4. Verification by Theorem Proving

	Page
Introduction	4.2
First-Order Logic	4.4
Higher-Order Logic	4.14
Theorem Proving Systems	4.16
HOL Theorem Prover	4.22
Specification in HOL	4.25
HOL Proof Mechanism	4.29
HOL Verification Examples	4.42
Abstraction Forms	4.48
Verification of Generic Circuits	4.51
References	4.57

Introduction

Theorem Proving

Prove that an implementation satisfies a specification by mathematical reasoning

Implementation and specification expressed as *formulas* in *a formal logic*

Required relationship (logical equivalence/logical implication) described as *a theorem* to be proven within the context of a proof calculus

A proof system:

A set of axioms and inference rules (simplification, rewriting, induction, etc.)

First-Order Logic

- *Propositional logic*: reasoning about complete sentences.
- First-order logic: also reasoning about individual objects and relationships between them.

Syntax

• **Objects** (in FOL) are denoted by expressions called *terms*:

Constants a, b, c,...; Variables u, v, w,...;

 $f(t_1, t_2, ..., t_n)$ where $t_1, t_2, ..., t_n$ are terms and f a *function symbol* of n arguments

• Predicates:

true (T) and *false* (F) $p(t_1, t_2,..., t_n)$ where $t_1, t_2,..., t_n$ are *terms* and p a *predicate symbol* of n arguments

• Formulas:

Predicates

P and Q formulas, then $\neg P$, $P \land Q$, $P \lor Q$, $P \rightarrow Q$, $P \leftrightarrow Q$ are formulas

x a variable, P a formula, then $\forall x.P, \exists x.Q$ are formulas (x is not free in P, Q)

Semantics of a first-order logic formulae G: interpretation for function, constant and predicate symbols in G and assigning values to free variables

First-Order Interpretations (Structures) M: M = (D, I)

- D is a non-empty domain of the structure
- I is an interpretation function, assigns function, constant and predicate symbols:
 - (1) For every function symbol f of rank n>0, I(f): $D^n \rightarrow D$ is an n-ary function.
 - (2) For every constant c, I(c) is an element of D.
 - (3) For every predicate symbol P of rank n ≥ 0 , I(P): Dⁿ \rightarrow {F, T} is an n-ary predicate.

Evaluation

- For every M, a formula can be evaluated to T or F according to the following rules:
 - (1) Evaluate truth values of formulas P and Q, and then the truth values of $\neg P$, $P \land Q$, $P \lor Q$, $P \rightarrow Q$, $P \leftrightarrow Q$ using propositional logic
 - (2) $\forall x$. P evaluates to T if truth value of G is T for every $d \in D$; otherwise, it is F
 - (3) $\exists x.P$ evaluates to T if truth value of G is T for at least one d \in D; otherwise, it is F

Example: $G = \forall x. (P(x) \rightarrow Q(f(x), a))$, with $M=(D, I), D=\{1,2\}$, and I as:

Assignment for a	Assign	ment for f		As	signme	nt for l	P and (Q
a	f(1)	f(2)	P(1)	P(2)	Q(1,1)	Q(1,2)	Q(2,1) Q(2,2)
1	2	1	F	Т	Т	Т	F	Т

- $x=1: P(x) \rightarrow Q(f(x), a) = P(1) \rightarrow Q(f(1), a) = P(1) \rightarrow Q(2, 1) = F \rightarrow F = T;$
- $x=2: P(x) \rightarrow Q(f(x), a) = P(2) \rightarrow Q(f(2), a) = P(2) \rightarrow Q(1, 1) = T \rightarrow T = T.$
- Since $P(x) \rightarrow Q(f(x), a)$ is true for all $x \in D$, $\forall x. (P(x) \rightarrow Q(f(x), a))$ is true under M
- M is a model of G (M \models G)

(we can also prove that $\exists x. (P(x) \rightarrow Q(f(x), a))$ is true under M)

The Validity Problem of FOL

- To decide the validity for formulas of FOL, the truth table method does not work!
- *Reason*: must deal with structures not just truth assignments.
- Structures need not be finite ...

Semi-decidable (partially solvable)

• There is an algorithm which starts with an input, and

1) if the input is valid then it terminates after a finite number of steps, and outputs the correct value (Yes or No)

2) if the input is not valid then it reaches a reject halt or loops forever

Theorem (Church-Turing, 1936)

The validity problem for formulas of FOL is undecidable, but semi-decidable.

• Some subsets of FOL are decidable.

Deduction in FOL

Theorem (Gödel, 1931)

• FOL is complete and consistent, i.e., there are complete and consistent deduction systems.

Prenex Normal Forms (PNF): Move quantifiers to the front

$F = (Q_1 x_1) \dots (Q_n x_n) G$	every ($Q_i x_i$) is either ($\forall x_i$) or ($\exists x_i$), i=1,,n				
prefix	G is a formula containing no quatifiers.				

- Theorem: For every formula P, there exists an equivalent formula Q in prenex form.
- In the proof of this theorem, there is a simple algorithm to convert formulas into PNF.

Skolem Standard Forms (SSF)

• **Skolemization**: Remove existential quantifiers

For each formula F in PNF, define its SSF as the result of applying the following algorithm to F.

while F contains an existential quantifier do

begin

Let F have the form $F = \forall x_1 \dots \forall_n x_n \exists z \in for some E in PNF and n \ge 0$;

Let f be a new function symbol of arity n that does not yet occur in F;

 $F := \forall x_1 \dots \forall_n x_n E [f(x_1, \dots, x_n)/z]; \qquad \{ \text{substitution } a/x: a \text{ replaces } x \}$

 $\{\exists z \text{ in } F \text{ is canceled and each occurrence of } z \text{ in } E \text{ is substituted by } f(x_1, ..., x_n)\}$

end.

Skolem Standard Forms (cont'd)

Theorem: For each formula F in PNF, F is satisfiable iff its SSF is satisfiable.

- Transformation of a formula to Skolem form does not preserve equivalence, because of the new function symbol(s) occurring in the Skolem formula.
- FOL resolution is based on Skolem Standard Forms.

Substitution

- A *substitution* is a finite set of the form $\{t_1/v_1, ..., t_n/v_n\}$, where every v_i is a variable, every t_i is a term different from v_i , and no two elements in the set have the same variable after the stroke symbol.
- Examples: $\psi = \{f(z)/x, y/z\}$ and $\theta = \{a/x, g(y)/y, f(g(b))/z\}.$
- Let $\theta = \{t_1/v_1, ..., t_n/v_n\}$ be a substitution and E be an expression. E θ is an expression obtained by replacing *simultaneously* each occurrence of variable $v_i, 0 \le i \le n$, in E by term t_i .
- $E\theta$ is an *instance* of E.
- Example: $\theta = \{a/x, f(b)/y, c/z\}$ and E = P(x, y, z); $E\theta = P(a, f(b), c)$.

• Substitutions $\theta = \{t_1/x_1, ..., t_n/x_n\}$ and $\lambda = \{u_1/y_1, ..., u_m/y_m\}$

Composition of θ and λ is the substitution $\theta \bullet \lambda$ obtained from

 $\{t_1\lambda/x_1, ..., t_n\lambda/x_n, u_1/y_1, ..., u_m/y_m\}$ by deleting

(1) any element $t_j \lambda / x_j$, for which $t_j \lambda = x_j$, and

(2) any element u_i/y_i such that $y_i \in \{x_1, ..., x_n\}$

• Example: $\theta = \{f(y)/x, z/y\}$ and $\lambda = \{a/x, b/y, y/z\}$ $\{f(y)/x, \frac{y}{y}, \frac{a}{x}, \frac{b}{y}, y/z\} \implies \theta \bullet \lambda = \{f(b)/x, y/z\}$

Unification

- While carrying out proofs, we have to unify (match) two or more expressions
- Must find a substitution that can make several expressions identical
- Substitution θ is a *unifier* for $\{E_1, ..., E_k\}$ iff $E_1\theta = E_2\theta = ... = E_k\theta$
- $\{E_1, ..., E_k\}$ is *unifiable* if there is a unifier for it
- Example: {P(a, y), P(x, f(b))} is unifiable with $\theta = \{a/x, f(b)/y\}$
- Unifier σ for S = {E₁,..., E_k} of expressions is *most general unifier* iff for each unifier θ of S there is a substitution λ such that θ=σ•λ

Unification (cont'd) Unification plays a key role in proof systems.

Basic idea: expressions P(a) and P(x) are not identical and

 {a, x} is the disagreement pair - try to eliminate it by unification
 Since x is a (universally quantified) variable, it can be replaced by a and the disagreement thus eliminated!

• Unification Algorithm (Robinson)

k: = 0;
$$\theta_k = \emptyset$$
, $W_k := W \{A \text{ non-empty set of literals} \}$

while $|W_k| > 1$ do

begin

Scan terms in W_k from left to right, until the first position is found where in at least two literals (say, L_1 and L_2) the corresponding symbols are different;

if none of these symbols is a variable then output "non-unifiable" and halt;

else Let x be the variable and t the other term;

if x occurs in t then output "non-unifiable" and halt

else
$$\theta_{k+1} := \theta_k \bullet \{t/x\}, W_{k+1} := W_k \{t/x\};$$

k:=k+1

end

Unification (cont'd)

• Example: W={ \neg P(f(z, g(a,y)), h(z)), \neg P(f(f(u,v),w), h(f(a,b)))}

$$\begin{array}{c} \text{Step 1: } \left\{ \neg P(f(z, g(a, y)), h(z)), \neg P(f(f(u, v), w), h(f(a, b))) \right\} & \theta_1 := \left\{ f(u, v)/z \right\} \\ & \uparrow \\ \text{Step 2: } \left\{ \neg P(f(f(u, v), g(a, y)), h(f(u, v))), \neg P(f(f(u, v), w), h(f(a, b))) \right\} & \theta_2 := \theta_1 \bullet \left\{ g(a, y)/w \right\} \\ & \uparrow \\ \text{Step 3: } \left\{ \neg P(f(f(u, v), g(a, y)), h(f(u, v))), \neg P(f(f(u, v), g(a, y)), h(f(a, b))) \right\} & \theta_3 := \theta_2 \bullet \left\{ a/u \right\} \\ & \uparrow \\ \text{Step 4: } \left\{ \neg P(f(f(u, v), g(a, y)), h(f(a, v))), \neg P(f(f(u, v), g(a, y)), h(f(a, b))) \right\} & \theta_4 := \theta_3 \bullet \left\{ b/v \right\} \\ & \uparrow \\ W = \left\{ \neg P(f(f(a, b), g(a, y)), h(f(a, b))) \right\} & \theta_4 := \left\{ f(u, v)/z, g(a, y)/w, a/u, b/v \right\} \end{array}$$

Unification Theorem (Robinson): Each unifiable set of literals has the most general unifier.

Higher-Order Logic

- *First-order logic*: only domain variables can be quantified.
- Second-order logic: quantification over subsets of variables (i.e., over predicates).
- *Higher-order logics*: quantification over arbitrary predicates and functions.

Higher-Order Logic

- Variables can be functions and predicates,
- Functions and predicates can take functions as arguments and return functions as values,
- Quantification over functions and predicates.

Since arguments and results of predicates and functions can themselves be predicates or functions, this imparts a **first-class status** to functions, and allows them to be manipulated just like *ordinary values*

Example 1: (mathematical induction)

 $\forall P. [P(0) \land (\forall n. P(n) \rightarrow P(n+1))] \rightarrow \forall n.P(n)$ (Impossible to express it in FOL)

Example 2: Function Rise defined as Rise (c, t) = $\neg c(t) \land c(t+1)$

Rise expresses the notion that a signal *c* rises at time *t*. Signal is modeled by a function c: $N \rightarrow \{F,T\}$, passed as argument to Rise. Result of applying Rise to c is a function: $N \rightarrow \{F,T\}$.

Higher-Order Logic (cont'd)

Advantage: high expressive power!

Disadvantages:

- Incompleteness of a sound proof system for most higher-order logics
- **Theorem** (Gödel, 1931) *There is no complete deduction system for the second-order logic.*
- Reasoning more difficult than in FOL, need ingenious inference rules and heuristics.
- Inconsistencies can arise in higher-order systems if semantics not carefully defined

```
"Russell Paradox":
```

Let P be defined by $P(Q) = \neg Q(Q)$. By substituting P for Q, leads to $P(P) = \neg P(P)$, (P: bool \rightarrow bool, Q: bool \rightarrow bool) contradiction!

- Introduction of "types" (syntactical mechanism) is effective against certain inconsistencies.
- Use *controlled form of logic and inferences* to minimize the risk of inconsistencies, while gaining the benefits of powerful representation mechanism.
- Higher-order logic increasingly popular for hardware verification!

Theorem Proving Systems

- Automated deduction systems (e.g. Prolog)
 - full automatic, but only for a decidable subset of FOL
 - speed emphasized over versatility
 - often implemented by ad hoc decision procedures
 - often developed in the context of AI research
- Interactive theorem proving systems
 - semi-automatic, but not restricted to a decidable subset
 - versatility emphasized over speed
 - in principle, a complete proof can be generated for every theorem

Some theorem proving systems:

Boyer-Moore (first-order logic) HOL (higher-order logic) PVS (higher-order logic) Lambda (higher-order logic)

Boyer-Moore (Nqthm)

- Developed at University of Texas and later CLI
- Quantifier-free first-order logic.
- Powerful built-in heuristics; user must find a sequence of lemmas that permits to prove the desired theorem with available heuristics
- Collection of LISP programs that permit the user to axiomatize inductively constructed data types, define recursive functions, and (inductively) prove theorems about them
- Process of proof generation is not fully automatic; user assistance for setting up intermediate lemmas and definitions
- A number of verification application including microprocessors
- For more information: http://www.cli.com/

ACL2

- Developed at CLI
- ACL2 is a mathematical logic together with a mechanical theorem prover to help reason in the logic
- The logic is just a subset of applicative Common Lisp
- The theorem prover is an "industrial strength" version of the Boyer-Moore theorem prover, Nqthm
- Models of all kinds of computing systems can be built in ACL2, just as in Nqthm, even though the formal logic is Lisp
- Once built, an ACL2 model of a system can be *executed* in Common Lisp
- ACL2 can also be used to prove theorems about the model
- For more information: http://www.cs.utexas.edu/users/moore/acl2/

PVS

- PVS (Prototype Verification System) developed at SRI
- The specification language of PVS is based on classical, typed higher-order logic
- The primitive inferences include propositional and quantifier rules, induction, rewriting, and *decision procedures* for linear arithmetic
- The implementations of these primitive inferences are optimized for large proofs: E.g., propositional simplification uses BDDs, and auto-rewrites are cached for efficiency
- User-defined procedures can combine these primitive inferences to yield higher-level proof strategies
- PVS includes a *BDD-based decision procedure* for relational Mu-calculus: experimental integration of theorem proving and CTL model checking
- Proofs are developed interactively by combining high-level inference procedures:
- For more information: http://www.csl.sri.com/pvs.html

Lambda

- Commercial tool by Abstract Hardware Ltd. (UK)
- Verification and synthesis tool based on high-order logic theorem proving
- Specification in predicate logic and expressed in the L2 language (based on SML, Standard Meta Language)
- Specification can be executed using the "Animator" tool
- Interactive *correct-by-construction* synthesis using
 - transformations by applying rewriting rules
 - partitioning
 - instantiating and interconnecting components
 - scheduling operations, and allocating resources (even for pipelined designs)
- Backtracking to a preceding design and exploration of alternatives
- Reasoning over a mix of timing scales, e.g., clock ticks, frame periods, pipeline insertion
- Output current state of the design (subset of L2) in VHDL and produce control microcode
- Complex properties can be stated and proven as formulas to be satisfied by the design
- For more information: http://www.ahl.co.uk

HOL

- HOL (Higher-Order Logic) developed at University of Cambridge
- Interactive environment (in ML, Meta Language) for machine assisted theorem proving in higher-order logic (a proof assistant)
- Steps of a proof are implemented by applying inference rules chosen by the user; HOL checks that the steps are safe
- All inferences rules are built on top of eight primitive inference rules
- Mechanism to carry out backward proofs by applying built-in ML functions called *tactics* and *tacticals*
- By building complex tactics, the user can customize proof strategies
- Numerous applications in software and hardware verification
- Large user community
- For more information: http://www.cl.cam.ac.uk/Research/HVG/HOL/ or http://lal.cs.byu.edu/lal/hol-documentation.html

Note: we will now focus on HOL!

HOL Theorem Prover

- Logic is strongly typed (type inference, abstract data types, polymorphic types, etc.)
- It is sufficient for expressing most ordinary mathematical theories (the power of this logic is similar to set theory)
- HOL provides considerable built-in theorem-proving infrastructure:
 - a powerful rewriting subsystems
 - *library* facility containing useful theories and tools for general use
 - *Decision procedures* for tautologies and semi-decision procedure for linear arithmetic provided as libraries
- The primary interface to HOL is the functional programming language ML
- Theorem proving tools are functions in ML (users of HOL build their own applicationspecific theorem proving infrastructure by writing programs in ML)
- Many versions of HOL:
 - HOL88: Classic ML (from LCF);
 - HOL90: Standard ML
 - HOL98: Moscow ML

HOL Theorem Prover (cont'd) • HOL and ML HOL = some predefined functions + types The ML Language

- The HOL systems can be used in two main ways:
 - for directly proving theorems: when higher-order logic is a suitable specification language (e.g., for hardware verification and classical mathematics)
 - as embedded theorem proving support for application-specific verification systems when specification in specific formalisms needed to be supported using customized tools.
- The approach to mechanizing formal proof used in HOL is due to Robin Milner. He designed a system, called LCF: Logic for Computable Functions. (The HOL system is a direct descendant of LCF.)

HOL Theorem Prover (cont'd)

• How the logic is embedded in ML:

logic	terms	types	theorems
ML data type	:term	:hol_type	:thm

• Terms are represented by values of the ML abstract data type:term

- P `T /\ F ==> T`;

val it =
$$T/$$
 F ==> T' : term

• The quotation parser and pretyyprinter:

Specification in HOL

• Functional description:

express output signal as function of input signals, e.g.:

AND gate:

```
out = and (in_1, in_2) = (in_1 \land in_2)
```


• Relational (predicate) description:

gives relationship between inputs and outputs in the form of a predicate (a Boolean function returning "true" of "false"), e.g.:

```
AND gate:

AND ((in_1, in_2),(out)):= out =(in_1 \land in_2)
```

Notes:

- functional descriptions allow recursive functions to be described. They cannot describe bi-directional signal behavior or functions with multiple feed-back signals, though
- relational descriptions make no difference between inputs and outputs
- Specification in HOL will be a combination of predicates, functions and abstract types

Specification in HOL

Combinational circuits


```
SPEC (in<sub>1</sub>, in<sub>2</sub>, in<sub>3</sub>, in<sub>4</sub>, out):=
out = (in<sub>1</sub> \land in<sub>2</sub>) \lor (in<sub>3</sub> \land in<sub>4</sub>)
```

```
\begin{aligned} \text{IMPL } (\text{in}_1, \text{in}_2, \text{in}_3, \text{in}_4, \text{out}) &:= \\ \exists \ l_1 \ l_2. \ \textbf{AND} \ (\text{in}_1, \text{in}_2, l_1) \land \textbf{AND} \ (\text{in}_3, \text{in}_4, l_2) \land \textbf{OR} \ (l_1, l_2, \text{out}) \end{aligned}
where AND (a, b, c):= (c = a \land b)
OR (a, b, c):= (c = a \lor b)
```

Note: a functional description would be:

```
\begin{aligned} \text{IMPL} & (\text{in}_1, \text{in}_2, \text{in}_3, \text{in}_4, \text{out}) := \\ & \text{out} = (\text{or (and (in}_1, \text{in}_2), \text{and (in}_3, \text{in}_4))) \\ & \text{where } \text{and (in}_1, \text{in}_2) = (\text{in}_1 \land \text{in}_2) \\ & \text{or (in}_1, \text{in}_2) = (\text{in}_1 \lor \text{in}_2) \end{aligned}
```

Specification in HOL

Sequential circuits

- Explicit expression of time (discrete time modeled as natural numbers).
- Signals defined as functions over time, e.g. type: ($nat \rightarrow bool$) or ($nat \rightarrow bitvec$)
- Example: D-flip-flop (latch):

DFF (in, out):= (out (0) = F) \land (\forall t. out (t+1) = in (t))

in and *out* are functions of time *t* to boolean values: type (nat \rightarrow bool)

- Notion of time can be added to combinational circuits, e.g., AND gate
 AND (in₁, in₂, out):= ∀ t. out (t) = (in₁(t) ∧ in₂(t))
- Temporal operators can be defines as predicates, e.g.: EVENTUAL sig $t_1 = \exists t_2$. $(t_2 > t_1) \land sig t_2$

meaning that signal "sig" will eventually be true at time $t_2 > t_1$.

<u>Note</u>: This kind of specification using existential quantified time variables is useful to describe asynchronous behavior

HOL Proof Mechanism

- A formal proof is a sequence, each of whose elements is
 - either an *axiom*
 - or follows from earlier members of the sequence by a *rule of inference*
- A *theorem* is the last element of a proof
- A *sequent* is written: $\Gamma \vdash P$, where Γ is a *set of assumptions* and P is the *conclusion*
- In HOL, this consists in applying ML functions representing rules of inference to axioms or previously generated theorems
- The sequence of such applications directly correspond to a proof
- A value of *type* thm can be obtained either
 - directly (as an axiom)
 - by computation (using the built-in functions that represent the inference rules)
- ML typechecking ensures these are the only ways to generate a thm:

All theorems must be proved!

Primitive Rules

• All theorems in HOL are ultimately proved using only the primitive inference rule:

Basic Rewriting Rules

- Rewriting is done:
 - with all the supplied equations
 - on all subterms of the theorem to be rewritten
 - repeatedly, until no rewrite rule applies
- Rewriting rules:

Built-in Derived Rules

• There is a wide range of derived inference rules built into the system:

• To become an expert HOL user, one should continuously learn new rules and proof techniques

- can be millions of (primitive) inferences long
- usually not natural for "one-off" proofs
- but essential for tool building

The Subgoal Package

- HOL has a subgoal package for finding tactic proofs interactively
- The subgoal package:
 - maintains a *stack* of subgoals to be proved
 - provides functions that operate on these subgoals
- The subgoal package is for finding the schema of the proof:

- Suppose that for a given goal g: $T(g) = ([g_1, ..., g_n], f)$
- If the theorems $\Gamma_1 \vdash P_1, ..., \Gamma_n \vdash P_n$ solve the goals $g_1, ..., g_n$, then $f([\Gamma_1 \vdash P_1, ..., \Gamma_n \vdash P_n])$ should solve the original goal g.
- In a picture:

Verification Methodology in HOL

- 1. Establish a formal specification (predicate) of the intended behavior (SPEC)
- 2. Establish a formal description (predicate) of the implementation (IMP), including:
 - behavioral specification of all sub-modules
 - structural description of the network of sub-modules
- 3. Formulation of a proof goal, either
 - IMP \Rightarrow SPEC (proof of implication), or
 - IMP \Leftrightarrow SPEC (proof of equivalence)
- 4. Formal verification of above goal using a set of inference rules

Example 1: Logic AND

AND Specification:

AND_SPEC (i_1 , i_2 ,out) := out = $i_1 \land i_2$

NAND specification:

NAND
$$(i_1, i_2, out) := out = \neg (i_1 \land i_2)$$

NOT specification:

NOT (i, out) := out = \neg i

AND Implementation:

AND_IMPL (i_1, i_2, out) := $\exists x$. NAND (i_1, i_2, x) \land NOT (x, out)

Logic AND (cont'd)

Proof Goal:

 $\forall i_1, i_2, \text{out. AND_IMPL}(i_1, i_2, \text{out}) \Rightarrow \text{ANDSPEC}(i_1, i_2, \text{out})$

Proof (forward)

AND_IMP(i₁,i₂,out) {from above circuit diagram}

- $\vdash \exists x.NAND (i_1, i_2, x) \land NOT (x, out) \{by def. of AND impl\}$
- $\vdash \text{NAND} (i_1, i_2, x) \land \text{NOT}(x, \text{out}) \{ \text{strip off "}\exists x." \}$
- \vdash NAND (i_1, i_2, x) {left conjunct of line 3}
- $\vdash x = \neg(i_1 \land i_2) \{ by def. of NAND \}$
- \vdash NOT (*x*,out) {right conjunct of line 3}
- \vdash out = $\neg x \{ by def. of NOT \}$
- $\vdash \text{out} = \neg(\neg(i_1 \land i_2) \text{ {substitution, line 5 into 7 } }$
- $\vdash \text{out} = (i_1 \land i_2) \{ \text{simplify}, \neg \neg t = t \}$
- \vdash AND (i₁,i₂,out) {by def. of AND spec}

$$\vdash \text{AND_IMPL} (i_1, i_2, \text{out}) \Rightarrow \text{AND_SPEC} (i_1, i_2, \text{out})$$

Q.E.D.

Example 2: CMOS-Inverter

Specification (black-box behavior)

Spec(x,y):= $(y = \neg x)$

Implementation

Basic Modules Specs

PWR(x) := (x = T) GND(x) := (x = F) $N-Trans(g,x,y) := (g \Rightarrow (x = y))$ $P-Trans(g,x,y) := (\neg g \Rightarrow (x = y))$

Implementation (network structure)

 $Impl(x,y) := \exists p q.$ $PWR(p) \land$ $GND(q) \land$ $N-Tran(x,y,q) \land$ P-Tran(x,p,y)

Proof goal

 $\forall x y. Impl(x,y) \Leftrightarrow Spec(x,y)$

Proof (forward)

$$Impl(x,y):= \exists p q.$$

$$(p = T) \land$$

$$(q = F) \land$$

$$N-Tran(x,y,q) \land$$

$$P-Tran(x,p,y)$$

$$Impl(x,y):= \exists p q.$$

$$(p = T) \land$$

$$(q = F) \land$$

$$(q = F) \land$$

$$N-Tran(x,y,F) \land$$

$$P-Tran(x,T,y)$$

$$(substitution of p and q in P-Tran and N-Tran)$$

$$\begin{split} & \text{Impl}(x,y) \coloneqq (\exists \text{ p. } p = \text{T}) \land \\ & (\exists \text{ q. } q = \text{F}) \land \\ & \text{N-Tran}(x,y,\text{F}) \land \\ & \text{P-Tran}(x,T,y) \end{split} \qquad (\text{use Thm: ``\exists a. t1 \land t2 = (\exists a. t_1) \land t_2`` if a is free in t_2)} \\ & \text{Impl}(x,y) \coloneqq \text{T} \land \\ & \text{T} \land \\ & \text{T} \land \\ & \text{N-Tran}(x,T,y) \end{aligned} \qquad (\text{use Thm: ``\exists a. a=T) = T`` and ``(\exists a. a=F) = T``)} \\ & \text{Impl}(x,y) \coloneqq \text{N-Tran}(x,y,\text{F}) \land \\ & \text{P-Tran}(x,T,y) \end{aligned} \qquad (\text{use Thm: ``x \land T = x`')} \\ & \text{Impl}(x,y) \coloneqq (x \Rightarrow (y = F)) \land \\ & (\neg x \Rightarrow (T = y)) \end{aligned} \qquad (\text{use ``(a \Rightarrow b) = (\neg a \lor b)`')} \\ & \text{Impl}(x,y) \coloneqq (\neg x \lor (y = F)) \land \\ & (x \lor (T = y)) \end{aligned}$$

Boolean simplifications:

$$\begin{split} \text{Impl}(x,y) &:= (\neg x \land x) \lor (\neg x \land (T=y)) \lor ((y=F) \land x) \lor ((y=F) \land (T=y)) \\ \text{Impl}(x,y) &:= F \lor (\neg x \land (T=y)) \lor ((y=F) \land x) \lor F \\ \text{Impl}(x,y) &:= (\neg x \land (T=y)) \lor ((y=F) \land x) \end{split}$$

```
Case analysis x=T/F
   x=T:Impl(T,y):= (F \land (T = y)) \lor ((y = F) \land T)
   x=F:Impl(F,y):= (T \land (T = y)) \lor ((y = F) \land F)
   x=T:Impl(T,y):=(y=F)x=F:Impl(F,y):=(T=y)
Case analysis on Spec:
    \begin{array}{l} x=T:Spec(T,y):=(y=F) \\ x=F:Spec(F,y):=(y=T) \end{array} \right\} 
Conclusion: \vdash Spec(x,y) \Leftrightarrow Impl(x,y)
```

Abstraction Forms

- **Structural abstraction:** only the behavior of the external inputs and outputs of a module is of interest (abstracts away any internal details)
- **Behavioral abstraction:** only a specific part of the total behavior (or behavior under specific environment) is of interest
- **Data abstraction:** behavior described using abstract data types (e.g. natural numbers instead of Boolean vectors)
- **Temporal abstraction:** behavior described using different time granularities (e.g. refinement of instruction cycles to clock cycles)

Note: Spec is a **structural abstraction** of Impl.

cin

cout

1-bit Adder (cont'd)

Implementation:

ADDER_IMPL(in₁:bool, in₂:bool, cin:bool, sum:bool, cout:bool):= $\exists l_1 l_2 l_3$. EXOR (in₁, in₂, l₁) \land AND (in₁, in₂, l₂) \land EXOR (l₁, cin, sum) \land AND (l₁, cin, l₃) \land OR (l₂, l₃, cout)

Define a **data abstraction function** (**bn: bool** \rightarrow **nat**) needed to relate Spec variable types (nat) to Impl variable types (bool):

$$bn(x) := \begin{cases} 1, \text{ if } x = T \\ 0, \text{ if } x = F \end{cases}$$

Proof goal:

 $\forall in_1, in_2, cin, sum, cout.$ $ADDER_IMPL (in_1, in_2, cin, sum, cout)$ $\Rightarrow ADDER_SPEC ($ **bn** $(in_1),$ **bn** $(in_2),$ **bn**(cin),**bn**(sum),**bn**(cout))

Verification of Generic Circuits

- used in datapath design and verification
- idea: verify **n**-bit circuit then specialize proof for specific value of **n**, (i.e., once proven for **n**, a simple instantiation of the theorem for any concrete value, e.g. 32, gets a proven theorem for that instance).
- use of induction proof

Example: N-bit Adder

Specification

N-ADDER_SPEC (\mathbf{n} , in_1 , in_2 ,cin,sum,cout):= ($in_1 + in_2 + cin = 2^{n+1} * cout + sum$)

N-bit Adder (cont'd)

Implementation

• recursive definition:

```
\begin{aligned} \text{N-ADDER}_{IMP(n,in_1[0..n-1],in_2[0..n-1],cin,sum[0..n-1],cout)} &:= \\ \exists \text{ w. N-ADDER}_{IMP(n-1,in_1[0..n-2],in_2[0..n-2],cin,sum[0..n-2],w)} \land \\ \text{N-ADDER}_{IMP(1,in_1[n-1],in_2[n-1],w,sum[n-1],cout)} \end{aligned}
```

- Note: N-ADDER_IMP(1,in₁[i],in₂[i],cin,sum[i],cout) = ADDER_IMP(in₁[i],in₂[i],cin,sum[i],cout)
- Data abstraction function (vn: bitvec → nat) to relate bit vctors to natural numbers: vn(x[0]):= bn(x[0]) vn(x[0,n]):= 2ⁿ * bn(x[n]) + vn(x[0,n-1])

Proof goal:

 $\forall \mathbf{n}, in_1, in_2, cin, sum, cout.$ N-ADDER_IMP(n,in_1[0..n-1],in_2[0..n-1],cin,sum[0..n-1],cout) $\Rightarrow \text{N-ADDER}_SPEC(n, \mathbf{vn}(in_1[0..n-1]), \mathbf{vn}(in_2[0..n-1]), \mathbf{vn}(cin), \mathbf{vn}(sum[0..n-1]), \mathbf{vn}(cout))$

can be **instantiated** with **n = 32**:

 $\forall in_1, in_2, cin, sum, cout.$ $N-ADDER_IMP(in_1[0..31], in_2[0..31], cin, sum[0..31], cout)$ $⇒ N-ADDER_SPEC($ **vn** $(in_1[0..31]),$ **vn** $(in_2[0..31]),$ **vn**(cin),**vn**(sum[0..31]),**vn**(cout))

N-bit Adder (cont'd)

Proof by induction over n:

- basis step: N-ADDER_IMP(0,in₁[0],in₂[0],cin,sum[0],cout)
 ⇒ N-ADDER_SPEC(0,vn(in₁[0]),vn(in₂[0]),vn(cin),vn(sum[0]),vn(cout))
- induction step:

```
[N-ADDER\_IMP(n,in_1[0..n-1],in_2[0..n-1],cin,sum[0..n-1],cout) \Rightarrow
```

```
N-ADDER\_SPEC(n, \mathbf{vn}(in_1[0..n-1]), \mathbf{vn}(in_2[0..n-1]), \mathbf{vn}(cin), \mathbf{vn}(sum[0..n-1]), \mathbf{vn}(cout))]
```

```
\Rightarrow
```

```
[N-ADDER\_IMP(n+1,in_1[0..n],in_2[0..n],cin,sum[0..n],cout) \Rightarrow
```

 $N-ADDER_SPEC(n+1, \mathbf{vn}(in_1[0..n]), \mathbf{vn}(in_2[0..n]), \mathbf{vn}(cin), \mathbf{vn}(sum[0..n]), \mathbf{vn}(cout))]$

6/12/01

Notes:

• basis step is equivalent to 1-bit adder proof, i.e.

ADDER_IMP(in₁[0],in₂[0],cin,sum[0],cout) \rightarrow ADDER_SPEC(br(in_[0]) br(in_[0]) br(cin) br(cum[0])

- $\Rightarrow ADDER_SPEC(\mathbf{bn}(in_1[0]), \mathbf{bn}(in_2[0]), \mathbf{bn}(cin), \mathbf{bn}(sum[0]), \mathbf{bn}(cout))$
- induction step needs more creativity and work load!

Practical Issues of Theorem Proving

No fully automatic theorem provers. All require human guidance in indirect form, such as:

- When to delete redundant hypotheses, when to keep a copy of a hypothesis
- Why and how (order) to use lemmas, what lemma to use is an art
- How and when to apply rules and rewrites
- Induction hints (also nested induction)
- Selection of proof strategy, orientation of equations, etc.
- Manipulation of quantifiers (forall, exists)
- Instantiation of specification to a certain time and instantiating time to an expression
- Proving lemmas about (modulus) arithmetic
- Trying to prove a false lemma may be long before abandoning

Conclusions

Advantages of Theorem Proving

- High abstraction and expressive notation
- Powerful logic and reasoning, e.g., induction
- Can exploit hierarchy and regularity, puts user in control
- Can be customized with tactics (programs that build larger proofs steps from basic ones)
- Useful for specifying and verifying parameterized (generic) datapath-dominated designs
- Unrestricted applications (at least theoretically)

Limitations of Theorem Proving:

- Interactive (under user guidance): use many lemmas, large numbers of commands
- Large human investment to prove small theorems
- Usable only by experts: difficult to prove large / hard theorems
- Requires deep understanding of the both the design and HOL (while-box verification)
- must develop proficiency in proving by working on simple but similar problems.
- Automated for narrow classes of designs

References

Logic

- 1. Fitting, M.: First-Order Logic and Automated Theorem Proving; Springer-Verlag, 1990.
- 2. Andrews, P.: An Introduction to Mathematical Logic and Type Theory: To Truth through *Proof*; Academic Press, 1986.

HOL

- 3. Gordon, M.; Melham, T.: Introduction to HOL: A Theorem Proving Environment for Higher Order Logic; Cambridge University Press, 1993.
- 4. Melham, T.F. and Gordon, M.J.C.: *Higher Order Logic and Hardware Verification*; Cambridge University Press, 1993.
- 5. G. Birtwistle, B. Graham, and S.-K. Chin: *new_theory 'HOL'; An Introduction to Hardware Verification in Higher Order Logic* (August 1994). http://lal.cs.byu.edu/lal/holdoc/birtwistle/all/all.html

Boyer-Moore

6. Boyer, R.; Moore, J.: A Computational Logic Handbook; Academic Press, 1988.

PVS

 Owre, S.; Shankar, N.; Rushby, J.: User Guide for the PVS Specification and Verification System, Language, and Proof Checker; Computer Science Laboratory, SRI International, Melno Park, California, February 1993.

LAMBDA

8. Abstract Hardware Limited: LAMBDA - Logic and Mathematics behind Design Automation; User and Reference Manuals, Version 3.1, 1990.