
Hints on Specific Techniques

P.Camurati G.Cabodi S.Nocco S.Quer

Formal Methods Group
Department of Computer Engineering

Politecnico di Torino
Torino, Italy

Outline

Symbolic Function Representation
Combinational BDD-based verification
Sequential BDD-based verification
Satisfiability (SAT)
Combinational Satisfiability-based

verification
Sequeential Satisfiability-based verification

Outline

Symbolic Function Representation
Combinational BDD-based verification
Sequential BDD-based verification
Satisfiability (SAT)
Combinational Satisfiability-based

verification
Sequeential Satisfiability-based verification

What do we need?
 A good data structure for Boolean formulas !!!

Why?
 To represent the problem
 To to manipulate the representation used, i.e.,

to perform Boolean Reasoning (e.g., a decision
procedure to decide about SAT or UNSAT)

Representation Methods
 Classical Methods

• Canonical Forms
• NON Canonical Forms

 Non-Classical Methods

Representation of Boolean Functions

Truth Table
 F = Graphical/Tabular Representation

Canonical Disjunctive Normal Form (cDNF)
 F = (x1* x2* ... xn*) ...

(x1* x2* ... xn*)

Canonical Conjunctive Normal Form (cCNF)
 F = (x1* x2* ... xn*) ...

(x1* x2* ... xn*)

Classical Canonical Methods 0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
0
1

x1 x2 x3 f

Truth Table
DNF
 F = (x1 x2 x3) (x1 x2 x3) (x1

x2 x3)
CNF
 F = (x1 x2 x3) (x1 x2 x3) (x1

x2 x3) ...

Example

 Pros
 Unique representation (one and only for each

function)
 Constant Time Comparison (same representation)

Cons
 Exponential Size
 Complex Resolution Algorithms
 Satisfiability is NP-complete (Cook) (i.e.,

resolution algorithms require exponential time)
 Examples

• DNF satisfiability requires polynomial time,
tautology is co-NP complete

• CNF … vice-versa …
• Conversion CNF DNF is exponential

Disjunctive Normal Form (DNF)
 F = (x1* ... <some i missing> ... xn*)

... (x1* ... xn*)
Conjunctive Normal Form (CNF)
 F = (x1* ... <some i missing> ... xn*)

... (x1* ... xn*)

Classical Non Canonical Methods

 Pros
 Non-Exponential Representation’s Size

Cons
 Non-Unique representation (more representations

for each function)
 Complex Algorithms for Comparison
 Complex Algorithms for Conversions

Decision Diagrams
 BDDs - Binary Decision Diagrams
 ZBDDs - Zero Suppressed Binary Decision

Diagrams
 Etc.

Boolean Circuits
 AIGs – And Inverter Graphs
 RBCs – Reduced Boolean Circuits
 Etc.

Non Classical Representation

Binary Decision Diagrams

 Idea from 70s (maybe earlier)
Adapted by Bryant ’86
Take a formula
Make decision tree for fixed variable order
Reduction rules
 Merge duplicate nodes
 Both children point to same node - remove

redundant node

f = ab+a’c+a’bd

c

a

b b

c c

d

0 1

c+bd
b

c+d

d

Graph representation of
a Boolean function f
 vertices represent

decision nodes for
variables

 two children represent
the two subfunctions

 f(x = 0) and f(x = 1)
(cofactors)

 can make a BDD
representation canonical

Binary Decision Diagrams (BDD)

a

c c c c

b b

1 0

1 0 1 0

1 0 1 0 1 0 1 0

1 1110 000

Example 1
 F (a,b,c) = (a b) c

?

a

c

b

1 0

1 0

1

1 0

a

c c c c

b b

1 0

1 0 1 0

1 0 1 0 1 0 1 0

1 1110 000

Example 1
 F (a,b,c) = (a b) c

a

c

d d d d d d d d

c c c

b b

Example 2
 F (a, b, c, d) = (ab) (cd) = ab + cd
(order a, b, c, d)

?

0 0 0 10 0 0 1 0 0 0 1 1 1 1 1
a

d

c d

b c

1

0

0

1 0

1 0

a

b

c

d

1 0

0
0

0

1

1
1

1

0

a

c

d d d d d d d d

c c c

b b

0 0 0 10 0 0 1 0 0 0 1 1 1 1 1

Example 2
 F (a, b, c, d) = (ab) (cd) = ab + cd
(order a, b, c, d)

Network
Evaluation

A

B

C

T1

T2

Out

A new_var ("a");
B new_var ("b");
C new_var ("c");
T1 And (A, B);
T2 And (B, C);
Out Or (T1, T2);

Generating BDD from Network

Task: Represent output functions of gate
network as BDDs b3 b3

a3

Cout

b3

b2 b2

a2

b2 b2

a2

b3

a3

S3

b2

b1 b1

a1

b1 b1

a1

b2

a2

S2

b1

a0 a0

b1

a1

S1

b0

10

b0

a0

S0

Functions
 All outputs of 4-bit adder
 Functions of data inputs

A

B

Cout

S
A
D
D

Shared Representation
 Graph with multiple roots
 31 nodes for 4-bit adder
 571 nodes for 64-bit adder
 Linear growth

Representing Circuit Functions

Consideration on Variable Ordering

Variable order is fixed
 For each path from root to terminal node the

order of ”input” variables is exactly the same
Strong dependency of the BDD size (terms

of nodes) and variable ordering
Ordering algorithm:
 Co-NP complete problem - heuristic approaches
 Static Variable Ordering Heuristic
 Dynamic Variable Ordering Heuristic
 ROBDDs - Reduced Ordered Binary DDs (BDDs!)

a3

b2 b2

a3

a2

a3

b1

b2

0

b3

b1

1

b2

a3

a2

a1

a3

b2

b3

b2

a3

a2

a3

b2

0

b1

b3

1

b2

a3

a2

a1

a2

a3

b1

b2

0

b3

b2

a3

1

b1

a2

a1

a3

b2

0

b3

b2

a3

a2

1

b1

a1

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

• • •
a3

b2

0

b3

b2

a3

a2

1

a1

b1

Best Choices

Dynamic Reordering By Sifting

Choose candidate variable
 Try all positions in variable ordering
 Repeatedly swap with adjacent variale
 Move to best position found

 Powerful Operations
 Creating, manipulating, testing
 Each step polynomial complexity

• Graceful degradation
Generally Stay Small Enough
 Especially for digital circuit applications
 Given good choice of variable ordering

Extremely useful in practice
 (Till 10 years ago) Weak Competition
 No other method comes close in overall strength
 Especially with quantification operations

What’s good about BDDs?

Some formulas do not have small
representation! (e.g., multipliers)

BDD representation of a function can vary
exponentially in size depending on variable
ordering; users may need to play with
variable orderings (less automatic)

Size limitations: a big problem
 (Last 5 years) Competitive Approach
 CNF representation + SATisfiability solvers

What’s bad about BDDs?

Outline

Symbolic Function Representation
Combinational BDD-based verification
Sequential BDD-based verification
Satisfiability (SAT)
Combinational Satisfiability-based

verification
Sequeential Satisfiability-based verification

Combinational EC (1/2)

 Industrial EC checkers often use an
combinational EC paradigm
 Sequential EC is too complex, can only be applied

to design with a few hundred state bits
 Combinational methods scale linearly with the

design size for a given fixed size and “functional
complexity” of the individual cones

Combinational EC (2/2)

Still, pure BDDs as plain SAT solver cannot
handle all cones
 BDDs can be built for about 80% of the cones of

high-speed designs
 less for complex ASICs
 plain SAT blows up on a “Miter” structure

Contemporary method highly exploit
structural similarity of designs to be
compared

Verification (base method)
 Compare output’s BDDs

Mi == M’i , i ?

(Mi M’i) == 0 , i ?

0?

Testing
 Fault
 Stuck-at 0/1

Mi == M’i , i ?

(Mi M’i) == 0 , i ?

Verification (base method)
 Compare output’s BDDs

Outline

Symbolic Function Representation
Combinational BDD-based verification
Sequential BDD-based verification
Satisfiability (SAT)
Combinational Satisfiability-based

verification
Sequeential Satisfiability-based verification

Function Representation
Given a set A
We define the Characteristic Function A(s)

of the set A as
1 IFF s A
0 IFF s A

Bn

A

A(s) = 1

A(s) = 0

A(s) =

(State) Set Representation

Characteristic Function
of set A:

A(s) = 1 IFF s A
= 0 IFF s A

Bn Bm

f
X

Y

Img (f, X) = f (X) = { y Bm x X y = f (x) }

Image and inverse image

Bn Bm

f

f -1

X
Y

Img (f, X) = f (X) = { y Bm x X y = f (x) }

PreImg (f, Y) = f -1 (Y) = { x Bn y Y y = f (x) }

Image and inverse image

To (y) = Img (TR, From) = s,x [TR (s, x, y) From(s)]

To (y)

TR (s, x, y)

From(s)

Image Computation

To (y) =

= sx[TR (s,x,y) · From (s)]

= sx[(y1 1) · (y2 2) · … · (yn n) · From (s)]

RRiR1R0

S

IMAGE

To (y) =

= sx[TR (s,x,y) · From (s)]

= sx[(y1 1) · (y2 2) · … · (yn n) · From (s)]

RRiR1R0

S

IMAGE

!

Forward Traversal
R0 = Initial State Set
Ri+1 = Ri + Img (TR, Ri)

Backward Traversal
R0 = Initial State Set
Ri+1 = Ri + PreImg (TR, Ri)

State Traversal

S Mutually Reachable
for equivalence checking

Product Machine: M = M x M

MM MM

S Mutually Reachable bad set f state
for (invariant) model checking

Product Machine: M = M x M

MM MM

M M’

M M’

Exact Forward Traversal

Bad set of state
(model checking)

Problems

R is
• too large
• too difficult to evaluate M M’

M M’

Exact Backward Traversal

R+ =

over-estimation of R

Verification
1. Equivalent in R & R+

2. NOT Equivalent in R+ Equivalent in R
3. NOT Equivalent in R & R+

Aproximate Reachability Outline

Symbolic Function Representation
Combinational BDD-based verification
Sequential BDD-based verification
Satisfiability (SAT)
Combinational Satisfiability-based

verification
Sequential Satisfiability-based verification

Given a suitable representation for a
Boolean function f (X)
 Find an assignment X* such that f (X*) = 1
OR
 Prove that such an assignment does not exist,

i.e., f(X) = 0 for all possible assignments
 In the “classical” SAT problem, f (X) is

represented as
 Product-of-sums (POS)
OR
 Conjunctive normal form (CNF)

Boolean Satisfiability (SAT)

SAT belongs to NP
 There is a non-deterministic Touring Machine

deciding SAT in polinomial time
 On a real – deterministic computer this would

require exponential time
Many decision (yes/no) problems can be

formulated either directly or indirectly in
terms of Boolean Satisfiability

Base data structure uses two-input AND
function for vertices and INVERTER
attributes at the edges (individual bit)
 Use De’Morgan’s law to convert OR operation

etc.
Hash table to identify and reuse

structurally isomorphic circuits

f

g g

f

And Inverter Graphs (AIGs)

48

a b a c

Subgraph 1

b c

a

Subgraph 2

 Pre-computing AIG
subgraphs
 Consider function f = abc

a c

b

Subgraph 3

Rewriting AIG Rewriting AIG subgraphssubgraphs

Rewriting node A

Rewriting node B

a b a c

a b a c

A

Subgraph 1

b c

a

A

Subgraph 2

b c

a

B

Subgraph 2

a b a c

B

Subgraph 1

In both cases 1 node is savedIn both cases 1 node is saved

 AIG rewriting minimizes the number of AIG nodes
without increasing the number of AIG levels

AIG Optimizations

a b a c

A

Subgraph 1

b c

a

A

Subgraph 2

Naive conversion of circuit to CNF
 Multiply out expressions of circuit until two level structure
 Example

• y = x1 x2 x2 ... xn (Parity function)
• Circuit size is linear in the number of variables

• Generated chess-board Karnaugh map
• CNF (or DNF) formula has 2n-1 terms (exponential in the #

vars)

Better approach
 Introduce one variable per circuit vertex
 Formulate the circuit as a conjunction of constraints

imposed on the vertex values by the gates
 Uses more variables but size of formula is linear in the

size of the circuit

Circuit (AIG) to CNF Conjunctive Normal Form (CNF)

Clause
Positive
Literal

Negative
Literal

(a + c) (b + c) (¬a + ¬b + ¬c)

(a + ¬b)(¬a + b + ¬c)(a + c + d)(¬a + ¬b + ¬c)

a assigned 0b assigned 1c and d unassigned

violated unresolved satisfiedsatisfied

Literal & Clause Classification Davis-Putnam (DP) Procedure

Search for consistent assignment to entire
cone of requested vertex by
systematically trying all combinations (may
be partial!!!)

Keep a queue of vertices that remain to
be justified
 Pick decision vertex from the queue and case

split on possible assignments
 For each case

• Propagate as many implications as possible
– generate more vertices to be justified
– if conflicting assignment encountered undo all implications and

backtrack

• Recur to next vertex from queue

Basic Case Splitting
(Backtrack Search)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

1

2

3

4

5

6

7

8

a(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

b

c

d d

b

c

d d

c

d(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

(¬b + ¬c + ¬d)

(a + b + c)

(a + b + ¬c)

(¬a + b + ¬c)

(a + c + d)

(¬a + c + d)

(¬a + c + ¬d)

(¬b + ¬c + d)

A SAT Example:
Optimization of if-then-else chain

Original C code
if (!a && !b) h();
else if (!a) g();
else f();

if (!a) {
if (!b) h();
else g();

} else f();

Optimized C code
if (a) f();
else {
if (!b) h();
else g();}

if (a) f();
else if (b) g();
else h();

How to check if these are equivalent?

Represent procedures as independent
Boolean variables
Original = if (a b) h();

else if (a) g();
else f();

Optimized = if (a) f();
else {
if (b) h();
else g();}

Compile the into Boolean formulae
if x then y else z = ITE (x,y,z) =(x y) (x z)

Check equivalence of Boolean formulae
Compile (Original) Compile (Optimized)

Original = if ab then h else if a then g else f

= (a b) h (a b)

if a then g else h

= (a b) h (a b) (a g a f)

Optimized = if a then f else if b then g else h

= (a f) a if b then g else h

= a f a (b g b h)

(a b) h (a b) (a g a f)

a f a (b g b h)

is satisfiable?

A Taxonomy of SAT Algorithms

Backtrack search (DP)

Resolution (original DP)

Stalmarck’s method (SM)

Recursive learning (RL)

BDDs

...

Local search (hill climbing)

Continuous formulations

Genetic algorithms

Simulated annealing

...

Tabu search

SAT Algorithms

Complete Incomplete

Can prove unsatisfiability Cannot prove unsatisfiability

Outline

Symbolic Function Representation
Combinational BDD-based verification
Sequential BDD-based verification
Satisfiability (SAT)
Combinational Satisfiability-based

verification
Sequential Satisfiability-based verification

Verification (base method)
 Use a SAT solver

Mi == M’i , i ?

(Mi M’i) == 0 , i ?

0?

If out=1 is unsatisfiable, the
two circuits are equivalent

Combinational EC

AIG (CNF)

AIG (CNF)

a
b
c p

g

Can the circuit (maybe a PM) output be 1?

input
variables output

variable

(a g) (b g)
(a b g)

(g p) (c p)
(g c p)

CNF(p)

p is satisfiable when the
formula CNF(p) p
is satisfiable

From Circuit to AIG (CNF)

Outline

Symbolic Function Representation
Combinational BDD-based verification
Sequential BDD-based verification
Satisfiability (SAT)
Combinational Satisfiability-based

verification
Sequential Satisfiability-based verification

Bounded Model Checking (BMC)

Bounded Model Checking (Biere, et al.,
TACAS 1999)
 Property checking method based on finite

unfolding of transition relation interleaved with
checks of the property
• Sound: In its pure form no false positives are
possible

• Incomplete: Cannot guarantee correctness of
property

Given
 A finite transition system M
 A property P (representing “good” states)
 A non negative value k (bound)

Create a SAT instance
 Generate clauses for Fk (output a file in CNF

format)
 Call SAT on the CNF instance
 A counterexample is a path from a state

satisfying S0 to state satisfying P, where
every transition satisfies TR

Bounded Model Checking (BMC) Example

Transition system described by a set of
constraints

a
b cp

g

Each circuit element is a constraint
note: a = at and a' = at+1

g = a b

p = g c

c' = p

Model:

C = {
g = a b,
p = g c,
c' = p

}

Unfold the model k times
Uk = TR0 TR1 ... TRk-1

a
b

cp

g a
b

cp

g a
b

cp

g
...S0 Pk

Use SAT solver to check satisfiability of
S0 Uk Pk

A satisfying assignment is a counterexample
of k steps

Basic Methods

CNF-based
 Use CNF-based SAT solver to represent

unfolding and prove UNSAT for correctness of
property

Circuit-based
 Use ATPG-like reasoning to show untestability

Hybrid
 Use circuit rewriting and SAT checking

interleaved, e.g., based on AND/INV graphs

Applications

Debugging
 Can find counterexamples using a SAT solver

 Proving properties
 Only possible if a bound on the length of the

shortest counterexample is known
 I.e., we need a diameter bound. The diameter

is the maximum length of the shortest path
between any two states

 Worst case is exponential. Obtaining better
bounds is sometimes possible, but generally
intractable

Unbounded Model Checking (UMC)

SAT and BMC can be also used for
unbounded model checking
 K-step induction
 Abstraction

• Counterexample-based
• Non-counterexample-based

 Exact image computations
• SAT solver tests for fixed point
• SAT solver computes image

 Over-approximate image computations

Interpolants (1/3)

McMillan CAV 2002
Given two Boolean functions A and B such

that
 A B = 0
an interpolant is a function C such that:
 C B = 0
 A C
 C refers only to the common variables of A

and B
 Interpolants can be easily computed from

the refutation proof provided by SAT
solvers

Interpolants (2/3)

When performing a BMC check, we choose
 A = S0 TR(S0, S1)
 B = TR(S1, S2) … TR(Sk-1, Sk) P(Sk)

Any interpolant provides an over-
approximate image of the initial state S0,
guaranteed to be k-adequate w.r.t.
P(Sk).

0()I s P1 0 1(,)T s s
2 1 2(,)T s s

1(,)i i iT s s
…

A B
C

Interpolants (3/3)

Re-do BMC, replacing S0 with the
generated ITP, until intersection with
P(Sk) or fix-point found

 In case of intersection, increase k and re-
run

 It can be proved that k is bounded to the
system diameter

0()I s P1 0 1(,)T s s
2 1 2(,)T s s

1(,)i i iT s s
…

A B
C

