Boolean Satisfiability
Verification

Gianpiero Cabodi Stefano

Politecnico di Torino

Torino, Italy

{gianpiero.cabodi,stefano.quer}@polito.it
http://staff.polito.it/{gianpiero.cabodi,stefano.quer

-

Quer

3

ATPG

Applications of SAT in EDA

« Test Pattern Generation:
« Stuck-at, Delay faults, etc.
¢ Redundancy Removal

« Circuit Delay Computation

« Combinational Equivalence Checking
« Bounded/Unbounded Model Checking
< Superscalar processor verification

“ FPGA routing

< Noise analysis

ATPG




Delay Computation Using SAT

Can circuit delay be > A?

Characteristic Function [McGeer,ICCAD'91]

y| unstable J> stable

Xy,tlj@—ch‘ara‘aéristic functions yY to represent
circuit delay computatiomasan instance of SAT !
t

T

y¥'=1 < node y stabilizes no ealier than t

Bounded Model Checking (BMC)

< Bounded Model Checking (Biere, et al., TACAS 1999)
« Property checking method based on finite unfolding of
transition relation interleaved with checks of the
property
<Sound —in its pure form no false positives are possible
<Incomplete - cannot guarantee correctness of property
+ Basic method
<CNF-based
— Use CNF-based SAT solver to represent unfolding and proof
UNSAT for correctness of property
<Circuit-based
— Use ATPG-like reasoning to show untestability
<-Hybrid
— Use circuit rewriting and SAT checking interleaved
« e.g. based on AND/INV graphs

ATPG

Xy

Xz

X3

Xy

Xy

Xz

Xg

X3
X4

Combinational Equivalence
Checking

- >—

wzzl?
—ic,

D—

If z = 1 is unsatisfiable, the
two circuits are equivalent !

“ Given
+ A finite transition system M
& A property P (representing “good” states)
< Note: We restrict our attention to safety properties

< Does M allow a counterexample to —P of k
transitions or fewer?



BMC Unfolding

« Property P holds in states k following initial state I,

SpA
TR (S0,S1) ATR(S1,S) A ... ATR (S,1,S)) A
=P (S
) = LA = L R L
Example

Transition system described by a set of constraints

gzanb Model:

Cc={
g=anb,
p=gve,
cl=p

}

Each circuit element is a constraint
note: a=a, anda' = a;,;

Applications

« Debugging
« Can find counterexamples using a SAT solver

« Proving properties

« Only possible if abound on the length of the shortest
counterexample is known

¢ l.e.,, we need a diameter bound. The diameter is the
maximum length of the shortest path between any two
states

¢ Worst case is exponential. Obtaining better bounds is
sometimes possible, but generally intractable

« This problem can be translated into a SAT problem

« Create an instance of SAT

& CNF format

+ A counterexample is a path from a state/satisfying S, to

state satisfying P, where every transition satisfies TR

< Bounded Model Check for length k

Algorithm BMC(max_length){

forall i = 1 and 1 < max_length do {
it (SAT(BMC;)) return FAIL

}
return SUCCESS;

< Unfold the model k times
U =TRyATR A .. ATR

S B 1, 1 B 1

< Use SAT solver to check satisfiability of
So AU A Py

% A satisfying assignment is a counterexample
of k steps

Unbounded Model Checking (UMC)

« We consider a variety of methods to exploit SAT and
BMC for unbounded model checking
& K-step induction
« Abstraction
<Counterexample-based
<-Non-counterexample-based

& Exact image computations
<-SAT solver tests for fixed point
<SAT solver computes image

& Over-approximate image computations



Improvements (sheeran, FMcAD 2000)

< Assert correctness of properties proven for previous
frames
P (s,.8,) = A p(s) At(s.s;,,)

O<i<k
— Helps pruning the search, especially for optimization in this talk

« Simple paths constraints
— Do not allow that a state is visited twice

k
P (S0:5) = 2, P(s) At(s; s A Ugié\jgksi #5;

— Does not really help in practice

« K-step inductiveness:
— In addition to BMC, check also

vk k
inv* =tp“(s;,s,) A —p(s,)
— Makes proof complete

Context

“ SAT is the quintessential NP-complete problem
< Theoretically well-studied

« Practical algorithms for large problem instances
started emerging in the last five years

« Has many applications in EDA and other fields
« Can potentially have similar impact on EDA as BDDs

« EDA professionals should have good working
knowledge of SAT formulations and algorithms

Conclusion

« SAT solvers are very effective at ignoring irrelevant
facts

« SAT solvers can produce refutations

« We can exploit in a number of ways
¢ BMC
« Abstraction for UMC
& Abstract image computations using interpolation

This makes it possible to model check /ocalizable
properties large systems

SAT versus BDDs (McMillan, CAV 2002)

< Note low variance in

E 10000 times for BDD based

® Kedanigwecornelation

E 10001 between the two methods.
@ 100 - . Benchmarks may be

2 10 . biiFelshise favetiod BREYs.
£ bBRYswareIbetisrigyeral.
n when BDD's fail,

S 01 But note relative

g oot L immaturity of SAT

= 0001 1 10 100 100 100 based method

& 1 0 00

Run time of BDD-based method (s)

Research Directions

“ Algorithms
o Explore relation between different techniques
<-backtrack search; conflict analysis; recursive learning;

branch-merge rule; randomization & restarts; clause
inference; local search (?); BDDs (?)

¢ Address specific solvers (circuits, incremental, etc.)
+ Develop visualization aids for helping to better
understand problem hardness
« Applications
« Industry has applied SAT solvers to different
applications

<-SAT research requires challenging and representative
publicly available benchmark instances !

« Approaches that compute exact images sacrifice this
quality of SAT solvers
o still useful as alternative to BDD's

« For non-localizable properties, SAT-based BMC and
UMC do not perform well

« The capacity of SAT-based UMC is smaller than the
one of BMC

+ Need to settle for bounded results
« Debugging solution instead of complete verification
& Use UMC only in late verification phases



