Representation

Binary Decision Diagrams

 Idea from 70s (maybe earlier)
Adapted by Bryant ’86
Take a formula
Make decision tree for fixed variable order
Reduction rules
 Merge duplicate nodes
 Both children point to same node - remove 

redundant node
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Graph representation of 
a Boolean function f
 vertices represent 

decision nodes for 
variables

 two children represent 
the two subfunctions

 f(x = 0) and f(x = 1) 
(cofactors)

 can make a BDD 
representation canonical

Binary Decision Diagrams (BDD)
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Example 1
 F (a,b,c) = (a  b)  c

?
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Example 1
 F (a,b,c) = (a  b)  c

a
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Example 2
 F (a, b, c, d) = (ab)  (cd) = ab  +  cd
(order a, b, c, d)

?
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Example 2
 F (a, b, c, d) = (ab)  (cd) = ab  +  cd
(order a, b, c, d)

Network
Evaluation

A

B

C

T1

T2

Out

A  new_var ("a");
B  new_var ("b");
C  new_var ("c");
T1  And (A, B);
T2   And (B, C);
Out  Or (T1, T2);

Generating BDD from Network

Task: Represent output functions of gate 
network as BDDs b3 b3
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Functions
 All outputs of 4-bit adder
 Functions of data inputs

A

B

Cout

S
A
D
D

Shared Representation
 Graph with multiple roots
 31 nodes for 4-bit adder
 571 nodes for 64-bit adder
 Linear growth

Representing Circuit Functions



Consideration on Variable Ordering

Variable order is fixed
 For each path from root to terminal node the 

order of ”input” variables is exactly the same
Strong dependency of the BDD size (terms 

of nodes) and variable ordering
Ordering algorithm:
 Co-NP complete problem - heuristic approaches
 Static Variable Ordering Heuristic
 Dynamic Variable Ordering Heuristic
 ROBDDs - Reduced Ordered Binary DDs (BDDs!)
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Best Choices

Dynamic Reordering By Sifting

Choose candidate variable
 Try all positions in variable ordering
 Repeatedly swap with adjacent variale
 Move to best position found

 Powerful Operations
 Creating, manipulating, testing
 Each step polynomial complexity

• Graceful degradation
Generally Stay Small Enough
 Especially  for digital circuit applications
 Given good choice of variable ordering

Extremely useful in practice
 (Till 10 years ago) Weak Competition
 No other method comes close in overall strength
 Especially with quantification operations

What’s good about BDDs?

Some formulas do not have small 
representation! (e.g., multipliers)

BDD representation of a function can vary 
exponentially in size depending on variable 
ordering; users may need to play with 
variable orderings (less automatic)

Size limitations: a big problem
 (Last 5 years) Competitive Approach
 CNF representation + SATisfiability solvers

What’s bad about BDDs?
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Combinational EC (1/2)

 Industrial EC checkers often use an 
combinational EC paradigm
 Sequential EC is too complex, can only be applied 

to design with a few hundred state bits
 Combinational methods scale linearly with the 

design size for a given fixed size and “functional 
complexity” of the individual cones



Combinational EC (2/2)

Still, pure BDDs as plain SAT solver cannot 
handle all cones
 BDDs can be built for about 80% of the cones of 

high-speed designs
 less for complex ASICs
 plain SAT blows up on a “Miter” structure

Contemporary method highly exploit 
structural similarity of designs to be 
compared

Verification (base method)
 Compare output’s BDDs

Mi == M’i ,  i ?

(Mi  M’i) == 0 , i   ?

0?

Testing
 Fault
 Stuck-at 0/1

Mi == M’i ,  i ?

(Mi  M’i) == 0 , i   ?

Verification (base method)
 Compare output’s BDDs
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Function Representation
Given a set A
We define the Characteristic Function A(s)

of the set A as
1 IFF s  A
0 IFF s  A

Bn

A

A(s) = 1

A(s) = 0

A(s) =

(State) Set Representation



Characteristic Function
of set A:

A(s) = 1  IFF s  A
= 0  IFF s A

Bn Bm

f
X

Y

Img (f, X) = f (X) = { y  Bm  x  X  y = f (x) }

Image and inverse image

Bn Bm

f

f -1

X
Y

Img (f, X) = f (X) = { y  Bm  x  X  y = f (x) }

PreImg (f, Y) = f -1 (Y) = { x  Bn  y  Y  y = f (x) }

Image and inverse image

To (y) = Img (TR, From) = s,x [TR (s, x, y)  From(s)]

To (y)

TR (s, x, y)

From(s)

Image Computation

To (y) =

= sx[ TR (s,x,y) · From (s) ]

= sx[ (y1  1) · (y2  2) · … · (yn  n ) · From (s) ]

RRiR1R0

S

IMAGE

To (y) =

= sx[ TR (s,x,y) · From (s) ]

= sx[ (y1  1) · (y2  2) · … · (yn  n ) · From (s) ]

RRiR1R0

S

IMAGE

!



Forward Traversal
R0   =  Initial State Set 
Ri+1  =  Ri + Img (TR, Ri )

Backward Traversal
R0  =  Initial State Set
Ri+1  =  Ri + PreImg (TR, Ri )

State Traversal 

S  Mutually Reachable   
for equivalence checking

Product Machine:      M  = M x M

MM MM

S  Mutually Reachable bad set f state
for (invariant) model checking

Product Machine:      M  = M x M

MM MM

M  M’

M  M’

Exact Forward Traversal

Bad set of state
(model checking)

Problems

R  is
• too large
• too difficult to evaluate M  M’

M  M’

Exact Backward Traversal



R+ =

over-estimation of R

Verification
1. Equivalent in R & R+

2. NOT Equivalent in R+ Equivalent in R
3. NOT Equivalent in R & R+
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Given a suitable representation for a 
Boolean function f (X)
 Find an assignment X* such that f (X*) = 1
OR
 Prove that such an assignment does not exist,

i.e., f(X) = 0 for all possible assignments
 In the “classical” SAT problem, f (X) is 

represented as
 Product-of-sums (POS)
OR
 Conjunctive normal form (CNF)

Boolean Satisfiability (SAT)

SAT belongs to NP
 There is a non-deterministic Touring Machine 

deciding SAT in polinomial time
 On a real – deterministic computer this would 

require exponential time
Many decision (yes/no) problems can be 

formulated either directly or indirectly in 
terms of Boolean Satisfiability

Base data structure uses two-input AND 
function for vertices and INVERTER 
attributes at the edges (individual bit)
 Use De’Morgan’s law to convert OR operation 

etc. 
Hash table to identify and reuse 

structurally isomorphic circuits
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And Inverter Graphs (AIGs)
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Subgraph 1

b c

a
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 Pre-computing AIG 
subgraphs
 Consider function f = abc

a c

b

Subgraph 3

Rewriting AIG Rewriting AIG subgraphssubgraphs

Rewriting node A

Rewriting node B



a b a c



a b a c

A

Subgraph 1

b c

a

A

Subgraph 2

b c

a

B

Subgraph 2

a b a c

B

Subgraph 1

In both cases 1 node is savedIn both cases 1 node is saved

 AIG rewriting minimizes the number of AIG nodes 
without increasing the number of AIG levels

AIG Optimizations

a b a c

A

Subgraph 1

b c

a

A

Subgraph 2



Naive conversion of circuit to CNF
 Multiply out expressions of circuit until two level structure
 Example

• y = x1 x2  x2  ...  xn (Parity function)
• Circuit size is linear in the number of variables


• Generated chess-board Karnaugh map
• CNF (or DNF) formula has 2n-1 terms (exponential in the # 

vars)

Better approach
 Introduce one variable per circuit vertex
 Formulate the circuit as a conjunction of constraints 

imposed on the vertex values by the gates
 Uses more variables but size of formula is linear in the 

size of the circuit

Circuit (AIG) to CNF Conjunctive Normal Form (CNF)

Clause
Positive 
Literal

Negative 
Literal

( a + c )  ( b + c )  (¬a + ¬b + ¬c )

(a + ¬b)(¬a + b + ¬c )(a + c + d )(¬a + ¬b + ¬c )

a assigned 0b assigned 1c and d unassigned

violated unresolved satisfiedsatisfied

Literal & Clause Classification Davis-Putnam (DP) Procedure

Search for consistent assignment to entire 
cone of  requested vertex by 
systematically trying all combinations (may 
be partial!!!)

Keep a queue of vertices that remain to 
be justified
 Pick decision vertex from the queue and case 

split on possible assignments
 For each case

• Propagate as many implications as possible
– generate more vertices to be justified
– if conflicting assignment encountered undo all implications and 

backtrack

• Recur to next vertex from queue

Basic Case Splitting
(Backtrack Search)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)
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(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

b

c

d d

b

c

d d

c

d(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

A SAT Example:
Optimization of if-then-else chain

Original C code
if (!a && !b) h();
else if (!a) g();
else f();

if (!a) {
if (!b) h();
else g();

} else f();

Optimized C code
if (a) f();
else { 
if (!b) h();
else g();}

if (a) f();
else if (b) g();
else h();

How to check if these are equivalent?



Represent procedures as independent 
Boolean variables
Original = if (a   b) h();

else if (a) g();
else f();

Optimized = if (a) f();
else { 
if (b) h();
else g();}

Compile the into Boolean formulae
if x then y else z = ITE (x,y,z) =(x  y) (x  z)

Check equivalence of Boolean formulae
Compile (Original)  Compile (Optimized)

Original = if ab then h else if a then g else f

= (a  b)  h  (a  b) 

if a then g else h

= (a  b)  h  (a  b)  (a  g  a  f)

Optimized = if a then f else if b then g else h

= (a  f)  a  if b then g else h

= a  f  a  (b  g  b  h)

(a  b)  h  (a  b)  (a  g  a  f)



a  f  a  (b  g  b  h)

is satisfiable?

A Taxonomy of SAT Algorithms

Backtrack search (DP)

Resolution (original DP)

Stalmarck’s method (SM)

Recursive learning (RL)

BDDs

...

Local search (hill climbing)

Continuous formulations

Genetic algorithms

Simulated annealing

...

Tabu search

SAT Algorithms

Complete Incomplete

Can prove unsatisfiability Cannot prove unsatisfiability

Outline

Symbolic Function Representation
Combinational BDD-based verification
Sequential BDD-based verification
Satisfiability (SAT)
Combinational Satisfiability-based 

verification
Sequential Satisfiability-based verification

Verification (base method)
 Use a SAT solver

Mi == M’i ,  i ?

(Mi  M’i) == 0 , i   ?

0?

If out=1 is unsatisfiable, the
two circuits are equivalent

Combinational EC

AIG (CNF)

AIG (CNF)

a
b
c p

g

Can the circuit (maybe a PM) output be 1?

input
variables output

variable

(a  g)  (b  g)
(a  b  g)

(g  p)  (c  p)
(g  c  p)

CNF(p)

p is satisfiable when the
formula CNF(p)  p
is satisfiable

From Circuit to AIG (CNF)



Outline

Symbolic Function Representation
Combinational BDD-based verification
Sequential BDD-based verification
Satisfiability (SAT)
Combinational Satisfiability-based 

verification
Sequential Satisfiability-based verification

Bounded Model Checking (BMC)

Bounded Model Checking (Biere, et al.,  
TACAS 1999)
 Property checking method based on finite 

unfolding of transition relation interleaved with 
checks of the property
• Sound: In its pure form no false positives are 
possible

• Incomplete: Cannot guarantee correctness of 
property

Given
 A finite transition system M
 A property P (representing “good” states)
 A non negative value k (bound)

Create a SAT instance
 Generate clauses for Fk (output a file in CNF 

format)
 Call SAT on the CNF instance
 A counterexample is a path from a state 

satisfying S0 to state satisfying P, where 
every transition satisfies TR

Bounded Model Checking (BMC) Example

Transition system described by a set of 
constraints

a
b cp

g

Each circuit element is a constraint
note:  a = at and a' = at+1

g = a  b

p = g  c

c' = p

Model:

C = {
g = a  b,
p = g  c,
c' = p

}

Unfold the model k times
Uk = TR0  TR1  ...  TRk-1

a
b

cp

g a
b

cp

g a
b

cp

g
...S0 Pk

Use SAT solver to check satisfiability of
S0  Uk   Pk

A satisfying assignment is a counterexample 
of k steps

Basic Methods

CNF-based
 Use CNF-based SAT solver to represent 

unfolding and prove UNSAT for correctness of 
property

Circuit-based
 Use ATPG-like reasoning to show untestability

Hybrid
 Use circuit rewriting and SAT checking 

interleaved, e.g., based on AND/INV graphs 



Applications

Debugging
 Can find counterexamples using a SAT solver

 Proving properties
 Only possible if a bound on the length of the 

shortest counterexample is known
 I.e., we need a diameter bound. The diameter 

is the maximum length of the shortest path 
between any two states

 Worst case is exponential. Obtaining better 
bounds is sometimes possible, but generally 
intractable

Unbounded Model Checking (UMC)

SAT and BMC can be also used for 
unbounded model checking
 K-step induction
 Abstraction

• Counterexample-based
• Non-counterexample-based

 Exact image computations
• SAT solver tests for fixed point
• SAT solver computes image

 Over-approximate image computations

Interpolants (1/3)

McMillan CAV 2002
Given two Boolean functions A and B such

that
 A  B = 0
an interpolant is a function C such that:
 C  B = 0
 A  C
 C refers only to the common variables of A 

and B
 Interpolants can be easily computed from

the refutation proof provided by SAT 
solvers

Interpolants (2/3)

When performing a BMC check, we choose
 A = S0   TR(S0, S1)
 B = TR(S1, S2)  …  TR(Sk-1, Sk)   P(Sk)

Any interpolant provides an over-
approximate image of the initial state S0, 
guaranteed to be k-adequate w.r.t.
P(Sk).

0( )I s P1 0 1( , )T s s
2 1 2( , )T s s

1( , )i i iT s s
…

A B
C

Interpolants (3/3)

Re-do BMC, replacing S0 with the 
generated ITP, until intersection with
P(Sk) or fix-point found

 In case of intersection, increase k and re-
run

 It can be proved that k is bounded to the 
system diameter

0( )I s P1 0 1( , )T s s
2 1 2( , )T s s

1( , )i i iT s s
…

A B
C


