

Outline

- Symbolic Function Representation
- \succ Combinational BDD-based verification
- > Sequential BDD-based verification
- > Satisfiability (SAT)
- Combinational Satisfiability-based verification
- > Sequeential Satisfiability-based verification

Outline

- Symbolic Function Representation
- Combinational BDD-based verification
- > Sequential BDD-based verification
- > Satisfiability (SAT)
- Combinational Satisfiability-based verification
- > Sequeential Satisfiability-based verification

Representation of Boolean Functions

> What do we need?

- A good data structure for Boolean formulas !!!
- > Why?
 - To represent the problem
 - To to manipulate the representation used, i.e., to perform Boolean Reasoning (e.g., a decision procedure to decide about SAT or UNSAT)

> Representation Methods

- Classical Methods
 - Canonical Forms
 - NON Canonical Forms
- Non-Classical Methods

Classical Canonical Methods > Truth Table • F = Graphical/Tabular Representation > Canonical Disjunctive Normal Form (cDNF) • F = (x1* \land x2* \land ... \land xn*) \lor ... \lor (x1* \land x2* \land ... \land xn*) > Canonical Conjunctive Normal Form (cCNF) • F = (x1* \lor x2* \lor ... \lor xn*) \land ... \land (x1* \lor x2* \lor ... \lor xn*)

> Pros

- Unique representation (one and only for each function)
- Constant Time Comparison (same representation)

> Cons

- Exponential Size
- Complex Resolution Algorithms
- Satisfiability is NP-complete (Cook) (i.e., resolution algorithms require exponential time)
- Examples
 - DNF → satisfiability requires polynomial time, tautology is co-NP complete
 - · CNF → ... vice-versa ...
 - · Conversion CNF ←→ DNF is exponential

Classical Non Canonical Methods

- Disjunctive Normal Form (DNF)
 F = (x1* ^ ... < some i missing> ... ^ xn*) < ... v (x1* ^ ... ^ xn*)
 Conjunctive Normal Form (CNF)
- F = (x1* ∨ ... < some i missing> ... ∨ xn*) ∧ ... ∧ (x1* ∨ ... ∨ xn*)

> Pros

- Non-Exponential Representation's Size
- > Cons
 - Non-Unique representation (more representations for each function)
 - Complex Algorithms for Comparison
 - Complex Algorithms for Conversions

Non Classical Representation

Decision Diagrams

- BDDs Binary Decision Diagrams
 - ZBDDs Zero Suppressed Binary Decision Diagrams
 - Etc.

> Boolean Circuits

- AIGs And Inverter Graphs
- RBCs Reduced Boolean Circuits
- Etc.

Binary Decision Diagrams

- > Idea from 70s (maybe earlier)
- > Adapted by Bryant '86
- > Take a formula
- > Make decision tree for fixed variable order
- > Reduction rules
 - Merge duplicate nodes
 - Both children point to same node remove redundant node

Binary Decision Diagrams (BDD) > Graph representation of f = ab+a'c+a'bda Boolean function f vertices represent decision nodes for c+bd variables b two children represent С the two subfunctions c+d f(x = 0) and f(x = 1) (cofactors) d can make a BDD representation canonical

Consideration on Variable Ordering

- > Variable order is fixed
 - For each path from root to terminal node the order of "input" variables is exactly the same
- > Strong dependency of the BDD size (terms of nodes) and variable ordering

> Ordering algorithm:

- Co-NP complete problem heuristic approaches
- Static Variable Ordering Heuristic
- Dynamic Variable Ordering Heuristic
- ROBDDs Reduced Ordered Binary DDs (BDDs!)

Dynamic Reordering By Sifting

- Choose candidate variable
 - > Try all positions in variable ordering
 - > Repeatedly swap with adjacent variale Best Choices
 - > Move to best position found

0	(a)	@	(a)	<u>a</u>	6
<u>@</u> @	00	. ଭିତ୍ର	00	6	(
0000	0000	0000	٥ <u>م</u>	0	•
6666	0000	0000	00	<u>8</u> 8	0 0
ØØ \	99	66	66	66	66
S	Ø.	Ø.	Ø\	Ø.	Ø
	0 1	0 1	0 1	0 1	01

What's good about BDDs?

> Powerful Operations

- Creating, manipulating, testing
- Each step polynomial complexity
- Graceful degradation
- > Generally Stay Small Enough
 - Especially for digital circuit applications Given good choice of variable ordering
- > Extremely useful in practice
- > (Till 10 years ago) Weak Competition
 - No other method comes close in overall strength
 - Especially with quantification operations

What's bad about BDDs?

- > Some formulas do not have small representation! (e.g., multipliers)
- > BDD representation of a function can vary exponentially in size depending on variable ordering; users may need to play with variable orderings (less automatic)
- Size limitations: a big problem
- > (Last 5 years) Competitive Approach CNF representation + SATisfiability solvers

Outline

- > Symbolic Function Representation
- Combinational BDD-based verification
- > Sequential BDD-based verification
- > Satisfiability (SAT)
- Combinational Satisfiability-based verification
- > Sequeential Satisfiability-based verification

Combinational EC (1/2)

- > Industrial EC checkers often use an combinational EC paradigm
 - Sequential EC is too complex, can only be applied to design with a few hundred state bits
 - Combinational methods scale linearly with the design size for a given fixed size and "functional complexity" of the individual cones

Combinational EC (2/2)

- > Still, pure BDDs as plain SAT solver cannot handle all cones
 - BDDs can be built for about 80% of the cones of high-speed designs
 - less for complex ASICs
 - plain SAT blows up on a "Miter" structure
- Contemporary method highly exploit structural similarity of designs to be compared

Outline

- Symbolic Function Representation
- \succ Combinational BDD-based verification
- > Sequential BDD-based verification
- > Satisfiability (SAT)
- Combinational Satisfiability-based verification
- > Sequeential Satisfiability-based verification

Outline

- Symbolic Function Representation
- \succ Combinational BDD-based verification
- > Sequential BDD-based verification
- > Satisfiability (SAT)
- Combinational Satisfiability-based verification
- > Sequential Satisfiability-based verification

Boolean Satisfiability (SAT)

- > Given a suitable representation for a Boolean function f(X)
 - Find an assignment X^* such that $f(X^*) = 1$ OR
 - Prove that such an assignment does not exist, i.e., f(X) = 0 for all possible assignments
- > In the "classical" SAT problem, f(X) is represented as
 - Product-of-sums (POS)
 - OR
 - Conjunctive normal form (CNF)

> SAT belongs to NP

- There is a non-deterministic Touring Machine deciding SAT in polinomial time
- On a real deterministic computer this would require exponential time
- Many decision (yes/no) problems can be formulated either directly or indirectly in terms of Boolean Satisfiability

- Symbolic Function Representation
- Combinational BDD-based verification
- \succ Sequential BDD-based verification
- > Satisfiability (SAT)
- Combinational Satisfiability-based verification
- > Sequential Satisfiability-based verification

Outline

- > Symbolic Function Representation
- Combinational BDD-based verification
- > Sequential BDD-based verification
- > Satisfiability (SAT)
- Combinational Satisfiability-based verification
- > Sequential Satisfiability-based verification

Bounded Model Checking (BMC)

- Bounded Model Checking (Biere, et al., TACAS 1999)
 - Property checking method based on finite unfolding of transition relation interleaved with checks of the property
 - \cdot Sound: In its pure form no false positives are possible
 - Incomplete: Cannot guarantee correctness of property

Bounded Model Checking (BMC)

> Given

- A finite transition system M
- A property P (representing "good" states)
- A non negative value k (bound)

Create a SAT instance

- Generate clauses for F_k (output a file in CNF format)
- Call SAT on the CNF instance
- A counterexample is a path from a state satisfying S₀ to state satisfying P, where every transition satisfies TR

> Transition system described by a set of constraints Model:

c' = p

C = { g = a ∧ b, p = g ∨ c, c' = p }

Each circuit element is a constraint note: $a = a_t$ and $a' = a_{t+1}$

Applications

> Debugging

- Can find counterexamples using a SAT solver
- Proving properties
 - Only possible if a bound on the length of the shortest counterexample is known
 - I.e., we need a *diameter* bound. The diameter is the maximum length of the shortest path between any two states
 - Worst case is exponential. Obtaining better bounds is sometimes possible, but generally intractable

Unbounded Model Checking (UMC) SAT and BMC can be also used for unbounded model checking K-step induction Abstraction

- Abstraction
 - Counterexample-based
 Non-counterexample-based
- Exact image computations
- SAT solver tests for fixed point • SAT solver computes image
- Over-approximate image computations

Interpolants (1/3) Interpolants (2/3) > McMillan CAV 2002 > When performing a BMC check, we choose > Given two Boolean functions A and B such • $A = S_0 \wedge TR(S_0, S_1)$ • B = TR(S₁, S₂) $\land ... \land TR(S_{k-1}, S_k) \land \neg P(S_k)$ that A ^ B = 0 > Any interpolant provides an overapproximate image of the initial state S_{0} , an interpolant is a function C such that: guaranteed to be k-adequate w.r.t. $\bullet C \wedge B = 0$ $\neg P(S_k)$. • $A \Rightarrow C$ • C refers only to the common variables of A and B $I(s_0) \Longrightarrow \widetilde{T_1}(s_0, s_1) \Longrightarrow \widetilde{T_2}(s_1, s_2) \Longrightarrow \cdots \Longrightarrow \widetilde{T_i}(s_{i-1}, s_i) \Longrightarrow \neg P$ > Interpolants can be easily computed from the refutation proof provided by SAT в Α С solvers

