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Simulation: The Current Picture

 Hard to generate high quality input stimuli
 A lot of user effort
 No formal way to identify unexercised aspects

 No good measure of comprehensiveness of validation
 Low bug detection rate is the main criterion
 Only means that current method of stimulus generation is not

achieving more.

Formal Verification: An Alternative to
Simulation!
 Formal Verification is the process of constructing a proof

that a target system will behave in accordance with its
specification
 Use of mathematical reasoning to prove that an implementation

satisfies a specification
 Like a mathematical proof: correctness of a formally verified

hardware design holds regardless of input values
 Consideration of all cases is implicit in formal verification

 Must establish
 A formal specification (properties or high-level behavior)
 A formal description of the implementation (design at higher level

of abstraction — model (observationally) equivalent to
implementation or implied by implementation).



Complete with respect to a given property
Correctness guaranteed mathematically, 

regardless the input values
No need to generate expected output sequences
Can generate an error trace if a property fails: 

better understand, confirm by simulation
Formal verification useful to detect and locate 

errors in designs
Consideration of all cases is implicit in formal

verification

Formal Verification: Pros Formal Verification: Cons

 Just because we have proved something correct does not
mean it will work!

 Common to other techniques
 Does the specification actually capture the designer’s intentions?
 Does the implementation in the real world behave like the model?

 Scalabilty (with the size of the design to verify)

Simulation vs. Formal Verification (1/4)

 Example
 (x +1)2 =  x2 + 2x +1

 Simulation
 Check Equation for all Values!!!

Simulation vs. Formal Verification (2/4)

 Formal Proof

Simulation vs. Formal Verification (3/4)

 Simulation: complete (real) model, partial verification
 Verification: partial (abstract) model, complete verification
 Simulation still needed to tune specifications; for large

complete designs
 Verification can generate counter-examples (error traces); 

possibly false negatives!
 Techniques are complementary — formal verification

gives additional confidence, e.g.,
 Apply formal verification of abstract model
 Obtain error trace if bug found (may be false negative!)
 Simulate error trace on the real model

Simulation vs. Formal Verification (4/4)

Common difficulty in all verification methods:
 Lack of “golden” reference

 What properties to verify

 “Simulation and formal verification have to play 
together.”

[IEEE Spectrum, January 1996]
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State of the Art (1/3)

 In the 1960-70’s, high expectations for “software 
verification”, but hopes gradually fizzled out by the late 
1970’s

 Theorem proving approaches have “cultural roots” in 
software verification in 1970’s (Hoare, Owicki, Gries)

 The use of formal methods did not seem practical
 Notations too obscure

 Techniques did not scale with problem size

 Tool support inadequate or too hard to use

 Only a few non-trivial case studies available

 Few people had the necessary training

Why formal methods might work well for
“hardware verification”?
 Hardware is often regular and hierarchical
 Re-use of design is common practice
 Hardware specification is more common, e.g., VHDL 

models
 Primitives are simpler, e.g., behavior of an NAND-Gate

easier to describe than the
 Semantics of a while-loop
 Cost of design error can mean a 6 months delay and a 

costly set of lithography masks

State of the Art (2/3)

 Recently more promising picture
 Software specification: industry trying out notations like SDL or Z 

to document system’s properties
 Protocol verification successful
 Hardware verification: industry adopting model checking and 

some theorem proving to complement simulation
 Industrial case studies increasing confidence in using formal

methods
 Verification groups: IBM, Intel, Motorola, HP, Nortel, NEC, 

Fujitsu, SUN, Cadence, Siemens, Synopsys, Lucent Technologies, 
.......

 Commercial tools from: Chrysalis, Cadence, Synopsys, Verysys, 
IBM, .......

State of the Art (3/3)

Formal Verification Methods

 Interactive (deductive) Methods
 Theorem Proving: relationship between a specification and an

implementation is a theorem in a logic, to be proven within the 
context of a proof calculus

 Automated Methods
 Combinational Equivalence Checking: proof of structural

equivalence of logic designs
 Sequential Equivalence Checking: proof of behavioral equivalence

of FSMs
 Model Checking: proof of (temporal) logic property (safety & 

liveness) against a semantic model of the design
 Invariant Checking (safety property)
 Language Containment (model checking of automata)

Formal Specification (1/2)

A specification is a description of a system and its
desired properties

Useful as a communication device
 between customer and designer,
 between designer and implementor, and
 between implementors and tester

Companion document to the system’s source code, 
but at a higher level of abstraction

Properties relate to function, interfaces, timing, 
performance, power, layout, etc.



Formal Specification (2/2)

 Formal specification. Use of formal methods (a language
with mathematically-defined syntax and semantics) to
describe the intended behavior of the system:
 The language of logic provides an unambiguous method of

recording the specification
 We can reason about a formal specification to check that the 

system specified will possess other desired properties

 The process of writing a formal specification helps uncover
ambiguity and incompleteness

 Formal specifications most successful for functional
behavior, also interface & timing

 Trend to integrate different specification languages, each
for a different aspect (e.g. VERA, SystemC, VHDL+)

Types of properties (2/2)

 Functional correctness properties;

 Safety (invariant) and Liveness properties
E.g.: in a mutual exclusion system with two processes A 
and B
 Safety property (nothing bad will ever happen): e.g. simultaneous

access will never be granted to both A and B. If false, can be
detected by finite sequences

 Liveness property (something good will eventually happen): e.g. if A 
wants to enter its critical section, it will eventually do so. Can only
be proved false by infinite sequences (any finite sequence can be
extended to satisfy the eventuality condition)

Buggy states

Initial states
Counter-Example Trace

Fwd

Bwd

Types of properties (2/2)
 Invariant property: Gp, Globally Property p holds, i.e., not(p) is

never reached, not (E(not(p)))
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 If same state variables
 Combinational Equivalence of and 
 Difficulty strongly dependent from the Boolean function

representation (canonical vs. non canonical)

 If state space different
 State Enumeration by Reachability Analysis

 Two FSMs are equivalent if they produce the same
output for every possible input sequence — Sequential
Equivalence Checking

Equivalence Checking (1/3) Equivalence Checking (2/3)



Combinational equivalence
 Possible if one-to-one state mapping do exit
 Relatively straightforward (equivalence of sets of

functions (BDDs))
 Tools part of verification flow

Sequential equivalence
 Needs some sort of Reachability Analysis
 No state mapping required (building of product

machine)
 Hard to handle large circuits (also must consider all

initial states) because of the state explosion problem

Equivalence Checking (3/3) Model Checking (1/3)

 Property described by temporal logic formula.

 System modeled by Labeled Transition Graph (LTG, LTS, 
Finite Kripke structure).

 Exhaustive search through the state space of the system 
(Reachability Analysis) to determine if the property holds
(provides counterexamples for identifying design errors).

 Problem: “State explosion”

 Partial Solution: Symbolic Model Checking

 Represent transition/output relations and sets of states
symbolically using ROBDD

 Alternative methods based on Satisfiability Solvers

Model Checking (2/3)
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Model Checking (3/3)


