
R. E. Bryant, Symbolic Simulation, 2002

Randal E. Bryant

Carnegie Mellon University

SymSim ‘02

Symbolic Simulation
and its

Connection to
Formal Verification

http://www.cs.cmu.edu/~bryant

– 2 – SymSim ’02

Symbolic Simulation

Idea
Encode set of values symbolically
Evaluate system operation over these values

Effect
In single run, compute information that would otherwise
require multiple simulation runs
If do it right, can even be used for formal verification

Black
Box

a

b
a & ¬bIn0

In1

Out

– 3 – SymSim ’02

Advantages of Symbolic Simulation

Relative to better known formal verification techniques
symbolic model checking

Modeling Capabilities
Can use wide variety of circuit models

Including ones requiring event scheduling

Efficiency
Hybrid between symbolic and conventional simulation

Reduce coverage to make tractable
Exploit abstraction capabilities of X

Form of abstract interpretation

– 4 – SymSim ’02

Categorization #1

Verification Objective
Accelerated Simulation

Get more simulation done in less time
Rigorous, formal verification

Don’t trust anything that hasn’t been proven

Accelerated
Simulation

Rigorous Formal
Verification

Objective

– 5 – SymSim ’02

Categorization #2

Modeling Level
Abstract away as much as possible

Especially data values & operations
Boolean gate / RTL

Focus of 99% of verification research
Transistor

Challenge to have tractable but accurate
model

M
od

el
 L

ev
el

Abstracted
Data

Boolean

Discrete
Switch

Linear
Switch

– 6 – SymSim ’02

Symbolic Simulation Landscape

Accelerated
Simulation

Rigorous Formal
Verification

Objective

M
od

el
 L

ev
el

Abstracted
Data

Boolean

Discrete
Switch

Linear
Switch

Auto-
mated
Deduc-

tion

Symbolic
Trajectory
Evaluation

Forward
Model

Checking
Commercial

Tools

Switch-
Level

Timing
Sim.

Chris
Wilson’s
Simulator

R. E. Bryant, Symbolic Simulation, 2002

– 7 – SymSim ’02

Automated Deduction

Accelerated
Simulation

Rigorous Formal
Verification

Objective

M
od

el
 L

ev
el

Abstracted
Data

Boolean

Discrete
Switch

Linear
Switch

Auto-
mated
Deduc-

tion

– 8 – SymSim ’02

Abstracting Data

View Data as Symbolic “Terms”
No particular properties or operations

Except for equations: x = y
Can store in memories & registers
Can select with multiplexors

ITE: If-Then-Else operation

x0
x1
x2

xn-1

x⇒

1

0
x
y

p

ITE(p, x, y)
1

0
x
y

T

x
1

0
x
y

F

y

– 9 – SymSim ’02

Abstraction Via Uninterpreted
Functions

For any Block that Transforms or Evaluates Data:
Replace with generic, unspecified function
Also view instruction memory as function

Reg.
File

IF/ID

Instr
Mem

+4

PC ID/EX

A
LU

EX/WB

=

=

Rd
Ra

Rb

Imm

Op

Adat

Control Control

F1

F2

F3

– 10 – SymSim ’02

A
L
U

Ra

Rb

T = 0xa

xb

A
L
U

Ra

Rb

T = 1xa

xb

f

Term-Level Symbolic Simulation

A
L
U

Ra

Rb

T = 2xa

xb

f f

A
L
U

Ra

Rb

T = 3xa

xb

f f f

Simulator Operation
Register states are term-level expressions

Denoted by pointers to nodes in Directed Acyclic Graph (DAG)
Simulate each cycle of circuit by adding new nodes to DAG

Based on circuit operations
Construct DAG denoting correctness condition

– 11 – SymSim ’02

Logical Formula
Integer Values

Solid lines
Uninterpreted functions
» Integer variables

If-Then-Else operation
Boolean Values

Dashed Lines
Uninterpreted predicates
» Propositional variables

Logical connectives
Equations & inequalities

Task
Determine whether formula is universally valid

True for all interpretations of variables and function symbols

Resulting Decision Problem

=
¬

∨

f

T

F

T

F

f T

F

∧

=

e1

e0
x0

d0

– 12 – SymSim ’02

Deduction-Based Verification

Automatic Theorem Provers
Some of the earliest work in formal hardware verification

Gordon ‘83, Hunt ‘85, …
Heavy focus on rigor
Strong abstraction capabilities

Can selectively apply different levels of abstraction

Increasing Degree of Automation
Burch & Dill, CAV ‘94

Implement & tune decision procedure to match modeling needs
Automate generation of simulation relation

» For pipelined microprocessors
Active research area

But, not focus of this talk

R. E. Bryant, Symbolic Simulation, 2002

– 13 – SymSim ’02

Forward Model Checking

Accelerated
Simulation

Rigorous Formal
Verification

Objective

M
od

el
 L

ev
el

Abstracted
Data

Boolean

Discrete
Switch

Linear
Switch

Forward
Model

Checking

– 14 – SymSim ’02

Forward Reachability

Determine set of all reachable states of circuit
Key step in model checking

Many (but not all) properties can be checked by some form of
reachability computation

Loop
Control

Image
Compu-
tation

Set
Union =Reached

States

Initial
State

Circuit Behavior

– 15 – SymSim ’02

χA
0 /1

Set Operations

χA

χB

Union
χA

χB

Intersection

Characteristic Function
Representation of Set
Concept

A ⊆ {0,1}n

Set of bit vectors of length n
Represent set A as Boolean
function χA of n variables

X ∈ A if and only if χA(X) = 1

– 16 – SymSim ’02

Loop
Control

Image
Compu-
tation

Set
Union =Reached

States

Initial
State

Circuit Behavior

Forward Reachability via
Characteristic Functions

Model system behavior as transition relation
δ(s,s′) = 1 when possible to change from state s to state s′ in
one step
Powerful, but expensive approach

Loop
Control

Relational
Cross

Product
Boolean

OR =Reached
States

Initial
State

Transition Relation

– 17 – SymSim ’02

Parametric Representation of Set

Concept
A ⊆ {0,1}n

Set of bit vectors of length n
Must be nonempty

Represent set A as set of n Boolean
functions FA

Set indicated by function images
X ∈ A if and only if for some Y,
FA(Y) = X

Not unique
Various algorithms to generate

Set Operations
Not clear how to do these!

FAY FA(Y)

– 18 – SymSim ’02

Parametric Representation of Next
State Set

One step of symbolic simulation generates parametric form
of image computation

Set of states X′ such that X′ = δ(X) for some state X ∈ A

δ(FA(Y))FAY Symbolic
Sim.

Gate-Level Circuit

R. E. Bryant, Symbolic Simulation, 2002

– 19 – SymSim ’02

Loop
Control

Image
Compu-
tation

Set
Union =Reached

States

Initial
State

Circuit Behavior

Forward Reachability via Parametric
Representation #1

Coudert & Madre ‘89
Among earliest work on symbolic reachability

Converted to characteristic function to perform Boolean
operations

Loses advantage of symbolic simulation

Loop
Control

Symbolic
Sim.

Boolean
OR =Reached

States

Initial
State

Gate-Level Circuit

χA

to
FA

FA

to
χA

– 20 – SymSim ’02

Loop
Control

Image
Compu-
tation

Set
Union =Reached

States

Initial
State

Circuit Behavior

Forward Reachability via Parametric
Representation #2

Amit Goel, CMU ‘02
Generate canonical parametric form from any other
parametric form

Algorithm due to Coudert, Robert Jones
New algorithm to compute set union in parametric form

Does not generate characteristic function explicitly or implicitly

Loop
Control

Symbolic
Sim.

Param.
Union =Reached

States

Initial
State

Gate-Level Circuit

R
ep

ar
am

et
er

iz
e

– 21 – SymSim ’02

Some Results

Comparison
VIS with IWLS partitioning & ordering of transition relation

Based on characteristic functions
Boolean Functional Vectors

Based on parametric representation

Performance
Big improvement for some benchmarks

– 22 – SymSim ’02

Symbolic Trajectory Evaluation

Accelerated
Simulation

Rigorous Formal
Verification

Objective

M
od

el
 L

ev
el

Abstracted
Data

Boolean

Discrete
Switch

Linear
Switch

Symbolic
Trajectory
Evaluation

– 23 – SymSim ’02

Symbolic Trajectory Evaluation

Formulation
Bryant & Seger (1990)
View symbolic simulator as form of model checker

For limited class of LTL formulas
Abstract states with ternary { 0, 1, X } logic

Extensions
Enlarge class of safety properties

Seger (1995), Jain (1997), Chou (1999)
Add fairness

“Generalized Symbolic Trajectory Evaluation”
Yang & Seger (2000)
All ω-regular properties

– 24 – SymSim ’02

STE Example

Specification

If apply input “a”
Then four cycles later, will get output “a”

N is “next-time” operator
Similar to “X” in other temporal logics

Din Dout

4-Bit Shift Register

Din = a ⇒ NNNN Dout = a

R. E. Bryant, Symbolic Simulation, 2002

– 25 – SymSim ’02

Verification by STE

Din
X

Dout
X X X T = 0X

Din
a

Dout
X X X X T = 1X

Din
X

Dout
X a X X T = 2X

Din
X

Dout
X X a X T = 3X

Din
X

Dout
X X X a T = 4a

Din = a ⇒ NNNN Dout = a

aAssert

Check

– 26 – SymSim ’02

Mathematical Basis for STE

Partially Ordered State Model

Monotonic Circuit Behavior
Any 0/1 behavior observed with all-X initial state will occur
for arbitrary initial state
Subtle details in simulator implementation

Din
X

Dout
X X X T = 0X

X

0 1 Complete Information

Incomplete Information

– 27 – SymSim ’02

Compare: Model Checking with
Characteristic Functions

Encode Entire System State Symbolically
Two Boolean variables per state bit
Impractical to model systems with very large memories
Typically verify models with reduced data widths and
memory capacities

s0 s1 s2 s3
i Current State

s0’ s1’ s2’ s3’i’ Next State

Transition
Relation

– 28 – SymSim ’02

Performance of STE

Key Property
Use symbolic variables only to encode input and (part of)
initial state
Verification complexity depends on complexity of
specification, not of system
Can verify systems containing large memories

Industrial Applications of STE
Motorola: Verify variety of memory subsystems
Intel: Block-level verification

– 29 – SymSim ’02

Increasing STE Expressive Power

Specification

Graphical notation more expressive and intuitive than textual
Allows arbitrary number of idle cycles between inputs
Implemented with simple fixed-point operation

Din Dout

4-Bit Stoppable Shift Register
iRdy

Assert

Check

iRdy = 1
Din = a

iRdy = 0

iRdy = 1

iRdy = 0

iRdy = 1

iRdy = 0

iRdy = 1

iRdy = 0

iRdy = 1

Dout = d

– 30 – SymSim ’02

RAM Verification by STE

Specification
Perform write with address a
Perform arbitrary number of reads, or operations with a different
address
Perform read with address a

Should get value d on Dout

Verification requirements for 2m-bit memory
Constant number of iterations
O(m) Boolean variables

Din
DoutWrite

Addr

Check

Addr = a
Write = 1
Din = d

Dout = d
Write = 0

Addr ≠ a

Addr = a
Write = 0

R. E. Bryant, Symbolic Simulation, 2002

– 31 – SymSim ’02

Generalized STE

Yang & Seger (2000)

Extends Class of Trajectory Graphs
Arbitrary graph structure

Adds Fairness Constraints
Require that specified arcs be traversed infinitely often

Very Expressive
ω-regular languages

Not Directly Comparable to CTL Model Checking
Cannot express existential properties in GSTE
Cannot describe path properties in CTL

– 32 – SymSim ’02

Chris Wilson’s Simulator

Accelerated
Simulation

Rigorous Formal
Verification

Objective

M
od

el
 L

ev
el

Abstracted
Data

Boolean

Discrete
Switch

Linear
Switch

Chris
Wilson’s
Simulator

– 33 – SymSim ’02

Wilson’s Symbolic Simulator

Chris Wilson, PhD, Stanford (2001)

Less Pessimistic X Handling
Can verify simple forms of data propagation

Automatic Variable Classification
When to use X’s, and when to use symbols
Major headache for users of other symbolic simulators

Too many get X’s for check values
Too few BDD blowup

Integrate BDDs with Explicit Case Simulation
When BDDs get too big, start enumerating variable values
rather than encoding them symbolically
Guarantees useful partial results

– 34 – SymSim ’02

Tagged X Values

Can Tag X with Literal
Xa, X¬a, Xb, X¬b, etc.

Allow Limited Propagation of Tags

When value depends on multiple tags, revert to regular X

Handles Simple Data Propagation
Data moved across busses, stored in registers, passed
through multiplexors

Xa
X¬a

0
Xa
1 Xa

Xa
0 0

Xa
Xb

X

– 35 – SymSim ’02

Automatic Variable Classification

Two Ways to Represent Symbolic Value
BDD variable a
Tagged X value Xa

Strategy
Start with only tagged X’s
Simulate symbolic test
If check is X, then select some symbol to strengthen

As BDD variable, rather than as tagged X
Resimulate
Continue process until check either proved or disproved

– 36 – SymSim ’02

Xa

Xb

X¬a

X

X

X

a

Xb

¬a

a?X¬b:1

a?1:X¬b

Xb

Reclassification Example

Simple heuristics determine which variable to strengthen
Must rerun entire simulation every time strengthen variable

A

B

Task:
Prove Out = B

Out

R. E. Bryant, Symbolic Simulation, 2002

– 37 – SymSim ’02

Switch-Level Timing Simulation

Accelerated
Simulation

Rigorous Formal
Verification

Objective

M
od

el
 L

ev
el

Abstracted
Data

Boolean

Discrete
Switch

Linear
Switch

Switch-
Level

Timing
Sim.

– 38 – SymSim ’02

Linear Switch-Level Simulation

Linear Switch-Level Simulation
RSIM (Terman), nRSIM (Chu), IRSIM (Horowitz)
Model transistor as switched, linear resistor
Ternary (0, 1, X) node states
Elmore (RC product) model of circuit delay

a
a

⇒
1

X

0

Voltage Logic
Value

– 39 – SymSim ’02

Symbolic Timing Simulation

Symbolic Implementation of Linear Switch-Level
Simulation

SirSim: McDonald, ICCAD ‘99
Symbolic Extensions

BDD node values
MTBDD delay calculations

Exactly equivalent to running 2n IRSIM simulations

Is This Formal Verification?
Model is too simplistic to justify this

– 40 – SymSim ’02

out

a b

a

Inf 3kΩ

R *
b

20fF 30fF

C

=

Inf

a

60ps 90ps

b

Delay

From “a” rising
to “out” falling

Symbolic Delay Calculation

Delays computed as
(driver resistance) *
(load capacitance)

– 41 – SymSim ’02

NodeVal = (Mask & NewVal) ∨ (¬Mask & OldVal)

@t=30ps : out = (y &¬y ∨ ¬y & ¬x) = ¬x & ¬y

x

in out
in

out

x y
t=0

t=30ps t=60ps

small

largex y
@ t=0 x y y

@t=60ps : out = (¬y & ¬y ∨ y & ¬x & ¬y) = ¬y

Handling Data-Dependent Delays

Schedule event for each possible time point
Event includes mask indicating conditions under which
update should occur

– 42 – SymSim ’02

Speedup of 1033

over exhaustive
IRSIM for 64 bit
adder
Sirsim < 15 min
IRSIM > 1029 yrs
Runtime=O(n3)

1.0E-03
1.0E+01
1.0E+05
1.0E+09
1.0E+13
1.0E+17
1.0E+21
1.0E+25
1.0E+29
1.0E+33
1.0E+37

0 10 20 30 40 50 60 70

Adder Width (bits)

R
un

tim
e

(s
ec

on
ds

)

Exhaustive IRSIM SIRSIM

Manchester Adders

R. E. Bryant, Symbolic Simulation, 2002

– 43 – SymSim ’02

Alpha Microprocessor Circuits

Description #FETs #I/Os Time

56-bit way select 1500 228 28 sec.

52-bit magnitude compare 1539 106 117 sec.

64-bit barrel shifter 8192 196 20 sec.

– 44 – SymSim ’02

Cluster Scheduling

Group events into clusters with symbolic event times
“Cluster-Queue” structure maintains proper ordering
Up to 8x speedup on previously published cases
Exponential speedup demonstrated

100
101
110
111

000
001
010
011

CQ

Symbolically
Encoded

Cases

– 45 – SymSim ’02

Commercial Symbolic Simulators

Accelerated
Simulation

Rigorous Formal
Verification

Objective

M
od

el
 L

ev
el

Abstracted
Data

Boolean

Discrete
Switch

Linear
Switch

Commercial
Tools

– 46 – SymSim ’02

Commercial Symbolic Simulators

Innologic
Verilog-Based Symbolic Simulator

Handles all of Verilog
Not just synthesizable subset

Extend input vector format to allow symbolic values
Biggest successes to date are in memory verification

Synopsys
Part of formalVERA (a.k.a., Ketchum) assertion checker

Uses multiple strategies: automatic test generation, symbolic
simulation, bounded model checking

– 47 – SymSim ’02

Exploiting Hierarchy

Hierarchical Modeling
Symbolically encode circuit structure

Based on hierarchy in circuit description
Simulator operates directly on encoded circuit

Use symbolic variables to encode both data values & circuit
structure

Implemented by Innologic, variant by Synopsys (DAC ‘02)

– 48 – SymSim ’02

L4

L2L2

Hierarchical Circuit Representation

Hierarchy
Follows that in circuit representation

Encoding
Introduce Boolean variables to encode
module instances

y=0 y=1 y=0 y=1
x=0 x=1

L1 DoutL1 L1 L1Din

R. E. Bryant, Symbolic Simulation, 2002

– 49 – SymSim ’02

Symbolically Encoding Circuit
Operation

L2y=0 y=1

L1 L1In OutM

¬y&A ∨
¬y&B

E
N
C

1

0

y

A

B

Signal Encoder

X
T
R

1

0

y

A
A[y=0]

A[y=1]

Signal Extractor

L1
In

Out

M

E
N
C

1

0

X
T
R

1

0

y

– 50 – SymSim ’02

Symbolically Encoding Circuit
Operation

L4

L2L2y=0 y=1 y=0 y=1
x=0 x=1

L1 DoutL1 L1 L1Din

L1E
N
C

1

0

X
T
R

1

0

y

Din

E
N
C

1

0

X
T
R

1

0

x

Dout

– 51 – SymSim ’02

Simulating with Encoded Circuit
y=0 y=1 y=0 y=1

x=0 x=1

L1 DoutL1 L1 L1Din

L1E
N
C

1

0

X
T
R

1

0

y

Din

E
N
C

1

0

X
T
R

1

0

x

Dout

e d c b a

d b
c a

x

y
d

e

Initial State

Input

0 1
0
1

– 52 – SymSim ’02

Simulating with Encoded Circuit
y=0 y=1 y=0 y=1

x=0 x=1

L1 DoutL1 L1 L1Din

L1E
N
C

1

0

X
T
R

1

0

y

Din

E
N
C

1

0

X
T
R

1

0

x

Dout

e d c b a

d b
c a

x

y

e
Input

d b
x

c a
x

c

a

e c
x

Next State e c
d b

x

y

– 53 – SymSim ’02

Simulating with Encoded Circuit
y=0 y=1 y=0 y=1

x=0 x=1

L1 DoutL1 L1 L1Din

L1E
N
C

1

0

X
T
R

1

0

y

Din

E
N
C

1

0

X
T
R

1

0

x

Dout

e d c b

Input

State
Update

e c
d b

x

y

– 54 – SymSim ’02

State Encoding Advantage

Possibilities
Exponential reduction in circuit representation
Exponential reduction in state representation

Example Verification (from Innologic)
256-Mbit memory
Fully verified

Useful with Conventional Simulation
Conventional wisdom

Cannot simulate circuit with less than 1 bit / node
To store state of each node

Can beat this with encodings!

R. E. Bryant, Symbolic Simulation, 2002

– 55 – SymSim ’02

Conclusions

Symbolic Simulation Occupies Important Niche
Accelerated simulation
Specific forms of formal verification

Especially good at circuits with large memories
Regular model checking perhaps better for control-intensive
circuits

Niche is Expanding
Greater generalizations as formal verifier
Improved efficiency

Better use of X’s
Hierarchical encoding

More sophisticated circuit models

– 56 – SymSim ’02

Some Research Challenges

Merging Model Checking with STE
Enlarge class of properties handled by STE

Include existential properties
Make use of X’s to perform data abstraction in model
checking

Debugging with Symbolic Simulation
How to communicate failure information to users
Wealth of information, but need useful distillation

Coverage Metrics
Is there any useful way to compare coverage by symbolic
simluation to that by conventional simulation?
Conventional simulation covers miniscule fraction of cases,
but seems to find most of the bugs

