

Reference

Paper

Books

C. Meinel, T. Theobald "Algorithms and Data Structure in VLSI Design" Springer-Verlag, Berlin, August 1998 ISBN 3-540-64486-5

G. D. Hachtel, F. Somenzi "Loginc Synthesis and Verification Algorithms" Kluwer Academic Publishers

Outline

- * Background
 - FSM Model and State Space Graph Representation
 - ◆ State Space Visit: DFS and BFS Paradigms
 - Functions and Sets Representation
 - Image Computation Concepts
 - Impact and Reference
- Transition Relation
- * Image Computation
- * Reachability Analysis
- Limits

Outline

* Background

- FSM Model and State Space Graph Representation
- ♦ State Space Visit: DFS and BFS Paradigms
- Functions and Sets Representation
- Image Computation Concepts
- Impact and Reference
- Transition Relation
- Image Computation
- Reachability Analysis
- Limits

Outline

- Background
 - ◆ FSM Model and State Space Graph Representation
 - State Space Visit: DFS and BFS Paradigms
 - Functions and Sets Representation
 - Image Computation Concepts
 Impact and Reference
- Transition Relation
- Image Computation
- Reachability Analysis
- Limits

EFFICIENT IFF we can deals with multiple states (set of state)

Background

- ◆ FSM Model and State Space Graph Representation
- ◆ State Space Visit: DFS and BFS Paradigms
- Functions and Sets Representation
- Image Computation Concepts
 Impact and Reference
- * Transition Relation
- Image Computation
- Reachability Analysis
- Limits

- * Background
 - FSM Model and State Space Graph Representation
 - ◆ State Space Visit: DFS and BFS Paradigms
 - Functions and Sets Representation
 - Image Computation Concepts
 - Impact and Reference
- Transition Relation
- Image Computation
- * Reachability Analysis
- Limits

Image and inverse image

PreImg (f, Y) = $f^{-1}(Y) = \{ x \in B^n \mid y \in Y \land y = f(x) \}$

FSM Analysis Impact

- ✤ Systems Represented as Finite State Machines
 - Sequential circuits
 - ♦ Communication protocols
 - Synchronization programs
- Analysis Tasks
 - State reachability
 - State machine comparison
 - Temporal logic model checking
- Traditional Methods Impractical for Large Machines
 Polynomial in number of states
 - Number of states exponential in number of state variables
 - Example: single 32-bit register has 4,294,967,296 states!

A Few Related Works

- Ranjan & co. IWLS-1995:
 Clustering and ordering heuristics most widely used
- * Hojati & co. ICCD-1996:
 - Theoretic results
- Moon & co. DAC-2000 & FMCAD-2000:
 Transition function VS transition relation
 Active lifetime dependence matrix
- Gupta & co. FMCAD-2000:
 BDD and SAT for computing images in traversal
- Meinel & co. FMCAD-2000, ICCD-2001:
 Using hierarchical information for conjunction scheduling

Outline

- * Background
 - FSM Model and State Space Graph Representation
 - State Space Visit: DFS and BFS Paradigms
 - Functions and Sets Representation
 - Image Computation Concepts
 Impact and Reference
- Transition Relation
- Image Computation
- Reachability Analysis
- Reachability A
- Limits

Background

- ◆ FSM Model and State Space Graph Representation
- State Space Visit: DFS and BFS Paradigms
 Functions and Sets Representation
- Image Computation Concepts
- Impact and Reference
- Transition Relation
- Image Computation
- Reachability Analysis
- Limits

Image Computation Image Computation Img (TR, From) = $\exists_{s,x}$ [TR (s, x, y) · From(s)] Img (TR, From) = $\exists_{s,x}$ [TR (s, x, y) · From(s)] Image is computed through: a conjunction-abstraction operation between present state From(s) set and transition relation. Image Computation Image Computation Img (TR, From) = $\exists_{s,x}$ [TR (s, x, y) · From(s)] Img (TR, From) = $\exists_{s,x}$ [TR (s, x, y) · From(s)] TR (s, x, y) · From(s) From(s) From(s) TR (s, x, y) TR (s, x, y)

Image and Pre-Image of States: An Example		
Image of a set of states From(s)		
	From (s) =	
	$(s=0)\lor(s=1)$	{0,1}
Example:	TR (s, y) =	
	(s ≡ 0) ∧ (y ≡ 2) ∨	{(0,2) ,
01 (2)	$(s \equiv 0) \land (y \equiv 3) \lor$	(0,3),
	(s ≡ 1) ∧ (y ≡ 3) ∨	(1,3),
	$(s \equiv 2) \land (y \equiv 4)$	(2,4)}
	TR (s, y) ∧ From (s) =	
From(s)	$(s \equiv 0) \land (y \equiv 2) \lor$	{ (0,2) ,
	$(s \equiv 0) \land (y \equiv 3) \lor$	(0,3),
Img(TR,From(s))	(s ≡ 1) ∧ (y ≡ 3)	(1,3)}
	To (y) = ∃s (TR ∧ From) =	
	$(y \equiv 2) \lor (y \equiv 3)$	{(2,3)}

- * Background
 - + FSM Model and State Space Graph Representation
 - ◆ State Space Visit: DFS and BFS Paradigms
 - Functions and Sets Representation
 - Image Computation Concepts
 - Impact and Reference
- Transition Relation
- Image Computation
- * Reachability Analysis
- Limits

Representations

- * Explicit reachability analysis
 - Represent states explicitly (e.g. as bit string) => limited capacity
 - Use hashtable to find quickly whether state was reached before
 - Image operation: simple simulation
 - Preimage operation: SAT run

* Symbolic reachability analysis

- Use BDD operations to perform image and preimage operation (simple AND or AND_EXIST)
- Lots of heuristic improvements to keep BDD size under control

State Traversal Techniques

- Forward Traversal
 - Start from initial state(s)
 - ♦ Traverse forward to check whether "bad"
 - State(s) is reachable
- Backward Traversal
 - Start from bad state(s)
 - Traverse backward to check whether initial
 - State(s) can reach them
- * Combines Forward/Backward traversal
 - ♦ compute over-approximation of reachable
 - states by forward traversal
 - for all bad states in over-approximation, start backward traversal to see whether intial state can reach them

Forward Reachability Analysis (Forward Traversal)

Sequence of image computations ... till fixed point ...

Backward State Traversal

BwdTraversal (TR, S₀) Reached = From = New = S₀ (s) while (New $\neq \phi$) To = PreImg (TR, From) To |_{y \rightarrow s} New = To $\land \neg$ Reached Reached = Reached \lor New From = Best_BDD (New, Reached) return (Reached (s))

- Background
 - ◆ FSM Model and State Space Graph Representation
 - State Space Visit: DFS and BFS Paradigms
 - Functions and Sets Representation
 Image Computation Concepts
 - Image Computation Concert
 Impact and Reference
- Transition Relation
- Image Computation
- * Reachability Analysis
- Limits

Maximum Size at intermediate steps [Ravi & Somenzi, ICCAD'95]

