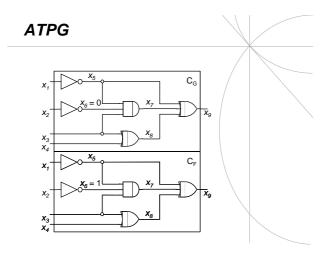
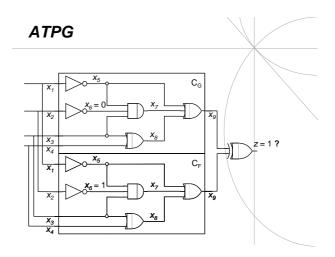

Applications of SAT in EDA


- * Test Pattern Generation:
 - Stuck-at, Delay faults, etc.
 Redundancy Removal
- Circuit Delay Computation
- * Combinational Equivalence Checking
- Sounded/Unbounded Model Checking
- Superscalar processor verification
- * FPGA routing
- * Noise analysis



Delay Computation Using SAT

Can circuit delay be $\geq \Delta$?

Characteristic Function [McGeer,ICCAD'91]

 $\chi^{y,t}$ Use characteristic functions $\chi^{y,t}$ to represent circuit delay computation as an instance of SAT !

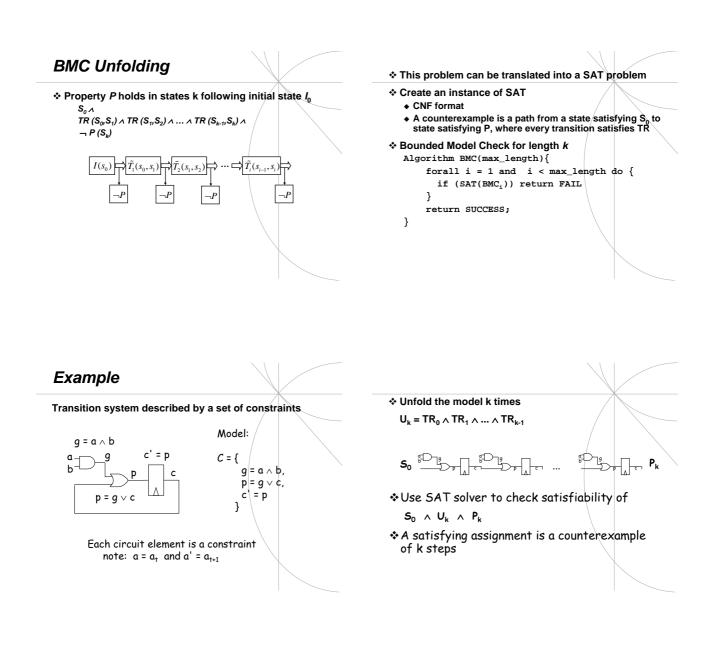
 $\chi^{y,t} = 1 \Leftrightarrow$ node *y* stabilizes no ealier than *t*

Combinational Equivalence Checking \mathbf{C}_{A} z = 1? CB If z = 1 is unsatisfiable, the two circuits are equivalent !

Bounded Model Checking (BMC)

* Bounded Model Checking (Biere, et al., TACAS 1999)

- + Property checking method based on finite unfolding of transition relation interleaved with checks of the property
 - ♦ Sound in its pure form no false positives are possible ♦ Incomplete cannot guarantee correctness of property
- Basic method


♦ CNF-based

Use CNF-based SAT solver to represent unfolding and proof UNSAT for correctness of property ♦Circuit-based

- Use ATPG-like reasoning to show untestability ∻Hybrid

 - Use circuit rewriting and SAT checking interleaved • e.g. based on AND/INV graphs

- Given
 - ◆ A finite transition system M
 - A property P (representing "good" states)
- * Note: We restrict our attention to safety properties
- * Does M allow a counterexample to $\neg P$ of k transitions or fewer?

Applications

* Debugging

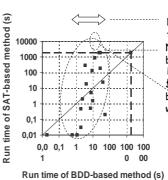
- ♦ Can find counterexamples using a SAT solver
- Proving properties
 - Only possible if a bound on the length of the shortest counterexample is known
 - I.e., we need a *diameter* bound. The diameter is the maximum length of the shortest path between any two states
 - Worst case is exponential. Obtaining better bounds is sometimes possible, but generally intractable

Unbounded Model Checking (UMC)

We consider a variety of methods to exploit SAT and BMC for unbounded model checking

- K-step induction
- ◆ Abstraction
 ♦ Counterexample-based
- ♦ Non-counterexample-based
 ♦ Exact image computations
- ♦ SAT solver tests for fixed point ♦ SAT solver computes image
- Over-approximate image computations

Improvements (Sheeran, FMCAD 2000)


- * Assert correctness of properties proven for previous
 - frames $tp^{k}(s_{0},s_{k}) = \bigwedge_{0 \le i < k} p(s_{i}) \wedge t(s_{i},s_{i+1})$
 - Helps pruning the search, especially for optimization in this talk
- Simple paths constraints

 Do not allow that a state is visited twice

 $tp_{simple}^{k}(s_{0}, s_{k}) = \bigwedge_{0 \le i < k} p(s_{i}) \land t(s_{i}, s_{i+1}) \land \bigwedge_{0 \le i < i \le k} s_{i} \neq s_{j}$

- Does not really help in practice
- *K*-step inductiveness: - In addition to BMC_k check also $inv^k = tp^k(s_0, s_k) \land \neg p(s_k)$ - Makes proof complete

SAT versus BDDs (McMillan, CAV 2002)

Note low variance in times for BDD based Nederligwecorrelation between the two methods. Benchmarks may be Biggestize Banet log Biblys. be B Good Elbertheriogrerall. when BDD's fail. But note relative immaturity of SAT based method

Context

- * SAT is the quintessential NP-complete problem
- Theoretically well-studied
- Practical algorithms for large problem instances started emerging in the last five years
- ✤ Has many applications in EDA and other fields
- Can potentially have similar impact on EDA as BDDs
- EDA professionals should have good working knowledge of SAT formulations and algorithms

Research Directions

* Algorithms

- Explore relation between different techniques
 backtrack search; conflict analysis; recursive learning; branch-merge rule; randomization & restarts; clause inference; local search (?); BDDs (?)
- Address specific solvers (circuits, incremental, etc.)
 Develop visualization aids for helping to better
 - understand problem hardness
- Applications
 - Industry has applied SAT solvers to different applications
 - ♦ SAT research requires challenging and representative publicly available benchmark instances !

Conclusion

- SAT solvers are very effective at ignoring irrelevant facts
- * SAT solvers can produce refutations
- * We can exploit in a number of ways
 - ♦ BMC
 - Abstraction for UMC
 - Abstract image computations using interpolation

This makes it possible to model check *localizable* properties large systems

- Approaches that compute exact images sacrifice this quality of SAT solvers
 - still useful as alternative to BDD's
- For non-localizable properties, SAT-based BMC and UMC do not perform well
- The capacity of SAT-based UMC is smaller than the one of BMC
 - Need to settle for bounded results
 - Debugging solution instead of complete verification
 - ♦ Use UMC only in late verification phases