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First-Order-Logic First-Order-Logic

First-Order Logic (Predicate 
Calculus)

First-Order Logic speaks about objects, which are the 
domain of discourse or the universe. 
First-Order Logic is also concerned about Properties
of these objects (called Predicates), and the Names
of these objects.
Also we have Functions of objects and Relations over 
objects. (For example, Socrates' father is a function
of Socrates, while Socrates' son(s) is a relation about
the object Socrates). (Properties would be then
mapped to relations on objects).

Syntax of First-Order Logic
Using functions and relations, and using the 
notation xi to denote a variable (of type
Object) to name individuals (so that we have
a set of Vars = {x1, x2, …, xn}) we could define
the syntax of formulas in First-Order Logic.

Terms & Formulas
Terms of First-Order Logic formulas are defined
recursively as follows:

Vars ⊆ Terms
If t1, t2, …, tk ∈ Terms and f is a k-ary function name, then  
f(t1, t2, …, tk) ∈ Terms

Formulas of First-Order Logic could be defined as:
If t1, t2, …, tk ∈ Terms and P is a k-ary relation name
then P(t1, t2, …, tk) is an atomic formula
If θ,ψ are formulas then (¬θ), (θ∧ψ) are formulas.
If θ is a formula and x ∈Vars then (∃x) θ and (∀x) θ are 
formulas.

An Example
((∀x(H(x)→M(x))∧(∃x)(G(x)∧H(x)))

→ (∃ x)(G(x) ∧M(x))

If all humans are mortal and some Greeks are 
human then some Greeks are mortal.
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Hierarchy of Logic
First-Order logic is concerned about objects

logic quantifiers (∀,∃) quantify over elements 
(objects).

Second-order logic: elementary elements are 
functions and relations (i.e., sets of objects)
Third-order logic: main objects are sets of 
sets of objects.

logic quantifiers (∀,∃) quantify over relations and 
functions.

Higher Order Logic
Example 1: (mathematical induction)

∀P. [P(0) ∧ (∀n. P(n)→ P(n+1))]→ ∀n.P(n) 
(Impossible to express it in FOL)

Example 2: Function Rise defined as
Rise (c, t) = ¬c(t) ∧ c(t+1)

Rise expresses the notion that a signal c rises at time t.
Signal is modeled by a function c: N → {F,T}, passed as

argument to Rise.
Result of applying Rise to c is a function: N → {F,T}.

Higher Order Logic
Advantage: high expressive power!
Disadvantages:
Incompleteness of a sound proof system for most higher-
order logics

Theorem (Gödel, 1931) There is no complete deduction system for 
the second-order logic.

Reasoning more difficult than in FOL, need ingenious 
inference rules and heuristics.
Inconsistencies can arise in higher-order systems if 
semantics not carefully defined

“Russell Paradox”: Let P be defined by P(Q) = ¬Q(Q). By 
substituting P for Q, leads to P(P) = ¬P(P),
(P: bool → bool, Q: bool → bool)  contradiction!

Temporal Logics
Temporal logic is a type of modal logic that
was originally developed by philosophers to
study different modes of “truth”
Temporal logic provides a formal system for
qualitatively describing and reasoning about
how the truth values of assertions change
over time
It is appropriate for describing the time-
varying behavior of systems (or programs)

Classification of Temporal Logics
The underlying nature of time:

Linear: at any time there is only one possible
future moment, linear behavioral trace
Branching: at any time, there are different
possible futures, tree-like trace structure

Other considerations:
Propositional vs. first-order
Point vs. intervals
Discrete time vs. continuous time
Past vs. future

Linear Temporal Logic
Time lines

Underlying structure of time is a totally ordered set 
(S,<), isomorphic to (N,<): Discrete, an initial
moment without predecessors, infinite into the 
future.

Let AP be set of atomic propositions, a linear
time structure M=(S, x, L)

S: a set of states
x: N→S an infinite sequence of states, (x=s0,s1,...)
L: S→2AP labeling each state with the set of 
atomic propositions in AP true at the state.
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Example

AP = {p, q, r, u, v}
L(s0) = {p}, L(s1) = {p, q}, L(s2) = {r}, 
L(s3) = {u, v},.......

X: s0 s1 s2 s3

p p q r u v

Propositional Linear Temporal
Logic (PLTL)

Classical propositional logic + temporal
operators
Basic temporal operators

Fp (“eventually p”, “sometime p”)
Gp (“always p”, “henceforth p”)
Xp (“next time p”)
pUq (“p until q”)

Other common notation: 
G = �
F = ◊
X = O

Examples

Fp
p

Gp
pppp

Xp
p

pUq
qppp

PLTL Syntax
The set of formulas of PLTL is the least set of 
formulas generated by the following rules:

Atomic propositions are formulas,
p and q formulas: p ∧ q, ¬p , pUq, and Xp are formulas.

The other formulas can be introduced as
abbreviations:
p ∨ q abbreviates ¬(¬p ∧ ¬q)
p ⇒ q abbreviates ¬p ∨ q
p ≡ q abbreviates (p ⇒ q) ∧ (q ⇒ p),
true abbreviates p ∨ ¬p,
false abbreviates ¬true,
Fp abbreviates (true U p),
Gp abbreviates ¬F¬p.

Examples
p ⇒ Fq: “if p is true now then at some future 
moment q will be true.”
G(p ⇒ Fq): “whenever p is true, q will be true
at some subsequent moment.”

PLTL semantics
Semantics of a formula p of PLTL with respect to a 

linear-time structure M=(S, x, L)
(M, x)⎥= p means that “in structure M, formula p is
true of timeline x.”
xi: suffix of x starting at si, xi = si, si+1, ...
Semantics

(M, x) ⎥= p iff p ∈ L(s0), for atomic proposition p
(M, x) ⎥= p ∧ q iff (M, x)⎥= p and (M, x)⎥= q
(M, x) ⎥= ¬p iff it is not the case that (M, x)⎥= p
(M, x) ⎥= Xp iff x1⎥= p
(M, x) ⎥= Fp iff ∃j.(xj⎥= p)
(M, x) ⎥= Gp iff ∀j.(xj⎥= p)
(M, x) ⎥= p U q iff ∃j.(xj⎥= q and ∀ k, 0≤k<j (xk⎥= p))
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PLTL semantics
Duality between linear temporal operators

⎥= G¬p ≡ ¬Fp
⎥= F¬p ≡ ¬Gp
⎥= X¬p ≡ ¬Xp

PLTL formula p is satisfiable iff there exists
M=(S, x, L) such that (M, x)⎥= p 
(any such structure defines a model of p).

Example
A simple interface protocol, pulses one clock 

period wide

System

Ready

Accepted

Validated

Env.
(USER)

Example
Safety property — nothing bad will ever
happen:
∀t. (Validated (t) ⇒ ¬Validated (t + 1)) 
� (Validated ⇒ O ¬Validated)
G (Validated ⇒ X ¬Validated)
Liveness property — something good will
eventually happen:
∀t. Ready (t) ⇒ ∃t’ ≥ t.Accepted (t')
� (Ready ⇒ ◊Accepted)
G (Ready ⇒ F Accepted)

Constraints
Fairness constraint: 

G(Accepted ⇒ F Ready) 
models a live environment for System

Behavior of environment (constraint): 
G (Ready ⇒ X(¬Ready U Accepted ))

What about other properties of Accepted
(initial state, periodic behavior), etc.?

Prove the system property under the assumption
of valid environment constraints

Branching Time Temporal Logic
(BTTL)

Structure of time: an infinite tree, each instant may
have many successor instants. Along each path in 
the tree, the corresponding timeline is isomorphic to
N
State quantifiers: Xp, Fp, Gp, pUq (like in linear
temporal logic)
Path quantifiers: for All paths (A) and there Exists a 
path (E) from a given state
Other frequent notation: 

G = �
F = ◊
X = O
A = ∀
E = ∃

BTTL and LTL
In linear time logic, temporal operators describe
events along a single future, however, when a linear
formula is used for specification, there is usually an
implicit universal quantification over all possible
futures (linear traces)
In contrast, in branching time logic the operators
usually reflect the branching nature of time by
allowing explicit quantification over possible futures in 
any state

One supporting argument for branching time logic is that it
offers the ability to reason about existential properties in 
addition to universal properties
But, it requires some knowledge of internal state for
branching, closer to implementation than LTL that describes
properties of observable traces and has simpler fairness
assumptions
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CTL: a BTTL
CTL = Computation Tree Logic
Example of Computation Tree: 

Paths in the tree = possible computations or 
behaviors of the system

CTL syntax
Every atomic proposition is a CTL formula
If f and g are CTL formulas, then so are ¬f, f∧g, AXf, 
EXf, A(fUg), E(fUg)
Other operators:

AFg = A(true U g) EFg = E(true U g) 
AGf = ¬E(true U ¬f) EGf = ¬A(true U ¬f)

EX, E(...U...), EG are sufficient to characterize the 
entire logic:

EFp = E(true U p)
AXp = ¬EX¬p
AGp = ¬EF¬p
A(qUp) = ¬(E((¬p U¬q)∧¬p)∨EG¬p)

Intuitive Semantics of Temporal
Operators CTL semantics

A Kripke structure: triple M = <S, R, L>
S: set of states R ⊆ S x S: transition relation
L: S → 2AP: (Truth valuation) set of atomic propositions true
in each state

R is total: 
∀s ∈S there exists a state s’ ∈ S such that (s, s’) ∈ R

Path in M: 
infinite sequence of states, x = s0, s1, ... , i ≥ 0, (si, si+1) ∈ R

xi: suffix of x starting at si, xi = si, si+1, ...
xi denotes the suffix of x starting at si: xi = si, si+1, ...

Truth of a CTL formula is defined inductively:
(M, s0) ⎥= p iff p ∈ L(s0), for atomic proposition p
(M, s0) ⎥= ¬p iff (M, s0)⎥≠ p
(M, s0) ⎥= p ∧ q iff (M, s0)⎥= p and (M, s0)⎥= q
(M, s0) ⎥= AXp iff ∀ states t, (s0,t) ∈ R, (M,t)⎥= p
(M, s0) ⎥= EXp iff ∃ states t, (s0,t) ∈ R, (M,t)⎥= p
(M, s0) ⎥= A (p U q) iff ∀ x = s0, s1, s2, ..., ∃ j ≥ 0, (M, sj) ⎥= q 

and ∀ k, 0≤k<j, (M, sk)⎥= p
(M, s0) ⎥= E (p U q) iff ∃ x = s0, s1, s2, ..., ∃ j ≥ 0, (M, sj) ⎥= q 

and ∀ k, 0≤k<j, (M, sk)⎥= p

Example Structure M <S,R,L>

S = {1,2,3,4,5}, AP = {a,b,c},
R = {(1,2), (2,3), (5,3), (5,5), (5,1), (2,4), (4,2), (1,4), (3,4)}
L(1) = {b}, L(2) = {a}, L(3) = {a,b,c}, L(4) = {b,c}, L(5) = {c}
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Example CTL formulas
EF(started ∧¬ ready): possible to get to a 
state where started holds but ready does not
AG(req ⇒ AF ack): if a request occurs, then 
there is eventually an acknowledgment (does 
not ensure that the number of req is the same
as that of ack !)
AG(AF enabled): enabled holds infinitely
often on every computation path
AG(EF restart): from any state it is possible to
get to the restart state

CTL*
Computational tree logic CTL* combines branching-
time and linear-time operators
CTL* is sometimes referred to as full branching-
time logic
In CTL each linear-time operators G, F, X, and U 
must be immediately preceded by a path quantifier
In CTL* a path quantifier can prefix an assertion 
composed of arbitrary combinations of the usual 
linear-time operators (F, G, X and U)
Example: EFp is a basic modality of CTL; E(Fp ∧ Fq) 
is a basic modality of CTL*

Example
Two input Muller C-element (assuming finite 

discrete delays)

Example: Specification in CTL
Liveness: If inputs remain equal, then eventually the 
output will change to this value.
AG( A( ( a=0 ∧ b=0 ) U ( out=0 ∨ a=1 ∨ b=1 ) ) )
AG( A( ( a=1 ∧ b=1 ) U ( out=1 ∨ a=0 ∨ b=0 ) ) )
Safety: If all inputs and the output have the same
value then the output should not change until all
inputs change their values.
AG( ( a=0 ∧ b=0 ∧ out=0 ) ⇒ A( out=0 U (a=1 ∧ b=1 ) 
) )
AG( ( a=1 ∧ b=1 ∧ out=1 ) ⇒ A( out=1 U (a=0 ∧ b=0 ) 
) )
What about the environment? It may have to be
constrained to satisfy some fairness!

Linear vs. Branching Time TL

Trace set is the same in both M1 
and M2:  { ab... c, ab... d }
Characterization by LTL

[a∧X(b∧Fc)]∨[a∧X(b∧Fd)] =
a∧X (b∧(F(c∨d))) =
a∧X (b∧(F(c)∨F(d)))

Characterization by CTL
M1 and M2: a∧AX(b∧(AF(c∨d)))
M2 only: a∧AX(b∧(AF(c)∨AF(d)))

Linear vs. Branching Time TL
In LTL the property F(G p) holds ((on all
paths) eventually always p), but
In CTL this cannot be expressed: AF(AG 
p) does not hold, because of an infinite run
on state 1. AG p holds on state 3 only, 
i.e., in state 1 the next state is either 1 or 2, 
the selfloop satisfies G p, but the transition
to 2 (and then to 3) does not satisfy G p, 
hence AG p does not hold
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Linear vs. Branching Time TL
LTL

easier inclusion of fairness constraints as preconditions in 
the same LTL language
AG EF p cannot be expressed
complexity of model checking: exponential in the length of 
the formula

CTL
fairness properties GF p ⇒ GF q not expressible
fairness constraints often specified using exception
conditions Hi: computation paths along which states satisfy
every !(Hi) (1 ≤ i ≤ n) infinitely often
complexity of model checking: deterministic polynomial

Model Checking Problem for
Temporal Logic

Given an FSM M (equivalent Kripke structure) 
and a temporal logic formula p, does M define
a model of p?

Determine the truth of a formula with respect to a 
given (initial) state in M
Find all states s of M such that (M, s) p

For any propositional temporal logic, the 
model checking problem is decidable: 
exhaustive search of all paths through the 
finite input structure

Structure of Model Checker Structure of Model Checker
Specification Language: CTL
Model of Computation: Finite-state systems
modeled by labeled state-transition graphs

(Finite Kripke Structures)
If a state is designated as the initial state, the 
structure can be unfolded into an infinite tree
with that state as the root: Computation Tree

Model Checking Algorithms
Original algorithm described in terms of 
labeling the CTL structure (Clark83)

Required explicit representation of the whole state 
space

Better algorithm based on fixed point 
calculations
Algorithm amenable to symbolic formulation

Symbolic evaluation allows implicit enumeration of 
states
Significant improvement in maximum size of 
systems that can be verified

Symbolic Model Checking
Explicit State Representation. State Explosion
Problem (about 108 states maximum)
Breakthrough: Implicit State Representation
using ROBDD (about 1020 states).
Use Boolean characteristic functions 
represented by ROBDDs to encode sets of 
states and transition relations.
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Symbolic Model Checking Model Checking Tools
SMV (Symbolic Model Verifier)

A tool for checking finite state systems against
specifications in the temporal logic CTL.
Developed at Carnegie Mellon University by E. 
Clarke, K. McMillan et. al.
Supports a simple input language: SMV
For more information: 
http://www.cs.cmu.edu/~modelcheck/smv.html

Model Checking Tools
Cadence SMV
Updated version of SMV by K. McMillan at Berkeley
Cadence Labs
Input languages: extended SMV and synchronous
Verilog
Supports temporal logics CTL and LTL, finite 
automata, embedded assertions, and refinement 
specifications.
Features compositional reasoning, link with a simple 
theorem prover, an easy-to-use graphical user
interface and source level debugging capabilities
For more information: 
http://www-cad.eecs.berkeley.edu/~kenmcmil/smv/

Model Checking Tools
NuSMV
Updated version of SMV by Cimatti and 
Roveri (IRST Trento)
Input language: extended SMV
Supports temporal logics CTL and LTL.

Model Checking Tools
VIS (Verification Interacting with Synthesis)

A system for formal verification, synthesis, and simulation of 
finite state systems.
Developed jointly at the University of California at Berkeley
and the University of Colorado at Boulder.
Features:

Fast simulation of logic circuits
Formal “implementation” verification (equivalence checking) of 
combinational and sequential circuits
Formal “design” verification using fair CTL model checking and 
language emptiness

• For more information: 
http://www-cad.eecs.Berkeley.edu/Respep/Research/vis/


