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Simulation: The Current Picture

 Hard to generate high quality input stimuli
 A lot of user effort
 No formal way to identify unexercised aspects

 No good measure of comprehensiveness of validation
 Low bug detection rate is the main criterion
 Only means that current method of stimulus generation is not

achieving more.

Formal Verification: An Alternative to
Simulation!
 Formal Verification is the process of constructing a proof

that a target system will behave in accordance with its
specification
 Use of mathematical reasoning to prove that an implementation

satisfies a specification
 Like a mathematical proof: correctness of a formally verified

hardware design holds regardless of input values
 Consideration of all cases is implicit in formal verification

 Must establish
 A formal specification (properties or high-level behavior)
 A formal description of the implementation (design at higher level

of abstraction — model (observationally) equivalent to
implementation or implied by implementation).



Complete with respect to a given property
Correctness guaranteed mathematically, 

regardless the input values
No need to generate expected output sequences
Can generate an error trace if a property fails: 

better understand, confirm by simulation
Formal verification useful to detect and locate 

errors in designs
Consideration of all cases is implicit in formal

verification

Formal Verification: Pros Formal Verification: Cons

 Just because we have proved something correct does not
mean it will work!

 Common to other techniques
 Does the specification actually capture the designer’s intentions?
 Does the implementation in the real world behave like the model?

 Scalabilty (with the size of the design to verify)

Simulation vs. Formal Verification (1/4)

 Example
 (x +1)2 =  x2 + 2x +1

 Simulation
 Check Equation for all Values!!!

Simulation vs. Formal Verification (2/4)

 Formal Proof

Simulation vs. Formal Verification (3/4)

 Simulation: complete (real) model, partial verification
 Verification: partial (abstract) model, complete verification
 Simulation still needed to tune specifications; for large

complete designs
 Verification can generate counter-examples (error traces); 

possibly false negatives!
 Techniques are complementary — formal verification

gives additional confidence, e.g.,
 Apply formal verification of abstract model
 Obtain error trace if bug found (may be false negative!)
 Simulate error trace on the real model

Simulation vs. Formal Verification (4/4)

Common difficulty in all verification methods:
 Lack of “golden” reference

 What properties to verify

 “Simulation and formal verification have to play 
together.”

[IEEE Spectrum, January 1996]
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State of the Art (1/3)

 In the 1960-70’s, high expectations for “software 
verification”, but hopes gradually fizzled out by the late 
1970’s

 Theorem proving approaches have “cultural roots” in 
software verification in 1970’s (Hoare, Owicki, Gries)

 The use of formal methods did not seem practical
 Notations too obscure

 Techniques did not scale with problem size

 Tool support inadequate or too hard to use

 Only a few non-trivial case studies available

 Few people had the necessary training

Why formal methods might work well for
“hardware verification”?
 Hardware is often regular and hierarchical
 Re-use of design is common practice
 Hardware specification is more common, e.g., VHDL 

models
 Primitives are simpler, e.g., behavior of an NAND-Gate

easier to describe than the
 Semantics of a while-loop
 Cost of design error can mean a 6 months delay and a 

costly set of lithography masks

State of the Art (2/3)

 Recently more promising picture
 Software specification: industry trying out notations like SDL or Z 

to document system’s properties
 Protocol verification successful
 Hardware verification: industry adopting model checking and 

some theorem proving to complement simulation
 Industrial case studies increasing confidence in using formal

methods
 Verification groups: IBM, Intel, Motorola, HP, Nortel, NEC, 

Fujitsu, SUN, Cadence, Siemens, Synopsys, Lucent Technologies, 
.......

 Commercial tools from: Chrysalis, Cadence, Synopsys, Verysys, 
IBM, .......

State of the Art (3/3)

Formal Verification Methods

 Interactive (deductive) Methods
 Theorem Proving: relationship between a specification and an

implementation is a theorem in a logic, to be proven within the 
context of a proof calculus

 Automated Methods
 Combinational Equivalence Checking: proof of structural

equivalence of logic designs
 Sequential Equivalence Checking: proof of behavioral equivalence

of FSMs
 Model Checking: proof of (temporal) logic property (safety & 

liveness) against a semantic model of the design
 Invariant Checking (safety property)
 Language Containment (model checking of automata)

Formal Specification (1/2)

A specification is a description of a system and its
desired properties

Useful as a communication device
 between customer and designer,
 between designer and implementor, and
 between implementors and tester

Companion document to the system’s source code, 
but at a higher level of abstraction

Properties relate to function, interfaces, timing, 
performance, power, layout, etc.



Formal Specification (2/2)

 Formal specification. Use of formal methods (a language
with mathematically-defined syntax and semantics) to
describe the intended behavior of the system:
 The language of logic provides an unambiguous method of

recording the specification
 We can reason about a formal specification to check that the 

system specified will possess other desired properties

 The process of writing a formal specification helps uncover
ambiguity and incompleteness

 Formal specifications most successful for functional
behavior, also interface & timing

 Trend to integrate different specification languages, each
for a different aspect (e.g. VERA, SystemC, VHDL+)

Types of properties (2/2)

 Functional correctness properties;

 Safety (invariant) and Liveness properties
E.g.: in a mutual exclusion system with two processes A 
and B
 Safety property (nothing bad will ever happen): e.g. simultaneous

access will never be granted to both A and B. If false, can be
detected by finite sequences

 Liveness property (something good will eventually happen): e.g. if A 
wants to enter its critical section, it will eventually do so. Can only
be proved false by infinite sequences (any finite sequence can be
extended to satisfy the eventuality condition)

Buggy states

Initial states
Counter-Example Trace

Fwd

Bwd

Types of properties (2/2)
 Invariant property: Gp, Globally Property p holds, i.e., not(p) is

never reached, not (E(not(p)))
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 If same state variables
 Combinational Equivalence of and 
 Difficulty strongly dependent from the Boolean function

representation (canonical vs. non canonical)

 If state space different
 State Enumeration by Reachability Analysis

 Two FSMs are equivalent if they produce the same
output for every possible input sequence — Sequential
Equivalence Checking

Equivalence Checking (1/3) Equivalence Checking (2/3)



Combinational equivalence
 Possible if one-to-one state mapping do exit
 Relatively straightforward (equivalence of sets of

functions (BDDs))
 Tools part of verification flow

Sequential equivalence
 Needs some sort of Reachability Analysis
 No state mapping required (building of product

machine)
 Hard to handle large circuits (also must consider all

initial states) because of the state explosion problem

Equivalence Checking (3/3) Model Checking (1/3)

 Property described by temporal logic formula.

 System modeled by Labeled Transition Graph (LTG, LTS, 
Finite Kripke structure).

 Exhaustive search through the state space of the system 
(Reachability Analysis) to determine if the property holds
(provides counterexamples for identifying design errors).

 Problem: “State explosion”

 Partial Solution: Symbolic Model Checking

 Represent transition/output relations and sets of states
symbolically using ROBDD

 Alternative methods based on Satisfiability Solvers

Model Checking (2/3)

MC
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algorithm

counterexample

Model Checking (3/3)


