

Reference

* Paper
* Books
C. Meinel, T. Theobald
"Algorithms and Data Structure in VLSI Design"
Springer-Verlag, Berlin, August 1998
ISBN 3-540-64486-5
G. D. Hachtel, F. Somenzi
"Loginc Synthesis and Verification Algorithms"
Kluwer Academic Publishers

Outline

* Background
- FSM Model and State Space Graph Representation
- State Space Visit: DFS and BFS Paradigms
- Functions and Sets Representation
- Image Computation Concepts
- Impact and Reference
* Transition Relation
* Image Computation
* Reachability Analysis
* Limits

Outline

* Background
- FSM Model and State Space Graph Representation - State Space Visit: DFS and BFS Paradigms
- Functions and Sets Representation
- Image Computation Concepts
- Impact and Reference
* Transition Relation
* Image Computation
* Reachability Analysis
* Limits

Outline

* Background
- FSM Model and State Space Graph Representation
- State Space Visit: DFS and BFS Paradigms
- Functions and Sets Representation
- Image Computation Concepts
- Impact and Reference
$\%$ Transition Relation
* Image Computation
* Reachability Analysis
* Limits

EFFICIENT IFF we can deals with multiple states (set of state)

EFFICIENT IFF we can deals with multiple states (set of state)

Outline

* Background

- FSM Model and State Space Graph Representation
- State Space Visit: DFS and BFS Paradigms
- Functions and Sets Representation
- Image Computation Concepts
- Impact and Reference
* Transition Relation
* Image Computation
* Reachability Analysis
* Limits

Set Representation

(Set of bit vectors of length n)

* Represent set \boldsymbol{A} as Boolean function A of \boldsymbol{n} variables
$X \in A$ if and only if $A(X)=1$

Set Operations

Outline

* Background

- FSM Model and State Space Graph Representation
- State Space Visit: DFS and BFS Paradigms
- Functions and Sets Representation
- Image Computation Concepts
- Impact and Reference
* Transition Relation
* Image Computation
* Reachability Analysis
* Limits

Image and inverse image

$$
\operatorname{Img}(f, X)=f(X)=\left\{y \in B^{m} \mid x \in X \wedge y=f(x)\right\}
$$

PreImg (f, $\mathbf{Y})=\mathbf{f}^{-1}(\mathbf{Y})=\left\{\mathbf{x} \in \mathbf{B}^{\mathbf{n}} \mid \mathbf{y} \in \mathbf{Y} \wedge \mathbf{y}=\mathbf{f}(\mathbf{x})\right\}$

 of set A:
$\chi_{A}(s)=1$ IFF $s \in A$ $=0$ IFF $s \notin A$

Image and inverse image
$\operatorname{Img}(f, X)=f(X)=\left\{y \in B^{m} \mid x \in X \wedge y=f(x)\right\}$

FSM Analysis Impact

* Systems Represented as Finite State Machines - Sequential circuits
- Communication protocols
- Synchronization programs
* Analysis Tasks
- State reachability
- State machine comparison
- Temporal logic model checking
* Traditional Methods Impractical for Large Machines
- Polynomial in number of states
- Number of states exponential in number of state variables
- Example: single 32-bit register has 4,294,967,296 states!

A Few Related Works

* Ranjan \& co. IWLS-1995:
- Clustering and ordering heuristics most widely used
* Hojati \& co. ICCD-1996:
- Theoretic results
* Moon \& co. DAC-2000 \& FMCAD-2000:
- Transition function VS transition relation
- Active lifetime - dependence matrix
* Gupta \& co. FMCAD-2000:
- BDD and SAT for computing images in traversal
* Meinel \& co. FMCAD-2000, ICCD-2001:
- Using hierarchical information for conjunction scheduling

The Transition Relation

$$
\operatorname{TR}(s, x, y)=\prod_{i=1}^{n}\left(y_{i} \equiv \delta_{i}(s, x)\right)
$$

The Transition Relation espresses present-state, primary input \Rightarrow next state correspondence.

Outline

* Background

- FSM Model and State Space Graph Representation
- State Space Visit: DFS and BFS Paradigms
- Functions and Sets Representation
- Image Computation Concepts
- Impact and Reference
* Transition Relation
* Image Computation
* Reachability Analysis
* Limits

- Represent set of transitions as function δ (Old, New) \diamond Yields 1 if can have transition from state Old to state New
- Represent as Boolean function
\diamond Over variables encoding states

```
TR(s,x,y)=
```

$=\Pi_{i=1}{ }^{n}\left(y_{i} \equiv \delta_{i}(s, x)\right)$
$=\left[\left(y_{1} \equiv \delta_{1}(s, x)\right) \cdot\left(y_{2} \equiv \delta_{2}(s, x)\right) \cdot \ldots \cdot\left(y_{n} \equiv \delta_{n}(s, x)\right)\right]$

```
TR(s,x,y)=
```


$\operatorname{Img}(T R$, From $)=\exists_{s, x}[T R(s, x, y) \cdot \operatorname{From}(s)]$

Image is computed through:
a conjunction-abstraction operation between present state set and transition relation.

Outline

* Background

- FSM Model and State Space Graph Representation
- State Space Visit: DFS and BFS Paradigms
- Functions and Sets Representation
- Image Computation Concepts
- Impact and Reference
* Transition Relation
* Image Computation
* Reachability Analysis
* Limits

Image Computation

$\operatorname{Img}(T R, \operatorname{From})=\exists_{s, x}[T R(s, x, y) \cdot \operatorname{From}(s)]$

From(s)

Image Computation

$\operatorname{Img}(T R$, From $)=\exists_{s, x}[T R(s, x, y) \cdot \operatorname{From}(s)]$

$$
\text { TR }(s, x, y) \cdot \operatorname{From}(s)
$$

TR (s, x, y)

Image Computation

$\operatorname{Img}(T R$, From $)=\exists_{s, x}[T R(s, x, y) \cdot \operatorname{From}(s)]$
$\exists \mathrm{s}, \mathrm{x}[\operatorname{TR}(\mathrm{s}, \mathrm{x}, \mathrm{y}) \cdot \operatorname{From}(\mathrm{s})]$

Image Computation

To $(y)=\operatorname{Img}(T R$, From $)=\exists_{s, x}[T R(s, x, y) \cdot$ From (s)]

$$
=\exists_{s x}[\operatorname{TR}(s, x, y) \cdot \text { From }(s)]
$$

$$
=\exists_{s x}\left[\left(y_{1} \equiv \delta_{1}\right) \cdot\left(y_{2} \equiv \delta_{2}\right) \cdot \ldots \cdot\left(y_{n} \equiv \delta_{n}\right) \cdot \text { From }(s)\right]
$$

Image Computation

$\operatorname{Img}(T R$, From $)=\exists_{s, x}[$ TR $(s, x, y) \cdot$ From $(s)]$

Ing (TR, From)

To $(y)=$
$=\exists_{s x}[\operatorname{TR}(s, x, y) \cdot \operatorname{From}(s)]$
image
$=\exists_{\mathrm{sx}}\left[\left(y_{1} \equiv \delta_{1}\right) \cdot\left(y_{2-} \equiv \delta_{2}\right)\right.$.
$\ldots \cdot\left(y_{n} \equiv \delta_{n}\right) \cdot$ From (s)]

Outline

* Background

- FSM Model and State Space Graph Representation
- State Space Visit: DFS and BFS Paradigms
- Functions and Sets Representation
- Image Computation Concepts
- Impact and Reference
* Transition Relation
* Image Computation
* Reachability Analysis
* Limits

Image and Pre-Image of States: An Example

Image of a set of states From(s)
From $(\mathrm{s})=$
Example:

$(s \equiv 0) \vee(s \equiv 1)$
$\operatorname{TR}(\mathrm{s}, \mathrm{y})=$
$(s \equiv 0) \wedge(y \equiv 2) \vee \quad\{(0,2)$,
$(s \equiv 0) \wedge(y \equiv 3) \vee \quad(0,3)$,
$(s \equiv 1) \wedge(y \equiv 3) \vee \quad(1,3)$,
$(s \equiv 2) \wedge(y \equiv 4)$
$(2,4)\}$
$T R(s, y) \wedge$ From $(s)=$
$(s \equiv 0) \wedge(y \equiv 2) \vee \quad\{(0,2)$,
$(s \equiv 0) \wedge(y \equiv 3) \vee \quad(0,3)$,
$(s \equiv 1) \wedge(y \equiv 3)$
To $(y)=\exists s(T R \wedge$ From $)=$
$(y \equiv 2) \vee(y \equiv 3)$

Representations

* Explicit reachability analysis
- Represent states explicitly (e.g. as bit string) $=>$ limited capacity
- Use hashtable to find quickly whether state was reached before
- Image operation: simple simulation
- Preimage operation: SAT run
* Symbolic reachability analysis
- Represent states and transition relation symbolically \rangle E.g. BDDs, circuits, DNF, etc.
- Use BDD operations to perform image and preimage operation (simple AND or AND_EXIST)
- Lots of heuristic improvements to keep BDD size under control

Forward Reachability Analysis

 (Forward Traversal)Sequence of image computations ... till fixed point ...

FwdTraversal (TR, S_{0})
Reached $=$ From $=$ New $=S_{0}(s)$
while ($\mathrm{New} \neq \phi$)
To $=$ Img (TR, From)
To ${ }_{\mathrm{y} \rightarrow \mathrm{s}}$
New $=$ To $\wedge \neg$ Reached
Reached $=$ Reached \vee New
From = Best_BDD (New, Reached)
return (Reached (s))

- Determine set of all reachable states of circuit
- Key step in model checking
\diamond Many (but not all) properties can be checked by some form of reachability computation

Backward State Traversal

BwdTraversal (TR, S_{0})

Reached $=$ From $=$ New $=S_{0}(s)$
while (New $\neq \phi$)
To = PreImg (TR, From)
To $\left.\right|_{y \rightarrow s}$
New = To $\wedge \neg$ Reached
Reached $=$ Reached \vee New
From = Best_BDD (New, Reached) return (Reached (s))

To summarise

Forward Traversal

$\mathrm{R}_{0}=$ Initial State Set $R_{i+1}=R_{i}+\operatorname{Img}\left(T R, R_{i}\right)$

Backward Traversal
$\mathbf{R}_{0}=$ Initial State Set
$\mathbf{R}_{\mathrm{i}+1}=\mathbf{R}_{\mathrm{i}}+\operatorname{PreImg}\left(\mathrm{TR}, \mathrm{R}_{\mathrm{i}}\right)$

Outline

* Background
- FSM Model and State Space Graph Representation
- State Space Visit: DFS and BFS Paradigms
- Functions and Sets Representation
- Image Computation Concepts
- Impact and Reference
* Transition Relation
* Image Computation
* Reachability Analysis
* Limits

Maximum Size at intermediate steps Ravi \& Somenzi, ICCAD'95]

Maximum Size a intermediate steps Ravi \& Somenzi, ICCAD'95]

Image steps Traversal steps
|BDD| Partitioned/Interleaved Traversal
mage steps

