

General Ideas for Alternatives DDs

* When BDDs are too complex it is possible to - Decompose BDDs
- Modifying the representation \diamond Change the reduction rules \diamond Change the function decomposition \diamond Relax variable ordering requirements

Reference

* Papers

R. E. Bryant
"Binary Decision Diagrams and Beyond: Enabling Technologies for Formal "Binary Decision
Verification"
IEEE ICCAD 1995

Boolean Function Decomposition

* If the BDDs are too large to be represent - State transition and output functions
- State sets
- Intermediate computations
* Then it is possible to decompose and manipulate Boolean functions in decomposed form

When/How to insert cut-points?

* Frequently

- Good orderings do not exist or expensive
- Sub-blocks require different orderings
* Auxiliary variables
- Improve performances for poor orderings
- Overcome conflicting requirements
* Selection criteria
- Automatic structure-based insertion
- Manual function based insertion

BDD Derivatives

* MDD: Multi-valued BDDs

- natural extension, have more then two branches
- can be implemented using a regular BDD package with binary encoding
advantage that binary BDD variables for one MV variable do not have to stay together \rightarrow p potentially better ordering
* ADDs: (Analog BDDs) MTBDDs
- multi-terminal BDDs
- decision tree is binary
- multiple leafs, including real numbers, sets or arbitrary objects
- efficient for matrix computations and other non-integer applications

Zero Suppressed BDD's ZBDD's

* ZBDD's were invented by Minato to efficiently represent sparse sets. They have turned out to be useful in implicit methods for representing primes (which usually are a sparse subset of all cubes)
* To sum up:
- Minato, DAC'93
- Change in the reduction rules

To represent Sparse sets

- At most linear reduction to respect to BDD
- Sufficient reduction in practice
- Efficient representation for two and multi level logic minimization
* FDDs: Free BDDs
- variable ordering differs
- not canonical anymore
\& ... And many more

* Different reduction rules

- BDD

Eliminate all nodes where then edge and else edge point to the same node

- ZBDD
\triangleleft Eliminate all nodes where the then node points to 0 . Connect incoming edges to else node
- For both
\diamond Share equivalent nodes
(2)

Canonicity

* Theorem (Minato)

- ZBDD's are canonical given a variable ordering and the support set

x_{1}

Difference Decision Diagrams

* Møller, Lichtenberg, Andersen, Hulgaard, 1999 * DDD
- Similar to BDDs, but the nodes are separation predicates
- Ordering on variables determines order on predicates
- Semi-canonical (i.e canonical when φ is a tautology or a contradiction)

$\varphi:!\left(x_{1}-x_{3}<0\right) \vee x_{2}-x_{3} \leq 0 \vee!\left(x_{2}-x_{1}<0\right)$
- Each path leading to ' 1 ' is checked for consistency with 'Bellman-Ford'
- Worst case - an exponential no. of such paths

Functional DDs - OFDDs

* Kebschull \& co., EDAC'92
* Reed-Muller Expansion (Negative and Posite Davio) - $\mathrm{f}=\mathrm{f} \varnothing \mathrm{x} \AA \mathrm{A} \mathrm{x} \cdot(\mathrm{fx} \AA \AA \mathrm{f} \varnothing \mathrm{x})=\mathrm{fx} \AA \AA \mathrm{f} \cdot(\mathrm{fx} \AA \AA \mathrm{f} \varnothing \mathrm{x})$
$\bullet \mathrm{fdx}=\mathrm{fx} \AA \AA \mathrm{f} \varnothing \mathrm{x}$ boolean difference
* For some functions are exponentially smaller than BDDs
* The reverse it is also true

FBDDs - Free BDDs

* Meinel \& co., T-Computer'94, Sieling \& co., Theorical Computer Science'95
* Variables in any order - at most once in any path
* Non-canonical
* NP-hard checking equivalence

OKFDDs - Ordered Kronecker FDDs

* Drechsler \& co., DAC'94

* Boole + Reed-Muller Decompositions
* Exponentially more compact than ROBDDs and OKFDDs
* Practice: Modest improvements on Average

TFBDDs - Typed FBDDs

Meinel \& co., T-Computer'94, DAC'95
FBDD + Type
Canonical

* Same operational approach as BDDs

How to find the Type?

IBDDs - Indexed BDDs

* Jain \& co. EDAC'92
* Multiple occurrences of input variables
* multiplier $\mathrm{Q}(\mathrm{n} 3)$, hidden weighted bit $\mathrm{Q}(\mathrm{n} 2)$

MTBDDs - Multi Terminal BDDs or ADD - Arithmetic DDs

* Clarke \& co., DAC'93, Somenzi \& co., ICCAD'93
* To represent Numeric-Valued Function
* Inefficient for large range

BMDs - Binary Moment Diagram

```
* Bryant & co., DAC'95
```

$\star f=(1-x) \cdot f \emptyset x+x \cdot f x=f \emptyset x+x \cdot(f x-f \emptyset x)$
$\star f q x=f x-f \emptyset x$ linear moment

*BMDs - Multiplicative BMDs

* Bryant \& co., DAC'95
* To reduce the number of nodes modify BMDs adding a weight to an edge
* Linear size in the number of inputs to represent addition, multiplication, exponentiation $B M D$ \& *BMD

