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Introduction

Theorem Proving

Prove that an implementation satisfies a specification by mathematical reasoning

Implementation and specification expressed asformulas in a formal logic

Required relationship (logical equivalence/logical implication) described asa theorem to
be proven within the context of a proof calculus

A proof system:

A set of axioms and inference rules (simplification, rewriting, induction, etc.)

Imp. Spec.
implication

equivalence

or
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Introduction (cont’d)

Proof checking

• It is a purelysyntacticmatter to decide whether each theorem is an axiom or follows from
previous theorems (axioms) by a rule of inference

Proof generation

• Complete automation generally impossible: theoretical undecidability limitations

• However, a great deal can be automated (decidable subsets, specific classes of
applications and specification styles)

purported proof
Proof checker

“is this a proof?” “yes”/“no”

purported theorem Proof generator
“prove this theorem”

a proof
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First-Order Logic

• Propositional logic: reasoning about complete sentences.

• First-order logic: also reasoning aboutindividual objectsandrelationships between them.

Syntax

• Objects (in FOL) are denoted by expressions calledterms:

Constants a, b, c,... ;Variables u, v, w,... ;

f(t1, t2,..., tn) where t1, t2,..., tn are terms and f afunction symbol of n arguments

• Predicates:

true (T) andfalse (F)

p(t1, t2,..., tn) where t1, t2,..., tn areterms and p apredicate symbol of n arguments

• Formulas:

Predicates

P and Q formulas, then¬P, P∧ Q, P∨ Q, P→ Q, P↔ Q are formulas

x a variable, P a formula, then∀x.P,∃x.Q are formulas (x is not free in P, Q)
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First-Order Logic (cont’d)

Semantics of a first-order logic formulae G: interpretation for function, constant and
predicate symbols in G and assigning values to free variables

First-Order Interpretations (Structures) M: M = (D, I)

- D is a non-empty domain of the structure

- I is an interpretation function, assigns function, constant and predicate symbols:

(1) For every function symbol f of rank n>0, I(f): Dn → D is an n-ary function.

(2) For every constant c, I(c) is an element of D.

(3) For every predicate symbol P of rank n≥0, I(P): Dn → {F, T} is an n-ary predicate.

Evaluation

• For every M, a formula can be evaluated to T or F according to the following rules:

(1) Evaluate truth values of formulas P and Q, and then the truth values of
¬P, P∧Q, P∨Q, P→Q, P↔Q using propositional logic

(2) ∀x. P evaluates to T if truth value of G is T for every d∈D; otherwise, it is F

(3) ∃x.P evaluates to T if truth value of G is T for at least one d∈D; otherwise, it is F



© 1997 E. Cerny, X. Song, © 1999 E. Cerny, © 2000 S. Tahar 6/12/01 6.6 (of 57)

First-Order Logic (cont’d)

Example: G = ∀x. (P(x)→Q(f(x), a)), with M=(D, I), D={1,2}, and I as:

• x=1: P(x)→Q(f(x), a) = P(1)→Q(f(1), a) = P(1)→Q(2, 1) = F→F = T;

• x=2: P(x)→Q(f(x), a) = P(2)→Q(f(2), a) = P(2)→Q(1, 1) = T→T = T.

• Since P(x)→Q(f(x), a) is true for all x∈D, ∀x. (P(x)→Q(f(x), a)) is true under M

• M is a model of G (M  G)

(we can also prove that∃x. (P(x)→Q(f(x), a)) is true under M)

Assignment for a

a

1

Assignment for f

f(1) f(2)

2 1

Assignment for P and Q

P(1) P(2) Q(1,1) Q(1,2) Q(2,1) Q(2,2)

F T T T TF
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First-Order Logic (cont’d)

The Validity Problem of FOL

• To decide the validity for formulas of FOL, the truth table method does not work!

• Reason: must deal with structures not just truth assignments.

• Structures need not be finite ...

Semi-decidable (partially solvable)

• There is an algorithm which starts with an input, and

1) if the input is valid then
it terminates after a finite number of steps, and
outputs the correct value (Yes or No)

2) if the input is not valid then it reaches a reject halt or loops forever

Theorem (Church-Turing, 1936)

The validity problem for formulas of FOL is undecidable, but semi-decidable.

• Some subsets of FOL are decidable.
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First-Order Logic (cont’d)

Deduction in FOL

Theorem (Gödel, 1931)

• FOL is complete and consistent, i.e., there are complete and consistent deduction
systems.

Prenex Normal Forms (PNF): Move quantifiers to the front

• Theorem: For every formula P, there exists an equivalent formula Q in prenex form.

• In the proof of this theorem, there is a simple algorithm to convert formulas into PNF.

F = (Q1 x1) ... (Qn xn) G

prefix

every (Qixi) is either (∀xi) or (∃xi), i=1,...,n
G is a formula containing no quatifiers.
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First-Order Logic (cont’d)

Skolem Standard Forms (SSF)

• Skolemization: Remove existential quantifiers

For each formula F in PNF, define its SSF as the result of applying the following
algorithm to F.

while F contains an existential quantifierdo
begin

Let F have the form F=∀x1... ∀nxn∃z E for some E in PNF and n≥ 0;

Let f be a new function symbol of arity n that does not yet occur in F;
F:=∀x1... ∀nxn E [f(x1,..., xn)/z]; {substitution a/x: a replaces x}

{ ∃z in F is canceled and each occurrence of z in E is substituted by f(x1,..., xn)}

end.

Example: F =∀x∃y∃z ((¬P(x,y)∧ Q(x,z))∨ R(x,y,z))

f(x) g(x)

The SSF of F is:∀x ((¬P(x, f(x)) ∨ R(x, f(x), g(x)))∧ (Q(x, g(x))∨ R(x, f(x), g(x)))).

= ∀x∃y∃z ((¬P(x,y)∨ R(x,y,z))∧ (Q(x,z))∨ R(x,y,z)))

CNF
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First-Order Logic (cont’d)

Skolem Standard Forms (cont’d)

Theorem: For each formula F in PNF, F is satisfiable iff its SSF is satisfiable.

• Transformation of a formula to Skolem form does not preserve equivalence, because of
the new function symbol(s) occurring in the Skolem formula.

• FOL resolution is based on Skolem Standard Forms.

Substitution

• A substitutionis a finite set of the form {t1/v1,..., tn/vn}, where every vi is a variable, every
ti is a term different from vi, and no two elements in the set have the same variable after
the stroke symbol.

• Examples:ψ = {f(z)/x, y/z} andθ= {a/x, g(y)/y, f(g(b))/z}.

• Let θ = {t1/v1,..., tn/vn} be a substitution and E be an expression.
Eθ is an expression obtained by replacingsimultaneously each occurrence of variable
vi, 0 ≤ i ≤ n, in E by term ti.

• Eθ is aninstance of E.

• Example:θ={a/x,f(b)/y,c/z} and E=P(x,y,z); Eθ=P(a,f(b),c).
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First-Order Logic (cont’d)

• Substitutionsθ = {t1/x1,..., tn/xn} and λ = {u1/y1,..., um/ym}

Composition ofθ andλ is the substitutionθ•λ obtained from

{t 1λ/x1, ..., tnλ/xn, u1/y1, ..., um/ym} by deleting

(1) any element tjλ/xj, for which tjλ = xj, and

(2) any element ui/yi such that yi ∈{x 1,..., xn}

• Example:θ = {f(y)/x, z/y} and λ={a/x, b/y, y/z}
{f(y)/x, y/y, a/x,b/y, y/z} ⇒ θ•λ = {f(b)/x, y/z}

Unification

• While carrying out proofs, we have to unify (match) two or more expressions

• Must find a substitution that can make several expressions identical

• Substitutionθ is aunifier for {E1,..., Ek} iff E 1θ = E2θ = ... = Ekθ

• {E1,..., Ek} is unifiable if there is a unifier for it

• Example: {P(a, y), P(x, f(b))} is unifiable withθ = {a/x, f(b)/y}

• Unifier σ for S = {E1,..., Ek} of expressions ismost general unifieriff for each unifierθ of
S there is a substitutionλ such thatθ=σ•λ
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First-Order Logic (cont’d)

Unification (cont’d) Unification plays a key role in proof systems.

• Basic idea: expressions P(a) and P(x) are not identical and
{a, x} is the disagreement pair - try to eliminate it by unification
Since x is a (universally quantified) variable, it can be replaced by a and the disagreement
thus eliminated!

• Unification Algorithm (Robinson)

k: = 0;θk = ∅, Wk := W {A non-empty set of literals}

while |Wk| > 1do

begin
Scan terms in Wk from left to right, until the first position is found where
in at least two literals (say, L1 and L2) the corresponding symbols are different;

if  none of these symbols is a variablethen output “non-unifiable” and halt;
else Let x be the variable and t the other term;

if  x occurs in t then output “non-unifiable” and halt
elseθk+1 := θk•{t/x}, W k+1 := Wk{t/x};

k:=k+1
end
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First-Order Logic (cont’d)

Unification (cont’d)

• Example: W={¬P(f(z, g(a,y)), h(z)),¬P(f(f(u,v),w), h(f(a,b)))}

Unification Theorem (Robinson): Each unifiable set of literals has the most general unifier.

Step 1: {¬P(f(z, g(a,y)), h(z)), ¬P(f(f(u,v),w), h(f(a,b))) } θ1 :=

{f(u,v)/z, g(a,y)/w, a/u, b/v}

Step 2: {¬P(f(f(u,v), g(a,y)), h(f(u,v))),¬P(f(f(u,v),w), h(f(a,b)))} θ2 := •{g(a,y)/w}θ1

Step 3:{ ¬P(f(f(u,v), g(a,y)), h(f(u,v))),¬P(f(f(u,v), g(a,y)), h(f(a,b)))}

Step 4:{ ¬P(f(f(u,v), g(a,y)), h(f(a,v))),¬P(f(f(u,v), g(a,y)), h(f(a,b)))}

θ3 := •{a/u}θ2

θ4 := •{b/v}θ3

θ4 :=

{f(u,v)/z}

W = {¬P(f(f(a,b),g(a,y)),h(f(a,b)))}
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Higher-Order Logic

• First-order logic: only domain variables can be quantified.

• Second-order logic: quantification over subsets of variables (i.e., over predicates).

• Higher-order logics: quantification over arbitrary predicates and functions.

Higher-Order Logic

• Variables can be functions and predicates,

• Functions and predicates can take functions as arguments and return functions asvalues,

• Quantification over functions and predicates.
Since arguments and results of predicates and functions can themselves be predicates or
functions, this imparts afirst-class status to functions, and allows them to be
manipulated just likeordinary values

Example 1: (mathematical induction)

∀P. [P(0)∧ (∀n. P(n)→ P(n+1))]→ ∀n.P(n)  (Impossible to express it in FOL)

Example 2: Function Rise defined as Rise (c, t) =¬c(t) ∧ c(t+1)

Rise expresses the notion that a signalc rises at timet.

Signal is modeled by a function c: N→ { F,T}, passed as argument to Rise.

Result of applying Rise to c is a function: N→ { F,T}.
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Higher-Order Logic (cont’d)

Advantage: high expressive power!

Disadvantages:

• Incompleteness of a sound proof system for most higher-order logics

• Theorem (Gödel, 1931)
There is no complete deduction system for the second-order logic.

• Reasoning more difficult than in FOL, need ingenious inference rules and heuristics.

• Inconsistencies can arise in higher-order systems if semantics not carefully defined

“Russell Paradox”:

Let P be defined by P(Q) =¬Q(Q). By substituting P for Q, leads to P(P) =¬P(P),
(P: bool→ bool, Q: bool→ bool) contradiction!

• Introduction of “types” (syntactical mechanism) is effective against certain
inconsistencies.

• Usecontrolled form of logic and inferencesto minimize the risk of inconsistencies, while
gaining the benefits of powerful representation mechanism.

• Higher-order logic increasingly popular for hardware verification!
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Theorem Proving Systems

• Automated deduction systems (e.g. Prolog)

    - full automatic, but only for a decidable subset of FOL

    - speed emphasized over versatility

    - often implemented by ad hoc decision procedures

    - often developed in the context of AI research

• Interactive theorem proving systems

    - semi-automatic, but not restricted to a decidable subset

    - versatility emphasized over speed

    - in principle, a complete proof can be generated for every theorem

Some theorem proving systems:

Boyer-Moore (first-order logic)

HOL (higher-order logic)

PVS (higher-order logic)

Lambda (higher-order logic)
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Boyer-Moore (Nqthm)

• Developed at University of Texas and later CLI

• Quantifier-free first-order logic.

• Powerful built-in heuristics; user must find a sequence of lemmas that permits to prove
the desired theorem with available heuristics

• Collection of LISP programs that permit the user to axiomatize inductively constructed
data types, define recursive functions, and (inductively) prove theorems about them

• Process of proof generation is not fully automatic; user assistance for setting up
intermediate lemmas and definitions

• A number of verification application including microprocessors

• For more information:http://www.cli.com/
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ACL2

• Developed at CLI

• ACL2 is a mathematical logic together with a mechanical theorem prover to help reason
in the logic

• The logic is just a subset of applicative Common Lisp

• The theorem prover is an “industrial strength” version of the Boyer-Moore theorem
prover, Nqthm

• Models of all kinds of computing systems can be built in ACL2, just as in Nqthm, even
though the formal logic is Lisp

• Once built, an ACL2 model of a system can beexecuted in Common Lisp

• ACL2 can also be used to prove theorems about the model

• For more information:http://www.cs.utexas.edu/users/moore/acl2/
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PVS

• PVS (Prototype Verification System) developed at SRI

• The specification language of PVS is based on classical, typed higher-order logic

• The primitive inferences include propositional and quantifier rules, induction, rewriting,
anddecision procedures for linear arithmetic

• The implementations of these primitive inferences are optimized for large proofs:
E.g., propositional simplification uses BDDs, and auto-rewrites are cached for efficiency

• User-defined procedures can combine these primitive inferences to yield higher-level
proof strategies

• PVS includes aBDD-based decision procedure for relational Mu-calculus:
experimental integration of theorem proving and CTL model checking

• Proofs are developed interactively by combining high-level inference procedures:

• For more information:http://www.csl.sri.com/pvs.html



© 1997 E. Cerny, X. Song, © 1999 E. Cerny, © 2000 S. Tahar 6/12/01 6.20 (of 57)

Lambda

• Commercial tool by Abstract Hardware Ltd. (UK)

• Verification and synthesis tool based on high-order logic theorem proving

• Specification in predicate logic and expressed in the L2 language (based on SML,
Standard Meta Language)

• Specification can be executed using the “Animator” tool

• Interactivecorrect-by-construction synthesis using

    - transformations by applying rewriting rules

    - partitioning

    - instantiating and interconnecting components

    - scheduling operations, and allocating resources (even for pipelined designs)

• Backtracking to a preceding design and exploration of alternatives

• Reasoning over a mix of timing scales, e.g., clock ticks, frame periods, pipeline insertion

• Output current state of the design (subset of L2) inVHDL and produce control microcode

• Complex properties can be stated and proven as formulas to be satisfied by the design

• For more information:http://www.ahl.co.uk
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HOL

• HOL (Higher-Order Logic) developed at University of Cambridge

• Interactive environment (in ML, Meta Language) for machine assisted theorem proving in
higher-order logic (a proof assistant)

• Steps of a proof are implemented by applying inference rules chosen by the user; HOL
checks that the steps are safe

• All inferences rules are built on top of eight primitive inference rules

• Mechanism to carry out backward proofs by applying built-in ML functions calledtactics
andtacticals

• By building complex tactics, the user can customize proof strategies

• Numerous applications in software and hardware verification

• Large user community

• For more information:http://www.cl.cam.ac.uk/Research/HVG/HOL/ or

http://lal.cs.byu.edu/lal/hol-documentation.html

Note: we will now focus on HOL!
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HOL Theorem Prover

• Logic is strongly typed (type inference, abstract data types, polymorphic types, etc.)

• It is sufficient for expressing most ordinary mathematical theories (the power of this logic
is similar to set theory)

• HOL provides considerable built-in theorem-proving infrastructure:

    - a powerfulrewriting subsystems

    - library facility containing useful theories and tools for general use

    -Decision procedures for tautologies and semi-decision procedure for linear arithmetic
provided as libraries

• The primary interface to HOL is the functional programming language ML

• Theorem proving tools are functions in ML (users of HOL build their own application-
specific theorem proving infrastructure by writing programs in ML)

• Many versions of HOL:

    - HOL88: Classic ML (from LCF);

    - HOL90: Standard ML

    - HOL98: Moscow ML
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HOL Theorem Prover (cont’d)

• HOL and ML

• The HOL systems can be used in two main ways:

    - for directly proving theorems: when higher-order logic is a suitable specification
language (e.g., for hardware verification and classical mathematics)

    - as embedded theorem proving support for application-specific verification systems when
specification in specific formalisms needed to be supported using customized tools.

• The approach to mechanizing formal proof used in HOL is due to Robin Milner.

He designed a system, called LCF: Logic for Computable Functions. (The HOL system is
a direct descendant of LCF.)

HOL = some predefined functions + types

The ML Language
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HOL Theorem Prover (cont’d)

• How the logic is embedded in ML:

• Terms are represented by values of the ML abstract data type:term

- P ‘T /\ F ==> T‘;

val it = ‘T/\ F ==> T‘ : term

• The quotation parser and pretyyprinter:

logic

ML data type

terms

:term

types

:hol_type

theorems

:thm

‘A /\ B‘

:term

mk_conj(A,B).P

term quotation internal representation
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Specification in HOL

• Functional description:

express output signal as function of input signals, e.g.:

AND gate:
out =and  (in1, in2) = (in1 ∧ in2)

• Relational (predicate) description:

gives relationship between inputs and outputs in the form of a predicate (a Boolean
function returning “true” of “false”), e.g.:

AND gate:
AND ((in1, in2),(out)):= out =(in1 ∧ in2)

Notes:

• functional descriptions allow recursive functions to be described. They cannot describe
bi-directional signal behavior or functions with multiple feed-back signals, though

• relational descriptions make no difference between inputs and outputs

• Specification in HOL will be a combination of predicates, functions and abstract types

in1

in2

out
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Specification in HOL

Network of modules

• conjunction “∧” of implementation module predicates
M (a, b, c, d, e):=  M1 (a, b, p, q)∧

 M2 (q, b, e) ∧
 M3 (e, p, c, d)

• hide internal lines (p,q) usingexistential quantification
M (a, b, c, d, e):= ∃ p q.

M1 (a, b, p, q)∧ M2 (q, b, e)∧ M3 (e, p, c, d)

c

e

M1 M3

M2

a

b

p

q
d

M
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Specification in HOL

Combinational circuits

SPEC (in1, in2, in3, in4, out):=
out = (in1 ∧ in2) ∨ (in3 ∧ in4)

IMPL (in1, in2, in3, in4, out):=
∃ l1 l2. AND (in1, in2, l1) ∧ AND (in3, in4, l2) ∧ OR (l1, l2, out)

whereAND (a, b, c):= (c =a∧ b)
OR (a, b, c):= (c = a∨ b)

Note: a functional description would be:

IMPL (in1, in2, in3, in4, out):=
out = (or (and (in1, in2), and (in3, in4))

 where and  (in1, in2) = (in1 ∧ in2)
or  (in1, in2) = (in1 ∨ in2)

in1
in2

in3
in4

out

l1

l2
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Specification in HOL

Sequential circuits

• Explicit expression of time (discrete time modeled as natural numbers).

• Signals defined as functions over time, e.g. type: (nat → bool) or (nat → bitvec)

• Example: D-flip-flop (latch):

DFF (in, out):= (out (0) = F)∧ (∀ t. out (t+1) = in (t))

in andout are functions of timet to boolean values: type (nat→ bool)

• Notion of time can be added to combinational circuits, e.g., AND gate

AND (in1, in2, out):=∀ t. out (t) = (in1(t) ∧ in2(t))

• Temporal operators can be defines as predicates, e.g.:

EVENTUAL sig t1 = ∃ t2. (t2 > t1) ∧ sig t2

meaning that signal “sig” will eventually be true at time t2 > t1 .

Note: This kind of specification using existential quantified time variables is useful to
describe asynchronous behavior
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HOL Proof Mechanism

• A formal proof is a sequence, each of whose elements is

• either anaxiom

• or follows from earlier members of the sequence by arule of inference

• A theorem is the last element of a proof

• A sequent is written:Γ P, whereΓ is aset of assumptions and P is theconclusion

• In HOL, this consists in applying ML functions representing rules of inference to axioms
or previously generated theorems

• The sequence of such applications directly correspond to a proof

• A value oftypethm  can be obtained either

• directly (as an axiom)

• by computation (using the built-in functions that represent the inference rules)

• ML typechecking ensures these are the only ways to generate a thm:

All theorems must be proved!
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HOL Proof System

• In the core of HOL:

• An inference rule: as an ML function that returns a theorem as a result

• Example:modus ponens in HOL,

• The function returns only objects of typethm  that logically follow by the inference rule

:thm

5 axioms

8 primitive inference rules

Γ2  t1 ⇒ t2

Γ1 ∪ Γ2  t2

Γ1 t1

MP:( thm -> thm ) -> thm
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Primitive Rules

• All theorems in HOL are ultimately proved using only the primitive inference rule:

{t}  t  t = t  (λx. t1) t2 = t1[t2/x]

Γ1 |--- t1 = t1’, ....., Γn  tn= tn’, Γ |--- t

Γ1 ∪ .....∪ Γn∪ Γ  t[t1, ..., tn/t1’, ..., tn’]

Γ  (λx. t1) = (λx. t2)

Γ  t1 = t2
Γ |--- t

Γ  t[σ1, ...,σn/α1, ...,αn]

Γ − {t1}  t1 ⇒ t2

Γ  t2 Γ1  t1 ⇒ t2 , Γ2 |--- t1

Γ1 ∪ Γ2  t2

ASSUME: REFL: BETA CONVERSION:

ABSTRACTION:

(x not free inΓ)

INST_TYPE:

DISCHARGE: MODUS PONENS:

SUBST:
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Basic Rewriting Rules

• Rewriting is done:

    - with all the supplied equations

    - on all subterms of the theorem to be rewritten

    - repeatedly, until no rewrite rule applies

• Rewriting rules:

thm list -> thm -> thm

list of equational theorems to be used as left-to-right rewrite rules

Rewriting rules:

theorems to be rewritten
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Built-in Derived Rules

• There is a wide range of derived inference rules built into the system:

• To become an expert HOL user, one should continuously learn new rules and proof
techniques

primitive rules

derived logical rules

rewriting inference rules

boolean decision procedures

arithmetic decision procedures

automatic type definitions

increasing complexity and power
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Proof Styles in HOL
• Forward  proof style:

• Goal-directed (orBackward) proof style:

 thmknown:  thmdesired:

apply inference rules to infer the desired

theorem from already proved theorems

 thmknown:  thmdesired:

reduce goal to be proved to simpler and simpler

subgoals until known theorems reached
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Forward Proof in HOL

• can be millions of (primitive) inferences long

• usually not natural for “one-off” proofs

• but essential for tool building

 thm  thm  thm  thm

inference rule inference rule

 thm  thm

 thm

inference rule

Known:

Desired



© 1997 E. Cerny, X. Song, © 1999 E. Cerny, © 2000 S. Tahar 6/12/01 6.36 (of 57)

Backward Proof in HOL

• Goals are represented by values of ML type

• Goal-directed proof in HOL:

goal: term list term*

assumptionsconclusion

P1, ..., Pn  P

: thm

([P1, ..., Pn], P)
solves

: goal

|- thm  goal
user works backwards

|- thm  thm
machine builds the proof

solves
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Backward Proof

• Example:

• Reduction of a goal tosubgoals is justified by an inference in the “opposite direction”.

(∃w. A[w]) /\ (∀z. B[z])

∃w. A[w] ∀z. B[z]

A[u] B[v]

P Q

 P /\ Q

 P[M]

∃x. P[x]

 P[M]

∀x. P[x]
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The Subgoal Package

• HOL has a subgoal package for finding tactic proofs interactively

• The subgoal package:

• maintains astack of subgoals to be proved

• provides functions that operate on these subgoals

• The subgoal package is for finding the schema of the proof:

user HOLsubgoal package

sys.sml

Complete ML source text for generating proof

interactive

create
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HOL Tactics

• Tactic is a function:

• Suppose that for a given goal g: T(g) = ([g1, ..., gn], f)

• If the theoremsΓ1 P1, ...,Γn Pn solve the goals g1, ..., gn, thenf([Γ1 P1, ...,

Γn Pn]) should solve the original goal g.

• In a picture:

T : goal -> goal list (thm list -> thm)

subgoals justification

g

Γ  P
f

solves

Tactics
([g1, ..., gn], f)

[Γ1 P1, ...,Γn Pn]
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HOL Tactics (Examples)

A  g

A u {t}  g
ASSUM_TAC (A  t)

A \/ B A \/ B

A B
DISJ1_TAC DISJ2_TAC

A  t1=t2

A  t1 ==> t2 A  t2 ==> t1

EQ_TAC

A  !x. P

A  P[x’/x]
GEN_TAC
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Verification Methodology in HOL

1. Establish a formal specification (predicate) of the intended behavior (SPEC)

2. Establish a formal description (predicate) of the implementation (IMP), including:

- behavioral specification of all sub-modules

- structural description of the network of sub-modules

3. Formulation of a proof goal, either

- IMP ⇒ SPEC (proof of implication), or

- IMP ⇔ SPEC (proof of equivalence)

4. Formal verification of above goal using a set of inference rules
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Example 1: Logic AND

AND Specification:

AND_SPEC (i1,i2,out) := out =i1 ∧ i2

NAND specification:

NAND (i1,i2,out) := out =¬(i1∧i2)

NOT specification:

NOT (i, out) := out =¬i

AND Implementation:

 AND_IMPL (i1,i2,out) :=∃x. NAND (i1,i2,x) ∧ NOT (x,out)

i1
i2

x
out

AND

i1
i2

out

i out
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Logic AND (cont’d)

Proof Goal:

∀ i1, i2, out. AND_IMPL(i1,i2,out)⇒ ANDSPEC(i1,i2,out)

Proof (forward)
AND_IMP(i1,i2,out) {from above circuit diagram}

∃x.NAND (i1,i2,x) ∧ NOT (x,out) {by def. of AND impl}

NAND (i1,i2,x) ∧ NOT(x,out) {strip off “∃x.”}

NAND (i1,i2,x) {left conjunct of line 3}

x =¬(i1∧i2) {by def. of NAND}

NOT (x,out) {right conjunct of line 3}

out =¬x {by def. of NOT}

out =¬(¬(i1∧i2) {substitution, line 5 into 7}

out =(i1∧i2) {simplify,¬¬ t=t}

AND (i1,i2,out) {by def. of AND spec}

AND_IMPL (i1,i2,out)⇒ AND_SPEC (i1,i2,out)

Q.E.D.
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Example 2: CMOS-Inverter
Specification (black-box behavior)

Spec(x,y):= (y = ¬ x)

Implementation

Basic Modules Specs

PWR(x):= (x = T)

GND(x):= (x = F)

N-Trans(g,x,y):= (g⇒ (x = y))

P-Trans(g,x,y):= (¬ g⇒ (x = y))

PWR

GND

yx

p

q

(P-Trans)

(N-Trans)
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Implementation (network structure)

Impl(x,y):= ∃ p q.
PWR(p)∧
GND(q) ∧
N-Tran(x,y,q)∧
P-Tran(x,p,y)

Proof goal

∀ x y. Impl(x,y)⇔ Spec(x,y)

Proof (forward)

Impl(x,y):= ∃ p q.
 (p = T)∧
 (q = F)∧  (substitution of the definition of PWR and GND)
 N-Tran(x,y,q)∧
 P-Tran(x,p,y)

Impl(x,y):= ∃ p q.
 (p = T)∧
 (q = F)∧  (substitution of p and q in P-Tran and N-Tran)
 N-Tran(x,y,F)∧
 P-Tran(x,T,y)
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Impl(x,y):= (∃ p. p = T)∧
 (∃ q. q = F)∧ (use Thm: “∃ a. t1∧ t2 = (∃ a. t1) ∧ t2” if a is free in t2)

 N-Tran(x,y,F)∧
 P-Tran(x,T,y)

Impl(x,y):= T ∧
 T ∧  (use Thm: “(∃ a. a=T) = T” and “(∃ a. a=F) = T”)
 N-Tran(x,y,F)∧
 P-Tran(x,T,y)

Impl(x,y):= N-Tran(x,y,F)∧ (use Thm: “x∧ T = x”)
 P-Tran(x,T,q)

Impl(x,y):= (x ⇒ (y = F))∧ (use def. of N-Tran and P-Tran)
 (¬ x ⇒ (T = y))

Impl(x,y):= (¬ x ∨ (y = F))∧ (use “(a⇒ b) = (¬ a∨ b)”)
 (x ∨ (T = y))
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Boolean simplifications:

Impl(x,y):= (¬ x ∧ x) ∨ (¬ x ∧ (T = y)) ∨ ((y = F)∧ x) ∨ ((y = F)∧(T = y))

Impl(x,y):= F ∨ (¬ x ∧(T = y) ) ∨ ((y = F)∧ x) ∨ F

Impl(x,y):=  (¬ x∧(T = y)) ∨ ((y = F)∧ x)

Case analysis x=T/F

x=T:Impl(T,y):=  (F∧(T = y) ) ∨ ((y = F)∧T)

x=F:Impl(F,y):=  (T∧(T = y) ) ∨ ((y = F)∧ F)

Conclusion: Spec(x,y)⇔ Impl(x,y)

=
!

}

}

x=T:Impl(T,y):= (y = F)

x=F:Impl(F,y):=  (T = y)

Case analysis onSpec:

x=T:Spec(T,y):= (y=F)

x=F:Spec(F,y):= (y=T)
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Abstraction Forms

• Structural abstraction: only the behavior of the external inputs and outputs of a module
is of interest (abstracts away any internal details)

• Behavioral abstraction: only a specific part of the total behavior (or behavior under
specific environment) is of interest

• Data abstraction: behavior described using abstract data types (e.g. natural numbers
instead of Boolean vectors)

• Temporal abstraction: behavior described using different time granularities (e.g.
refinement of instruction cycles to clock cycles)
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Example 3: 1-bit Adder

Specification:

ADDER_SPEC(in1:nat, in2:nat, cin:nat, sum:nat, cout:nat):= in1+in2+ cin = 2* cout+ sum

Implementation:

Note: Spec is astructural abstraction of Impl.

in1
in2
cin

cout
sum1-bit

ADDER

in1
in2

cin

cout

sum
l1

l2

l3

+ +
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1-bit Adder (cont’d)

Implementation:

 ADDER_IMPL(in1:bool, in2:bool, cin:bool, sum:bool, cout:bool):=
∃ l1 l2 l3. EXOR (in1, in2, l1) ∧

AND (in1, in2, l2) ∧
EXOR (l1,cin,sum)∧
AND (l1, cin, l3) ∧
OR (l2, l3, cout)

Define adata abstraction function (bn: bool → nat) needed to relate Spec variable types
(nat) to Impl variable types (bool):

Proof goal:

∀ in1, in2, cin, sum, cout.
ADDER_IMPL (in1, in2, cin, sum, cout)

⇒ ADDER_SPEC (bn(in1), bn(in2), bn(cin), bn(sum),bn(cout))

{ 1, if x = T
0, if x = F

bn(x) :=
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Verification of Generic Circuits

• used in datapath design and verification

• idea: verify n-bit circuit then specialize proof for specific value ofn, (i.e., once proven for
n, a simple instantiation of the theorem for any concrete value, e.g. 32, gets a proven
theorem for that instance).

• use of induction proof

Example: N-bit Adder

Specification
N-ADDER_SPEC (n,in1,in2,cin,sum,cout):= (in1 + in2 + cin = 2n+1

* cout + sum)

in1[0..n-1]
in2[0..n-1]

cin
cout
sum[0..n-1]n-bit

ADDER
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Example 4: N-bit Adder

Implementation

in1[n-1]
in2[n-1]

sum[n-1]
cout1-bit

in1[n-2]
in2[n-2]

sum[n-2]
1-bit

in1[0]
in2[0]

sum[0]
1-bit

ADDER

ADDER

ADDER
cin

w
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N-bit Adder (cont’d)
Implementation
• recursive definition:

N-ADDER_IMP(n,in1[0..n-1],in2[0..n-1],cin,sum[0..n-1],cout):=
∃ w. N-ADDER_IMP(n-1,in1[0..n-2],in2[0..n-2],cin,sum[0..n-2],w)∧

N-ADDER_IMP(1,in1[n-1],in2[n-1],w,sum[n-1],cout)

• Note:  N-ADDER_IMP(1,in1[i],in 2[i],cin,sum[i],cout) =
 ADDER_IMP(in1[i],in 2[i],cin,sum[i],cout)

• Data abstraction function (vn: bitvec → nat) to relate bit vctors to natural numbers:
 vn(x[0]):= bn(x[0])
 vn(x[0,n]):= 2n * bn(x[n]) + vn(x[0,n-1]

Proof goal:
∀ n, in1, in2, cin, sum, cout.
 N-ADDER_IMP(n,in1[0..n-1],in2[0..n-1],cin,sum[0..n-1],cout)
 ⇒ N-ADDER_SPEC(n,vn(in1[0..n-1]),vn(in2[0..n-1]),vn(cin),vn(sum[0..n-1]),vn(cout))

can beinstantiated with n = 32:
∀ in1, in2, cin, sum, cout.

N-ADDER_IMP(in1[0..31],in2[0..31],cin,sum[0..31],cout)
⇒ N-ADDER_SPEC(vn(in1[0..31]),vn(in2[0..31]),vn(cin),vn(sum[0..31]),vn(cout))
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N-bit Adder (cont’d)

Proof by induction over n:

• basis step:
N-ADDER_IMP(0,in1[0],in2[0],cin,sum[0],cout)
⇒ N-ADDER_SPEC(0,vn(in1[0]),vn(in2[0]),vn(cin),vn(sum[0]),vn(cout))

• induction step:
[N-ADDER_IMP(n,in1[0..n-1],in2[0..n-1],cin,sum[0..n-1],cout)⇒
 N-ADDER_SPEC(n,vn(in1[0..n-1]),vn(in2[0..n-1]),vn(cin),vn(sum[0..n-1]),vn(cout))]
 ⇒
[N-ADDER_IMP(n+1,in1[0..n],in2[0..n],cin,sum[0..n],cout)⇒
 N-ADDER_SPEC(n+1,vn(in1[0..n]),vn(in2[0..n]),vn(cin),vn(sum[0..n]),vn(cout))]

Notes:

• basis step is equivalent to 1-bit adder proof, i.e.

ADDER_IMP(in1[0],in2[0],cin,sum[0],cout)
⇒ ADDER_SPEC(bn(in1[0]),bn(in2[0]),bn(cin),bn(sum[0]),bn(cout))

• induction step needs more creativity and work load!
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Practical Issues of Theorem Proving

No fully automatic theorem provers. All require human guidance in indirect form, such as:

• When to delete redundant hypotheses, when to keep a copy of a hypothesis

• Why and how (order) to use lemmas, what lemma to use is an art

• How and when to apply rules and rewrites

• Induction hints (also nested induction)

• Selection of proof strategy, orientation of equations, etc.

• Manipulation of quantifiers (forall, exists)

• Instantiation of specification to a certain time and instantiating time to an expression

• Proving lemmas about (modulus) arithmetic

• Trying to prove a false lemma may be long before abandoning



© 1997 E. Cerny, X. Song, © 1999 E. Cerny, © 2000 S. Tahar 6/12/01 6.56 (of 57)

Conclusions

Advantages of Theorem Proving

• High abstraction and expressive notation

• Powerful logic and reasoning, e.g., induction

• Can exploit hierarchy and regularity, puts user in control

• Can be customized with tactics (programs that build larger proofs steps from basic ones)

• Useful for specifying and verifying parameterized (generic) datapath-dominated designs

• Unrestricted applications (at least theoretically)

Limitations of Theorem Proving:

• Interactive (under user guidance): use many lemmas, large numbers of commands

• Large human investment to prove small theorems

• Usable only by experts: difficult to prove large / hard theorems

• Requires deep understanding of the both the design and HOL (while-box verification)

• must develop proficiency in proving by working on simple but similar problems.

• Automated for narrow classes of designs
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