

- ✤ Cutpoint guessing
 - Compute net signature with random simulator
 - Sort signatures + select cutpoints
 - Iteratively verify and refine cutpoints
 - Verify outputs

Permissible Cutpoints

- * Based in ATPG
 - Test for s-a-0 at output
 - Checks for permissible functions
 - Test for s-a-1 out output
 - Checks for inverse permissibe functions
- * Permissible functions Successively merge
 - circuits
 - + From input to outputs

Register Correspondence

- Find registers in product machine that implement identical or complemented function
 - These are matching registers in the two machines under comparison
 - BUT: might be more, we may have redundant registers
- * Definition: A register correspondence is an equivalence relation in the set of registers (This definition includes only identical functions, it can be extended to also include complemented functions)
- A register correspondence can be used as a candidate for R
 - ♦ $R(s) = \Pi (s_i \equiv s_i)$

Problems with Functional Reg. Correspondence

In case of micomparing designs

- Effect of miscomparing cone may ripple through entire algorithm and split all equivalence classes until they contain only single registers
- Difficult to debug since no hint of error location

Solution

- - ned techniques with name mapping, functional/structural criteria

Verification Tools

♦SMV

- ◆ CMU, Clarke & co.
- Based on the FSM model
 - From completely synchrounous to completely asynchrounous
 - ♦From detailed to abstract
- + CTL

COSPAN

- AT&T Bell Labs, Kurshan & co., LNCS, 1996
- Language containment, ω-automaton

*Check-Off

- ◆ Abstract Hardware Ltd.
- Core technology by Siemens

Design Verifier

- Chrysalis
 - ◆ Equivalence Checker
 - Model Checker under development
- * Vformal
 - ♦ Compass, core technology by BULL
 - Equivalence Checker
 - Model Checker under development

RuleBase

- IBM, core technology by CMU
- * FormalCheck
 - ◆ Lucent Technologies, core technology COSPAN Properties are defined using templates
 - Increased simplicity, decreased flexibility
- In-house support
 - ◆ Intel and Motorola , core technology by CMU

VIS

***HSIS**

- UC-Berkeley, Brayton & co., 1994
- Temporal logic model checking
- Language containment
- Unacceptably Slow for large examples

* VIS (Verification Interacting with Synthesis)

- ◆ UC-Berkeley, Brayton & co, 1996 ◆ Front-End
- ♦ Verilog (VL2MV translator), BLIF, BLIF-MV
- + VIS-V

 - Simulation
 ♦ Temporal logic model checking
 ♦ Equivalence checking (combinational and sequential)
- + VIS-S
- ♦ Synthesis optimizations through SIS

Verity

- *IBM , Kuehlamnn & co., IBM Journal 1995
 - ◆ Targeting large CMOS design
 - Based on combinational verification (identification of corresponding registers) + Hierarchical design verification (identical partitioning of the
 - two design compared) Commercial name: BoolesEye

*Pros

- Different Engines run Subsequently ◆ Large problems (up to "macros" of 25000 CMOS transistors)
- *Cons
 - Combinational verification
 - Structurally similar circuits (often the case)