

Outline

* BDD - Apply: Circuit Representãtionio::
* A Demo-BDD-WEB Package: TUø̈ס̈
* A BDD Package: CUDD
- Simple Usage
* A BDD Package: CUDD
- Hints for Advanced Usage: How ఫ̣o use Ĉ̣UDD
- Problem Solving \triangleleft BDD calculator and equivalence verifier $\stackrel{N}{ }$-queen Problem
(select one)
Increasing difficulty
(solutions available on the teacher WEB page)
(stop when desired ... have fun!!!)

Outline

BDD - Apply: Circuit Representation

* A Demo-BDD-WEB Package: TUDD
* A BDD Package: CUDD
- Simple Usage
* A BDD Package: CUDD
- Hints for Advanced Usage: How to use CUDD
- Problem Solving
\diamond BDD calculator and equivalence verifier $\stackrel{N}{ }$-queen Problem
(select one)

BDD - Apply: Circuit Representation

* Build the BDD (step-by-step) of the following functions:
- $f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} \cdot x_{2}+x_{3}^{\prime} \cdot x_{4} \oplus x_{1} \cdot x_{2}^{\prime} \cdot x_{3} \cdot x_{4}$
- $f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} \cdot\left(x_{2}+x_{3}^{\prime} \cdot x_{4}\right) \oplus x_{3} \cdot\left(x_{1}+x_{2}\right)$
- $f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+x_{2}\right) \cdot\left(x^{\prime}{ }_{3}+x_{2} \cdot x_{3}\right) \oplus x_{4}$
- $\mathrm{f}_{4}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)=\mathrm{x}_{1} \oplus \mathrm{x}_{2}^{\prime} \oplus \mathrm{x}_{3} \cdot \mathrm{x}_{4}+\mathrm{x}_{2} \cdot \mathrm{x}^{\prime}{ }_{3}$
- $f_{5}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} \cdot x_{2}\right)^{\prime}+x_{3}^{\prime} \oplus x_{1} \cdot x_{2} \cdot\left(x_{3}+x_{4}\right)$
- $f_{6}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+x_{2}+x_{3} \cdot x_{4}^{\prime}\right) \oplus x_{1} \cdot x_{2}+x_{3}$
$\leftrightarrow \mathrm{f}_{7}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)=\mathrm{x}_{1} \cdot\left(\mathrm{x}_{2}+\mathrm{x}_{3}\right)^{\prime} \oplus \mathrm{x}_{1} \cdot \mathrm{x}_{2}+\mathrm{x}_{4}$
$-g_{1}=f_{1} \cdot f_{2}$
$-g_{2}=f_{3}+f_{4}$
$-g_{3}=\left(f_{5}+f_{6}\right)$,
$-g_{4}=f_{1}+f_{7}$
- $g_{5}=f_{3} \cdot f_{5}$

TUDD

* Main features

- Stephan Horeth - University TU Darmstadt
- http://marple.rs.e-technik.tu-darmastadt.de/~sth/demo.html
- Integrates different decomposition type
- Demo-WEB page with good graphical interface
- Package on request
* Laboratory duty
- "Play" with TUDD, i.e., select

Function
Variable Order
\& Decomposition Type
... toy-tool ... have fun ..

Simple Usage

* Laboratory Duty

- Grab and uncompress it
- Compile it

See Makefile in the root directory
s Small modification IFF necessary (architecture
parameters, directory positions, etc.)
"Run"
Make

- Check main features out
\diamond See documentation
Directory cudd/doc - File cudd.doc (text file)
- Build BDD for standard ISCAS benchmarks (with nanotrav):
\diamond Combinational benchmarks
c17.blif, c..., etc.
\& Sequential benchmarks
- s713.blif
\#PI=35, \#P0=23, \#FF=19, \#Gate=393
- s1512.blif \#PI=29 , \#PO=21, \#FF=57 , \#Gate=780
- s1423.blif \#PI=17, \#P0=5, \#FF=74, \#Gate=657 (from now on <c>)
s298, s1196, s1238, , s1488, s1494 save output results ...

Advanced Usage

Hints to use CUDD

- DD Manager
\& Type
DdManager *
\& Functions
- Cudd_Init
- Elementary BDD Variables
$\&$ Type
- DdNode *

Functions (somehow similar)

- Cudd_bddIthVar
- Cudd bddNewVar
- Check Results and Statistics
\checkmark Functions
- Cudd_CountMinterm
- Cudd_PrintMinterm
- Cudd_DagSize
- Quit the manager
\rightarrow Function
- Cudd_quit
- Build BDDs
\checkmark Start from constant one (get zero from "not" (one)
\checkmark Functions (somehow similar)
- Cudd_ReadOne

DD_ONE
\& Proceed through the "circuit/function"

- Cudd_Not
- Cudd_bddAnd
- Cudd_bddOr
etc.
Each new BDD has to be referenced Cudd_Ref
\checkmark Useless node must be dereferenced
- Cudd RecursiveDeref

Problem solving 1

Boolean Function Manipulation and (combinational) Equivalence Checker

Write Program

- booleanOp

Run it as

- booleanOp <fileName1> <op> <fileName2>
where
- <fileName1> and <fileName2> are files containing a function description in PLA format
- <op> is the operation
a stands for and
o stands for or
e stands for (combinational) equivalence
Result
- report statistics on resulting function (e.g., print out BDD minterms, PLA format)
* Example File 1 4 00101 00101 10101 10001
$F_{1}=\neg a \cdot \neg b \cdot c \cdot \neg d+\neg a \cdot \neg b \cdot \neg c \cdot \neg d+a \cdot \neg b \cdot c \cdot \neg d+a \cdot \neg b \cdot \neg c \cdot \neg d$
$F_{2}=\neg b \cdot \neg d$
* Run as
booleanOp File1 e File2
* Result
f in File1 == f in File2 !!!

Problem solving 2

The N -quenn problem (chess puzzle)

* Write Program

- 8queen
* Run it as
- 8quenn <N>
where
- < $\mathrm{N}>$ specifies the board size ($\mathrm{N} \times \mathrm{N}$)
* Result
- Report number of solutions
- (Eventually) the solution themselves (somehow coded)

Coding the Problem

* Chess Board NxN
* For each position in the variable create variable $x_{i, j}$ (i row index, j column index, from 1 to N)
* Relations (constraints - no queen in conflict)
- Iff there is a queen in i, j no other queen in row i
$\mathrm{X}_{\mathrm{i}, \mathrm{j}} \Rightarrow \Pi_{\mathrm{k}} \neg \mathrm{X}_{\mathrm{i}, \mathrm{k}} \quad, \quad$ with $\mathrm{k}=[1, \mathrm{~N}], \mathrm{k} \neq \mathrm{j}$
- Iff there is a queen in i, j no other queen in column j $\mathrm{X}_{\mathrm{i}, \mathrm{j}} \Rightarrow \Pi_{\mathrm{k}} \neg \mathrm{X}_{\mathrm{k}, \mathrm{j}} \quad, \quad$ with $\mathrm{k}=[1, \mathrm{~N}], \mathrm{k} \neq \mathrm{i}$
- Iff there is a queen in i, j no other queen in same diagonal $\mathrm{X}_{\mathrm{i}, \mathrm{j}} \Rightarrow \Pi_{\mathrm{k}} \neg \mathrm{X}_{\mathrm{k}, \mathrm{j}+\mathrm{k}-\mathrm{i}} \quad, \quad$ with $\mathrm{k}=[1, \mathrm{~N}], \mathrm{j}+\mathrm{k}-\mathrm{i}=[1, \mathrm{~N}], \mathrm{k} \neq \mathrm{i}$
- Iff there is a queen in i, j no other quenn in same inverse diagonal
$\mathrm{X}_{\mathrm{i}, \mathrm{j}} \Rightarrow \Pi_{\mathrm{k}} \neg \mathrm{X}_{\mathrm{k}, \mathrm{j}+\mathrm{i}-\mathrm{k}} \quad, \quad$ with $\mathrm{k}=[1, \mathrm{~N}], \mathrm{j}+\mathrm{i}-\mathrm{k}=[1, \mathrm{~N}], \mathrm{k} \neq \mathrm{i}$

Relations (constraints - enough queens)

- There must be a queen for each row
$X_{i, 1} \vee X_{i, 2} \vee X_{i, 3} \vee \ldots \vee X_{i, N} \quad, \quad$ for all row $i=[1, N]$
* Final Relation
- Taking the conjunction of all the previous ones
- When true there is a solution
N.B. A B $\quad \mathrm{A} \rightarrow \mathrm{B}$

001
011
$10 \quad 0$
$11 \quad 1$
$A \Rightarrow B=\neg A \vee B$

