
1

Laboratory
on

Binary Decision Diagrams

Gianpiero Cabodi Stefano Quer

Politecnico di Torino
Torino, Italy

{gianpiero.cabodi,stefano.quer}@polito.it
http://staff.polito.it/{gianpiero.cabodi,stefano.quer}/

Outline

BDD – Apply: Circuit Representation
A Demo-BDD-WEB Package: TUDD
A BDD Package: CUDD

Simple Usage

A BDD Package: CUDD
Hints for Advanced Usage: How to use CUDD
Problem Solving

BDD calculator and equivalence verifier
N-queen Problem

(select one)

Outline

BDD – Apply: Circuit Representation
A Demo-BDD-WEB Package: TUDD
A BDD Package: CUDD

Simple Usage

A BDD Package: CUDD
Hints for Advanced Usage: How to use CUDD
Problem Solving

BDD calculator and equivalence verifier
N-queen Problem

(select one)
Increasing difficulty

(solutions available on the teacher WEB page)
(stop when desired … have fun!!!)

Build the BDD (step-by-step) of the following
functions:

f1 (x1, x2, x3 , x4) = x1 ⋅x2 + x’3 ⋅ x4 ⊕ x1 ⋅x’2 ⋅x3 ⋅ x4
f2 (x1, x2, x3 , x4) = x1 ⋅ (x2 + x’3 ⋅ x4) ⊕ x3 ⋅ (x1 + x’2)
f3 (x1, x2, x3 , x4) = (x1 + x2) ⋅ (x’3 + x2 ⋅ x3) ⊕ x4
f4 (x1, x2, x3 , x4) = x’1 ⊕ x’2 ⊕ x3 ⋅ x4 + x2 ⋅ x’3
f5 (x1, x2, x3 , x4) = (x1 ⋅ x2)’ + x’3 ⊕ x1 ⋅ x2 ⋅ (x3 + x4)
f6 (x1, x2, x3 , x4) = (x1 + x2 + x3 ⋅ x’4) ⊕ x1 ⋅ x2 + x3
f7 (x1, x2, x3 , x4) = x1 ⋅ (x2 + x3)’ ⊕ x1 ⋅ x2 + x4
g1 = f1 ⋅ f2
g2 = f3 + f4
g3 = (f5 + f6)’
g4 = f1 + f7
g5 = f3 ⋅ f5

BDD – Apply: Circuit Representation

Main features
Stephan Horeth - University TU Darmstadt
http://marple.rs.e-technik.tu-darmastadt.de/~sth/demo.html
Integrates different decomposition type
Demo-WEB page with good graphical interface
Package on request

Laboratory duty
“Play” with TUDD, i.e., select

Function
Variable Order
Decomposition Type

… toy-tool … have fun …

TUDD

Main features
Fabio Somenzi - Boulder/Colorado WEB page
http://vlsi.colorado.edu/~fabio
(copy in http://www.polito.it/~quer/teaching/phd/fv/laib)
Most widly used BDD package
Integrates BDD, ADD (Algebraic Decision Diagram), ZDD
(Zero-Suppresed Decision Diagrams)
Very Efficient
Many Realeases over the years … now version -2.3.1
(Includes the dddmp package from G. Cabodi and S. Quer)

CUDD

2

Laboratory Duty
Grab and uncompress it
Compile it

See Makefile in the root directory
Small modification IFF necessary (architecture
parameters, directory positions, etc.)
“Run”
Make

Check main features out
See documentation
Directory cudd/doc - File cudd.doc (text file)

Simple Usage
Build BDD for standard ISCAS benchmarks (with
nanotrav):

Combinational benchmarks
– c17.blif, c…, etc.

Sequential benchmarks
– s713.blif

#PI=35, #PO=23, #FF=19, #Gate=393
– s1512.blif

#PI=29 , #PO=21, #FF=57 , #Gate=780
– s1423.blif

#PI=17, #PO=5, #FF=74, #Gate=657
(from now on <c>)

– s298, s1196, s1238, , s1488, s1494
save output results …

Hints to use CUDD:
DD Manager

Type
– DdManager *

Functions
– Cudd_Init

Elementary BDD Variables
Type
– DdNode *

Functions (somehow similar)
– Cudd_bddIthVar
– Cudd_bddNewVar

Advanced Usage
Build BDDs

Start from constant one (get zero from “not” (one))
Functions (somehow similar)
– Cudd_ReadOne
– DD_ONE

Proceed through the “circuit/function”
– Cudd_Not
– Cudd_bddAnd
– Cudd_bddOr
– etc.

Each new BDD has to be referenced
– Cudd_Ref

Useless node must be dereferenced
– Cudd_RecursiveDeref

Check Results and Statistics
Functions
– Cudd_CountMinterm
– Cudd_PrintMinterm
– Cudd_DagSize

Quit the manager
Function
– Cudd_quit

Problem solving 1
Boolean Function Manipulation and (combinational)
Equivalence Checker

Write Program
booleanOp

Run it as
booleanOp <fileName1> <op> <fileName2>

where
<fileName1> and <fileName2> are files containing a function
description in PLA format
<op> is the operation
a stands for and
o stands for or
x stands for xor
e stands for (combinational) equivalence

Result
report statistics on resulting function
(e.g., print out BDD minterms, PLA format)

3

Example
File 1 File 2
4 1
0010 1 -0-0 1
0000 1
1010 1
1000 1
F1 = ¬a· ¬b· c · ¬d + ¬a· ¬b· ¬c· ¬d + a· ¬b· c· ¬d + a · ¬b· ¬c · ¬d
F2 = ¬b · ¬d

Run as
booleanOp File1 e File2

Result
f in File1 == f in File2 !!!

Write Program
8queen

Run it as
8quenn <N>

where
<N> specifies the board size (N x N)

Result
Report number of solutions
(Eventually) the solution themselves (somehow
coded)

Problem solving 2
The N-quenn problem (chess puzzle)

Chess Board NxN
For each position in the variable create variable xi,j
(i row index, j column index, from 1 to N)

Relations (constraints – no queen in conflict)
Iff there is a queen in i, j no other queen in row i
Xi,j ⇒ ∏k ¬Xi,k , with k = [1, N], k ≠j
Iff there is a queen in i, j no other queen in column j
Xi,j ⇒ ∏k¬Xk,j , with k = [1, N], k ≠i
Iff there is a queen in i, j no other queen in same diagonal
Xi,j ⇒ ∏k ¬Xk,j+k-i , with k = [1, N], j+k-i = [1, N], k ≠i
Iff there is a queen in i, j no other quenn in same inverse
diagonal
Xi,j ⇒ ∏k ¬Xk,j+i-k , with k = [1, N], j+i-k = [1, N], k ≠i

Coding the Problem
Relations (constraints – enough queens)

There must be a queen for each row
Xi,1 ∨ Xi,2 ∨ Xi,3 ∨ … ∨ Xi,N , for all row i = [1, N]

Final Relation
Taking the conjunction of all the previous ones
When true there is a solution

N.B. A B A⇒B

0 0 1

0 1 1

1 0 0

1 1 1

A⇒B = ¬A ∨ B

