Outline

! = Propositional Logic
Model Checking . Flrst-Order—Lo_glc
= Temporal Logic (LTL)
- .
= Temporal Logic (BTTL-CTL)
Gianpiero Cabodi = Model Checking

Propositional Logic (calculus) Propositional Logic (calculus)

[ [
Syntax Semantics

) .. . e Given through the Truth Table:

P, Q. R.... — propositional symbols (atomic propositions)

t: true; : false — constants PlQI=P | PAQ | PvQ | P20Q | P
BEREG 1 t 1 T

3 b 3 L b 8 b - P ()

=P:not | PAQ:Pand Q PvQ:PorQ: P I r . . ;

P — Q: if P then Q (proposition equivalent to —PvQ) HERE r [ [ f

P« Q: Pitand only it Q. i.e.. P equivalent to O fp e f I 1 1

(proposition equivalent to (PAQ)W(=PA—Q) )
An interpretation is a function from the propositional symbals w {1, f}

Propositional Logic Propositional Logic

« Formula F is satisfiable {consistent) ift it is true under at least one interpretation » The relationship between F to —=F can be visualized by “mirror principle™:

« Formula F is unsatisfi; inconsistent) iff it is false under all interpretations . ] - .
Formula F is unsatisfiable (inconsistent) iff it is false under all interpretations All formulas in propositional logic

+ Formula F is valid ifT it is true (consistent) under all interpretations Atisfiahle

R o o R Valid formulas Satishiable,

o Interpretation I satisfies a formula PO is a medel of F)ATEF s true under 1 but non-valid formulas
Notation: | = |

Unsatisfiable formulas

« Theorem: A formula F is valid (a taarology) iff —F is unsatisfiable. Notation: |: I [ERE e D DL LB Tt ===l

« To determine i F is satisfable or valid. test fnite number (27 of interpretations of the
atomic propositions occurring in 1
o but it is an exponential method... satisfiability is an NP-complete problem



First-Order-Logic

itiomal logic: reasoning aboul complete sentences.

o First-onder logic: also reasoning about individual ofjects and relationships between them,
Syntax

« Objects (in FOL) are denoted by expressions called terms:

Constants a, b, c.... : Variables w, v, wo..

fity, gy 1) where 1y, ... 1, are terms and fa hol of n arguments

Predicates:
true (T) and false (F)

Pyt B0 where by, ty, . b are fevms and p a predicate svmbol of n arguments

+ Formulas

wmulas, then =P, P o QP v QP < Q. P« Q are formulas

x avariable, I a formula, then ¥ P, 3x.0) are formulas (x is not free in F, ()

First-Order Logic (Predicate
Calculus)

= First-Order Logic speaks about objects, which are the
domain of discourse or the universe.

= First-Order Logic is also concerned about Properties
of these objects (called Predicates), and the Names
of these objects.

= Also we have Functions of objects and Relations over
objects. (For example, Socrates' father is a function
of Socrates, while Socrates' son(s) is a relation about
the object Socrates). (Properties would be then
mapped to relations on objects).

Terms & Formulas

= Terms of First-Order Logic formulas are defined
recursively as follows:
= Vars ¢ Terms
= Ift), ty, ..., t, € Terms and fis a k-ary function name, then
f(t, t, ..., 1) € Terms
= Formulas of First-Order Logic could be defined as:
= Ift, t,, ..., t, € Terms and P is a k-ary relation name
then P(t,, t,, ..., t,) is an atomic formula
If 8,y are formulas then (—0), (6Ay) are formulas.

If 8 is a formula and x eVars then (3x) 6 and (Vx) 6 are
formulas.

First-Order-Logic

Semantics of a first-order logic formulae Go interpretation for function, constant and
predicate symbols in G and assigning values to free varables
First-Order Interpretations (Structures) M: M ={D. 1)
= 1 is a non-empty domain of the struciure
- Lis an interpretation function, assigns function, constant and predicate symbols:
{1} For every function symbol  of rank n=(, {f): D" — D is an n-ary function
{2) For every constant ¢, lic) is an element of D,

{3) For every predicate symbol P of mnk nz0, lP): D = [F, T} is an n-ary predicate

Evaluation
» Forevery M. a formula can be evaluated 1o T or F according 1o the following rules:

{1} Evaluate truth values of formulas P and €3, and then the truth values of
P, P, P, P=0), P using propositional logic

{2} ¥x. Pevaluates to T if truth value of G is T for every de 1; otherwise, it is F

(33 3P evaluates to T if truth value of G is T for at least one de [); otherwise, itis F

Syntax of First-Order Logic

= Using functions and relations, and using the
notation x; to denote a variable (of type
Object) to name individuals (so that we have
a set of Vars = {Xxy, x5, ..., X,}) we could define
the syntax of formulas in First-Order Logic.

An Example

((VX(HX)=>MENAEN(G(X)AH(X)))
- (3%)(G(X) AM(x))

If all humans are mortal and some Greeks are
human then some Greeks are mortal.



Hierarchy of Logic

= First-Order logic is concerned about objects
= logic quantifiers (V,3) quantify over elements
(objects).
= Second-order logic: elementary elements are
functions and relations (i.e., sets of objects)
= Third-order logic: main objects are sets of
sets of objects.

= logic quantifiers (V,3) quantify over relations and
functions.

Higher Order Logic

= Advantage: high expressive power!

= Disadvantages:

= Incompleteness of a sound proof system for most higher-
order logics

= Theorem (Godel, 1931) There is no complete deduction system for
the second-order logic.

= Reasoning more difficult than in FOL, need ingenious
inference rules and heuristics.

= Inconsistencies can arise in higher-order systems if
semantics not carefully defined

= “Russell Paradox”: Let P be defined by P(Q) = —=Q(Q). By
substituting P for Q, leads to P(P) = —P(P),
(P: bool — bool, Q: bool — bool) contradiction!

Classification of Temporal Logics

= The underlying nature of time:

= Linear: at any time there is only one possible
future moment, linear behavioral trace

= Branching: at any time, there are different
possible futures, tree-like trace structure
= Other considerations:
= Propositional vs. first-order
= Point vs. intervals
= Discrete time vs. continuous time
= Past vs. future

Higher Order Logic

= Example 1: (mathematical induction)
= VP. [P(0) A (Vn. P(n)— P(n+1))]— V¥n.P(n)
(Impossible to express it in FOL)
= Example 2: Function Rise defined as
= Rise (c, t) = —c(t) A c(t+1)
Rise expresses the notion that a signal c rises at time t.

Signal is modeled by a function c: N — {F,T}, passed as
argument to Rise.

Result of applying Rise to c is a function: N — {F,T}.

Temporal Logics

= Temporal logic is a type of modal logic that
was originally developed by philosophers to
study different modes of “truth”

= Temporal logic provides a formal system for
qualitatively describing and reasoning about
how the truth values of assertions change
over time

= It is appropriate for describing the time-
varying behavior of systems (or programs)

Linear Temporal Logic

= Time lines
= Underlying structure of time is a totally ordered set
(S,<), isomorphic to (N,<): Discrete, an initial
moment without predecessors, infinite into the
future.
= Let AP be set of atomic propositions, a linear
time structure M=(S, x, L)
= S: aset of states
= X: NS an infinite sequence of states, (x=s,,S,...)

= L: S—24P Jabeling each state with the set of
atomic propositions in AP true at the state.



Example
mx: Ws, HNs, Hs, Hs,
O—0O—0O—0O
Hp Hpq Hr Huv

« AP={p,q,r,u, v}

= L(sp) = {p} L(sy) = {p. a}, L(sp) = {r},
L(s3) ={u, v},.......

Examples
wp OO —0O 0
mp
wop O—O—0O—0O
up mp mp mp
mp OO O

mp

mpug O—O—O—0O
up mp mp uq

Examples

= p = FQq: “if p is true now then at some future

moment q will be true.”

= G(p = FQq): “whenever p is true, g will be true

at some subsequent moment.”

Propositional Linear Temporal
Logic (PLTL)

= Classical propositional logic + temporal
operators
= Basic temporal operators
= Fp (“eventually p”, “sometime p”)
= Gp (“always p”, “henceforth p”)
= Xp (“next time p”)
= pUq (“p until ")
= Other common notation:

PLTL Syntax

= The set of formulas of PLTL is the least set of
formulas generated by the following rules:
= Atomic propositions are formulas,
= pand qformulas: p A q, -p, pUq, and Xp are formulas.

= The other formulas can be introduced as
abbreviations:

= p v g abbreviates =(-p A -Qq)

= p = q abbreviates -p v q

= p=q abbreviates (p = q) A (Q = p),
= true abbreviates p v —p,

= false abbreviates -true,

= Fp abbreviates (true U p),

= Gp abbreviates =F-p.

PLTL semantics

Semantics of a formula p of PLTL with respect to a
linear-time structure M=(S, x, L)

= (M, x) |= p means that “in structure M, formula p is
true of timeline x.”

= X suffix of x starting at s;, X' = s;, Sj,q, ..
= Semantics
« (M, x) |=piffp e L(s), for atomic proposition p

« (M, %) EpAqiff (M, x)[=pand (M, x) =g

« (M, x) |=-piffitis not the case that (M, x) |= p

= (M,X) EXpiffxtl=p

« (M, x) [=Fpiff 3j.0¢ |= p)

« (M, x) |=Gpiff vj.(x |= p)

« (M,X) FpUQqiff3j.(x|= g and ¥ k, 0<k<j (x¢ |= p))



PLTL semantics

= Duality between linear temporal operators

. = G-p =-Fp
[ ‘: F—|p = —|Gp
- ‘: X—|p = —|Xp

= PLTL formula p is satisfiable iff there exists
M=(S, x, L) such that (M, X) |= p
(any such structure defines a model of p).

Example

= Safety property — nothing bad will ever
happen:

= Vit. (Validated (t) = —Validated (t + 1))
= [ (Validated = O —Validated)
= G (Validated = X —Validated)

= Liveness property — something good will
eventually happen:

= Vi. Ready (t) = 3t’ > t.Accepted (")
» 0 (Ready = 0Accepted)
» G (Ready = F Accepted)

Branching Time Temporal Logic
(BTTL)

= Structure of time: an infinite tree, each instant may
have many successor instants. Along each path in
the tree, the corresponding timeline is isomorphic to
N

= State quantifiers: Xp, Fp, Gp, pUq (like in linear
temporal logic)

= Path quantifiers: for All paths (A) and there Exists a
path (E) from a given state

= Other frequent notation:
» G=0

Example

HEnv.
B(USER) wmAccepted System

A simple interface protocol, pulses one clock
period wide

EReady
it N

—

mValidated

Constraints

= Fairness constraint:
= G(Accepted = F Ready)
models a live environment for System
= Behavior of environment (constraint):
» G (Ready = X(-Ready U Accepted ))
= What about other properties of Accepted
(initial state, periodic behavior), etc.?

= Prove the system property under the assumption
of valid environment constraints

BTTL and LTL

= In linear time logic, temporal operators describe
events along a single future, however, when a linear
formula is used for specification, there is usually an
implicit universal quantification over all possible
futures (linear traces)

= In contrast, in branching time logic the operators
usually reflect the branching nature of time by
allowing explicit quantification over possible futures in
any state

= One supporting argument for branching time logic is that it
offers the ability to reason about existential properties in
addition to universal properties

= But, it requires some knowledge of internal state for
branching, closer to implementation than LTL that describes
properties of observable traces and has simpler fairness
assumptions



CTL: aBTTL

= CTL = Computation Tree Logic

= Example of Computation Tree:

= Paths in the tree = possible computations or
behaviors of the system

State Tran

aph iKripke Mosdel} Infinite Computation Tree

Intuitive Semantics of Temporal
Operators

EGF 2

A

A% A

AFT 3
¢\

EXTF

Ain b

= Truth of a CTL formula is defined inductively:
» (M, o) |=piffp e L(sy), for atomic proposition p

(M, sg) |==p iff (M, s0) = p

(M, sg) |=pAqiff (M, sp)l=pand (M, sp) l=q

(M, s) |= AXpiiff v states t, (spt) € R, (M) = p

(M, so) |=Expiff 3 statest, (sot) € R, (M) [=p

and V k, 0<k<j, (M, s,) |= p

= (M,s0) FE(UQ)iff 3x=5;,5;, 8, ..,3j20,(M,s) =g

and V k, 0<k<j, (M, s,) |= p

CTL syntax

Every atomic proposition is a CTL formula

If f and g are CTL formulas, then so are —f, fAg, AXf,
EXf, A(fUg), E(fUg)

Other operators:

= AFg =A(true U g) EFg = E(true U g)

= AGf=—E(true U —f) EGf = —A(true U —f)

entire logic:

EFp = E(true U p)

AXp = —-EX—p

AGp = —-EF—p

A@QUP) = ~(E((—p U~G)A—p)VEG—p)

CTL semantics

= A Kripke structure: triple M = <S, R, L>

= S:setofstates R < S x S: transition relation

= LS — 2AP: (Truth valuation) set of atomic propositions true
in each state

R is total:

= Vs eSthere exists a state s’ € S such that (s, s') e R

Path in M:

= infinite sequence of states, X = s, S, ..., 120, (S;, S;4y) € R
xi: suffix of x starting at s, X = s;, Siyq, ...

xi denotes the suffix of x starting at si: xi = si, si+1, ...

Example Structure M <S,R,L>

(M, s0) EA(PUQ)Iff VX=555,5,...3]20,(M,s) =q

. S={1,2345} AP ={ab,c},
= R={(12), 2,3), (5.3), (55), (5.1), (2,4), (4,2), (1,4), (3.4)}
= L(1) ={b}, L(2) = {a}, L(3) ={a.b,c}, L(4) = {b,c}, L(5) = {c}



Example CTL formulas

» EF(started A— ready): possible to getto a
state where started holds but ready does not

= AG(req = AF ack): if a request occurs, then
there is eventually an acknowledgment (does
not ensure that the number of req is the same
as that of ack !)

= AG(AF enabled): enabled holds infinitely
often on every computation path

» AG(EF restart): from any state it is possible to
get to the restart state

Example

Two input Muller C-element (assuming finite
discrete delays)

a—g

b—

out

fab # 11} {al = ik

ab=00 _-\

| Linear vs. Branching Time TL

Trace set is the same in both M1
and M2: {ab...c, ab...d}

O, M2 e Characterization by LTL
(L) m[arX(bAFC)V[aaX(baFd)] =
b f I?laAX(bﬂF@vd»):
: | masX (bA(F(C)VF(d)))
! | Characterization by CTL

(5 SD @ 1, mM1 and M2: anAX(bA(AF(cvd)))
BM2 only: arnAX(bA(AF(c)vVAF(d)))

CTL*

= Computational tree logic CTL* combines branching-
time and linear-time operators

= CTL*is sometimes referred to as full branching-
time logic

= In CTL each linear-time operators G, F, X, and U
must be immediately preceded by a path quantifier

= In CTL* a path quantifier can prefix an assertion
composed of arbitrary combinations of the usual
linear-time operators (F, G, X and U)

= Example: EFp is a basic modality of CTL; E(Fp A Fq)
is a basic modality of CTL*

Example: Specification in CTL

= Liveness: If inputs remain equal, then eventually the
output will change to this value.

s AG(A((a=0Ab=0)U (out=0va=1vb=1)))

s AG(A((a=1Ab=1)U (out=1va=0vhb=0)))

= Safety: If all inputs and the output have the same

value then the output should not change until all
inputs change their values.

s AG((a=0Ab=0Aout=0)=A(out=0U (a=1 Ab=1)
))

s AG((a=1Ab=1Aout=1)=A(out=1U (a=0 A b=0)
))

= What about the environment? It may have to be
constrained to satisfy some fairness!

| Linear vs. Branching Time TL

! = In LTL the property F(G p) holds ((on all

! paths) eventually always p), but
0 = In CTL this cannot be expressed: AF(AG
2 p) does not hold, because of an infinite run
e on state 1. AG p holds on state 3 only,
i.e., in state 1 the next state is either 1 or 2,
3 the selfloop satisfies G p, but the transition
o to 2 (and then to 3) does not satisfy G p,
hence AG p does not hold



Linear vs. Branching Time TL

= LTL
= easier inclusion of fairness constraints as preconditions in
the same LTL language
AG EF p cannot be expressed
complexity of model checking: exponential in the length of
the formula
= CTL
fairness properties GF p = GF g not expressible

= fairness constraints often specified using exception
conditions H;: computation paths along which states satisfy
every !(H) (1 <i < n)infinitely often

complexity of model checking: deterministic polynomial

Structure of Model Checker

Hardware | | Behavioral
Design | Model e

/

Model Checker,

Irue / Counterexample

Model Checking Algorithms

= Original algorithm described in terms of
labeling the CTL structure (Clark83)
= Required explicit representation of the whole state
space
= Better algorithm based on fixed point
calculations
= Algorithm amenable to symbolic formulation
= Symbolic evaluation allows implicit enumeration of
states
= Significant improvement in maximum size of
systems that can be verified

Model Checking Problem for
Temporal Logic

= Given an FSM M (equivalent Kripke structure)
and a temporal logic formula p, does M define
a model of p?
= Determine the truth of a formula with respect to a

given (initial) state in M

= Find all states s of M such that (M, s) p

= For any propositional temporal logic, the
model checking problem is decidable:
exhaustive search of all paths through the
finite input structure

Structure of Model Checker

= Specification Language: CTL

= Model of Computation: Finite-state systems
modeled by labeled state-transition graphs
= (Finite Kripke Structures)

= If a state is designated as the initial state, the
structure can be unfolded into an infinite tree
with that state as the root: Computation Tree

Symbolic Model Checking

= Explicit State Representation. State Explosion
Problem (about 108 states maximum)

= Breakthrough: Implicit State Representation
using ROBDD (about 1020 states).

= Use Boolean characteristic functions
represented by ROBDDs to encode sets of
states and transition relations.



| Symbolic Model Checking

|

| Finite State I\-'lachmri | CTL Formula |

Model Checker

| OK / Counter-example |

Model Checking Tools

= Cadence SMV

= Updated version of SMV by K. McMillan at Berkeley
Cadence Labs

= Input languages: extended SMV and synchronous
Verilog

= Supports temporal logics CTL and LTL, finite
automata, embedded assertions, and refinement
specifications.

= Features compositional reasoning, link with a simple
theorem prover, an easy-to-use graphical user
interface and source level debugging capabilities

= For more information:
http://www-cad.eecs.berkeley.edu/~kenmcmil/smv/

Model Checking Tools

' = VIS (Verification Interacting with Synthesis)

= A system for formal verification, synthesis, and simulation of
finite state systems.

= Developed jointly at the University of California at Berkeley
and the University of Colorado at Boulder.

= Features:

Fast simulation of logic circuits

Formal “implementation” verification (equivalence checking) of

combinational and sequential circuits

Formal “design” verification using fair CTL model checking and

language emptiness

=+ For more information:
http://www-cad.eecs.Berkeley.edu/Respep/Research/vis/

Model Checking Tools

= SMV (Symbolic Model Verifier)

= A tool for checking finite state systems against
specifications in the temporal logic CTL.

= Developed at Carnegie Mellon University by E.
Clarke, K. McMillan et. al.

= Supports a simple input language: SMV

= For more information:
http://www.cs.cmu.edu/~modelcheck/smv.html

Model Checking Tools

NuSMV

Updated version of SMV by Cimatti and
Roveri (IRST Trento)

Input language: extended SMV
Supports temporal logics CTL and LTL.



