

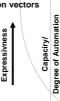
- * Deterministic machine
- * Completely specified
- * Delay element
 - Clocked: Synchronous
 - ◆ Single-phase clock vs Multiple-phase clocks
 - Unclocked: asynchronous
- Moore Machine
 - output = f (state)
- ✤ Mealy
 - output = f (state, input)

Problem: Reachable State Set State Space "Un-reached tates' Reached s Initial State S O Bad states O Good states

- Adapt combinationa verification to sequential circuits
- If combinational verification paradigm fails (e.g. we have no name matching) there are two options
 - Run full sequential verification based on state
 - traversal Very expensive but most general
 - Yor y expensive but most general
 Yor to match registers automatically
 Functional register correspondence
 Structural register correspondence
 Consider retiming

 - In essence, use all internal nets as candidates for possible matches
- * Worst case: full sequential verification
 - Prove that the output of the product machine is not satisfiable (sequentially)
 - Special case of general property checking

How Do We Obtain R?


* Reachability analysis

- State traversal until no more states can be
 - explored
 - ♦Forward♦Backward
 - ♦Explicit ♦Symbolic
- * Relying on the design methodology to provide R
 - Equivalent state encoding in both machines Synthesis tool provides hint for R from sequential optimization
 - Manual register correspondence
 - Automatic register correspondence
- * Combination of them

Property Checking

* Assertion-based verification

- Properties are expressed as RTL annotations in terms or assertions ("This statement must hold true")
- E.g. AG(x=y) "For all paths from the initial state and all
- successor states x=y
- Formal verification methods
 - Exhaustive, do not require simulation vectors
- * Main methods
 - Theorem proving
 - Model Checking
 - Liveness property checking Safety property checking
 - Refinement checking

