
1

Binary Decision Diagrams

Gianpiero Cabodi Stefano Quer

Politecnico di Torino
Torino, Italy

{gianpiero.cabodi,stefano.quer}@polito.it
http://staff.polito.it/{gianpiero.cabodi,stefano.quer}/

Reference
Paper

R. E. Bryant
“Graph-based Algorithms for Boolean Function Manipulation”
IEEE Transaction on Computers,
Vol. C-35, No. 8, August 1986, pp. 677-691
(most cited CS paper !!!)

Books
C. Meinel, T. Theobald
“Algorithms and Data Structure in VLSI Design”
Springer-Verlag, Berlin, August 1998
ISBN 3-540-64486-5

G. D. Hachtel, F. Somenzi
“Loginc Synthesis and Verification Algorithms”
Kluwer Academic Publishers

Outline
Binary Decision Diagrams: Fundamentals
Generation of BDDs from Network
Variable Ordering Related Problems
Complex Operations with BDDs
Some Conclusions on BDDs
BDD Packages

Outline
Binary Decision Diagrams: Fundamentals
Generation of BDDs from Network
Variable Ordering Related Problems
Complex Operations with BDDs
Some Conclusions on BDDs
BDD Packages

Binary Decision Diagrams
Restricted Form of Branching Program
(graph representation of Boolean function)

Canonical form (constant time comparison)
Simple (Polynomial) algorithms to construct e
manipulate (Boolean operations: and, or, not, etc.)
Exponential but practically efficient algorithm for
boolean quantification
Starting Point
1. If-Then-Else Decomposition Decomposition
2. Ordered Decision Tree
3. Reduced Decision Tree Reduction

Arguments I, T, E
Functions over variables X
Represented as BDDs

Result
ITE (I, T, E) = (I ∧T) ∨ (¬I ∧ E)
Represented as a BDD

MUX
1

0

I → T, E

X

I

T

E

If-Then-Else Decomposition
All operators can be expressed in terms of ITE
Used to build BDD from logic network or formula

2

And(F, G)

X
F

G MUX
1

0

F → G, 0

X

F

G

0

X
F

G MUX
1

0

F → 1, G

X

F

G

1

Or(F, G)

If-Then-Else(F, G, 0)

If-Then-Else(F, 1, G)

All operators can be expressed using ITE

¬ x ITE (x, 0, 1)
x == y ITE (x, ITE (y, 1, 0), ITE (y, 0, 1))
...

Boole’s (Shannon) Decomposition
F ITE (x, F|x, F| ¬x)
F = (x ∧ F|x) ∨ (¬x ∧ F|¬x) = x · F|x=1 +¬x · F|x=0

BDD from Boole’s Decomposition
1. Form decomposition one variable at a time
2. Proceed till terminal (0-1) values

This gives an ”Ordered Decision Tree”

Example 1
F (a,b,c) = (a ⊕ b) ⊕ c

a

c c c c

b b

1 0

1 0 1 0

1 0 1 0 1 0 1 0

Ordered Decision Tree
(complete tree ...

exponential size !!!)

1 1110 000

Example 1
F (a,b,c) = (a ⊕ b) ⊕ c

Example 2
F (a, b, c, d) = (a∧b) ∨ (c∧d) = ab + cd
(order a, b, c, d)

a

c

d d d d d d d d

c c c

b b

0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1

0 1

0 1 0 1

0 1 0 1 0 1 0 1

Ordered Decision Tree
(complete tree ...

exponential size !!!)

Example 2
F (a, b, c, d) = (a∧b) ∨ (c∧d) = ab + cd
(order a, b, c, d)

3

1. Combine isomorphic subtrees
2. Eliminate redundant nodes (those with identical children)
3. Use edge attributes (inverted edges)

(only one terminal nodes)

Then
Tree becomes a graph
Ordered Decision Tree becomes BDD or ROBDD
1. if the two children of a node are the same, the node is eliminated: f

= vf + vf
2. if two nodes have isomorphic graphs, they are replaced by one of

them
These two rules make it so that each node represents a distinct logic
function.

Reduction Rules

a

c c c c

b b

1 0

1 0 1 0

1 0 1 0 1 0 1 0

1 1110 000

Example 1
F (a,b,c) = (a ⊕ b) ⊕ c

?

Example 1
F (a,b,c) = (a ⊕ b) ⊕ c

a

c

b

1 0

1 0

1
1 0

a

c c c c

b b

1 0

1 0 1 0

1 0 1 0 1 0 1 0

1 1110 000

Example 2
F (a, b, c, d) = (a∧b) ∨ (c∧d) = ab + cd
(order a, b, c, d)

?

a

c

d d d d d d d d

c c c

b b

0 0 0 10 0 0 1 0 0 0 1 1 1 1 1

Example 2
F (a, b, c, d) = (a∧b) ∨ (c∧d) = ab + cd
(order a, b, c, d)

a

d

c d

b c

1

0

0

1 0

1 0

a

b

c

d

10

0
0

0

1

1
1

1

0

a

c

d d d d d d d d

c c c

b b

0 0 0 10 0 0 1 0 0 0 1 1 1 1 1

To sum up …
A BDD (ROBDD)

Is a directed acyclic graph (DAG)
one root node, two terminals 0, 1
each node, two children, and a variable

It uses a Shannon co-factoring tree, except that it is
Reduced
Ordered

Reduced
any node with two identical children is removed
two nodes with isomorphic BDD’s are merged

Ordered
Co-factoring variables (splitting variables) always follow the
same order along all paths

xi1
< xi2

< xi3
< … < xin

4

Outline
Binary Decision Diagrams: Fundamentals
Generation of BDDs from Network
Variable Ordering Related Problems
Complex Operations with BDDs
Some Conclusions on BDDs
BDD Packages

b3 b3

a3

Cout

b3

b2 b2

a2

b2 b2

a2

b3

a3

S3

b2

b1 b1

a1

b1 b1

a1

b2

a2

S2

b1

a0 a0

b1

a1

S1

b0

10

b0

a0

S0

Functions
All outputs of 4-bit adder
Functions of data inputs

A

B

Cout

S
A
D
D

Shared Representation
Graph with multiple roots
31 nodes for 4-bit adder
571 nodes for 64-bit adder
Linear growth

Representing Circuit Functions

Task: Represent output functions of gate network as OBDDs.

Generating OBDD from Network

Network

A

B

C

T1

T2

Out

Network
Evaluation

Task: Represent output functions of gate network as OBDDs.

A

B

C

T1

T2

Out

A ← new_var ("a");
B ← new_var ("b");
C ← new_var ("c");
T1 ← And (A, B);
T2 ← And (B, C);
Out ← Or (T1, T2);

Generating OBDD from Network

Network
Evaluation

Task: Represent output functions of gate network as OBDDs.

A

B

C

T1

T2

Out

Resulting
Graphs

A B C
T1 T2

Out

0 1

a

0 1

c

0 1

b

0 1

b

a

0 1

c

b

c

b

0 1

b

a

A ← new_var ("a");
B ← new_var ("b");
C ← new_var ("c");
T1 ← And (A, B);
T2 ← And (B, C);
Out ← Or (T1, T2);

Generating OBDD from Network

5

Strategy
Represent data as set of OBDDs

Identical variable orderings
Express solution method as sequence of symbolic
operations

Sequence of constructor & query operations
Similar style to on-line algorithm

Implement each operation by OBDD manipulation
Do all the work in the constructor operations

Key Algorithmic Properties
Arguments are OBDDs with identical variable orderings
Result is OBDD with same ordering
Each step polynomial complexity

Given:
two BDDs one for f and one for g
the logical operator op

To build
r = f op g
(and of two BDDs, or of two BDDs etc.) call:

Do the following:
Init computed table CT
r = APPLY (f, g)

with:

Build BDDs: The Apply Procedure

APPLY (f, g)
1. IF CT(f, g) ≠ empty THEN return (CT (f, g))
2. ELSE if f and g ∈{ 0, 1} THEN r = op (f, g)
3. ELSE if topVar(f) = topVar(g) THEN

r = ITE (topVar (f), APPLY (T(f), T(g)), APPLY (E(f), E(g)))

4. ELSE if topVar(f) < topVar(g) THEN
r = ITE (topVar (f), APPLY (T(f), g), APPLY (E(f), g))

5. ELSE /* topVar(f) > topVar(g) */
r = ITE (topVar (g), APPLY (f, T(g)), APPLY (f, E(g)))

6. put r in G
7. return (r)

0 1

d

c

a

B3 B4

B2

B5

B1

Argument A Argument B

A4,B3 A5,B4

A3,B2

A6,B2

A2,B2

A3,B4A5,B2

A6,B5

A1,B1

Recursive Calls

b

0

d

1

c

a

A4 A5

A3

A2

A6

A1

Execution Example

Optimizations
Dynamic programming
Early termination rules

^

0 1

d

c

b

11

c

a

A4,B3 A5,B4

A3,B2

A6,B2

A2,B2

A3,B4A5,B2

A6,B5

A1,B1

Recursive Calls Without Reduction With Reduction

C2

C4

C5

C3

C6

C1 0

d

c

b

1

a

Result Generation

Recursive calling structure implicitly defines unreduced BDD
Apply reduction rules bottom-up as return from recursive calls
Do not create new result node if both brances equal (return that
result) or if equivalent node already exists in reduce table. (The
apply function is also memoized.)

Example

a a

b

c c

0
1

0
1

0
0

0 1 1

1

1 100

∨ = ?

6

Example

a a

b

c c

0
1

0
1

0
0

0 1 1

1

∨

1 100

= a

b

c

0
1

0
0 1

1

10

Outline
Binary Decision Diagrams: Fundamentals
Generation of BDDs from Network
Variable Ordering Related Problems
Complex Operations with BDDs
Some Conclusions on BDDs
BDD Packages

F (a1, a2, a3, b1, b2, b3) = (a1 ∧ b1) ∨ (a2 ∧ b2) ∨(a3 ∧ b3)

Effect of Variable Ordering

0

b3

a3

b2

a2

1

b1

a1

F (a1, a2, a3, b1, b2, b3) = (a1 ∧ b1) ∨ (a2 ∧ b2) ∨(a3 ∧ b3)

Effect of Variable Ordering

Good Ordering

Linear Growth

0

b3

a3

b2

a2

1

b1

a1

F (a1, a2, a3, b1, b2, b3) = (a1 ∧ b1) ∨ (a2 ∧ b2) ∨(a3 ∧ b3)

Effect of Variable Ordering

Good Ordering Bad Ordering

Linear Growth

0

b3

a3

b2

a2

1

b1

a1

Exponential Growth

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

F (a1, a2, a3, b1, b2, b3) = (a1 ∧ b1) ∨ (a2 ∧ b2) ∨(a3 ∧ b3)

Effect of Variable Ordering

7

Exercise

Given the BDD with variable order a, b, c, d
Represents it with the order a, c, d, b.

a

b b

c c

d

0 1

c+bd b

root
node

c+dc

d

f = ab+a’c+bc’d
1

0?

Exercise

a

b b

c c

d

0 1

c+bd b

root
node

c+dc

d

f = ab+a’c+bc’d a

c

d

b

0 1

c+bd

d+b

b

1

0

Given the BDD with variable order a, b, c, d
Represents it with the order a, c, d, b.

Function Class Best Worst Ordering Sensitivity
ALU (Add/Sub) linear exponential High
Symmetric linear quadratic None
Multiplication exponential exponential Low

General Experience
Many tasks have reasonable OBDD representations
Algorithms remain practical for up to 5,000,000 node OBDDs
Heuristic ordering methods generally satisfactory

Sample Function Classes Consideration on Variable Ordering
Variable order is fixed
For each path from root to terminal node the order of ”input”

variables is exactly the same

Strong dependency of the BDD size (terms of nodes)
and variable ordering
Ordering algorithm:

Co-NP complete problem - heuristic approaches
Static Variable Ordering Heuristic
Dynamic Variable Ordering Heuristic
ROBDDs - Reduced Ordered Binary DDs (BDDs!)

Static Variable Ordering
Different heuristic introduced over the years
Usually based on the circuit structure

E.g., depth-first visit from the outputs

Sufficient for “static problems”
Insufficient for “dynamic requirements”

Dynamic Variable Reordering
First Introduced by Richard Rudell, Synopsys, 1991
Periodically Attempt to Improve Ordering for All
BDDs

Part of garbage collection
Move each variable through ordering to find its best location

Has Proved Very Successful
Time consuming but effective
Especially for sequential circuit analysis

8

a3

b2 b2

a3

a2

a3

b1

b2

0

b3

b1

1

b2

a3

a2

a1

a3

b2

b3

b2

a3

a2

a3

b2

0

b1

b3

1

b2

a3

a2

a1

a2

a3

b1

b2

0

b3

b2

a3

1

b1

a2

a1

a3

b2

0

b3

b2

a3

a2

1

b1

a1

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

• • •
a3

b2

0

b3

b2

a3

a2

1

a1

b1

Best
Choices

Dynamic Reordering By Sifting
Choose candidate variable
Try all positions in variable ordering

Repeatedly swap with adjacent variable
Move to best position found

b1 b1

b2b2 b2b2
e f g h

i j
b1 b1

b2

b1

b2

b1

e f

g h i j

Swapping Adjacent Variables
Localized Effect

Add / delete / alter only nodes labeled by swapping variables
Do not change any incoming pointers

Outline
Binary Decision Diagrams: Fundamentals
Generation of BDDs from Network
Variable Ordering Related Problems
Complex Operations with BDDs
Some Conclusions on BDDs
BDD Packages

Concept
Effect of setting function argument xi to constant k (0 or 1).
Also called Cofactor operation (UCB)

Fx equivalent to F [x=1]
F¬x equivalent to F [x=0]

k F
xi –1

xi +1

xn

x1

F [xi =k]

Restriction

Argument F

Restriction Execution Example

0

a

b

c

d

1 0

a

c

d

1

Restriction F[b=1]

0

c

d

1

Reduced Result

G F
xi –1

xi +1

xn

x1

x1

xn
F [xi =G]

x1

xn
xi –1

xi +1

xn

x1

xi –1

xi +1

xn

x1

1 F

0 F

MUX
1

0

G

Functional Composition

Create new function by composing functions F and G.
Useful for composing hierarchical modules.

9

xi –1

xi +1

xn

x1

F∃ ∃ xi F

1 F

0 F

xi –1

xi +1

xn

x1

xi –1

xi +1

xn

x1

∃b f = f | b=0 ∨ f | b=1
Eliminate dependency on some argument
Efficient algorithm for quantifying over a set of variables

Existential Variable Quantification Example
∃(b,c). ((a∧b) ∨ (c∧d)) = ?

b

c

0
1

0

1

0
0 1

a

d

0 1

1

Example
∃(b,c). ((a∧b) ∨ (c∧d)) = a ∨ d

d

a

0 1

0
1

0
1

b

c

0
1

0

1

0
0 1

a

d

0 1

1

Universal Variable Quantification
∀b f = f | b=0 ∧ f | b=1

Obtained with existential quantification combine with AND

Outline
Binary Decision Diagrams: Fundamentals
Generation of BDDs from Network
Variable Ordering Related Problems
Complex Operations with BDDs
Some Conclusions on BDDs
BDD Packages

Powerful Operations
Creating, manipulating, testing
Each step polynomial complexity

Graceful degradation

Generally Stay Small Enough
Especially for digital circuit applications
Given good choice of variable ordering

Extremely useful in practice
(Till 5 years ago) Weak Competition

No other method comes close in overall strength
Especially with quantification operations

What’s good about BDDs?

10

Some formulas do not have small representation!
(e.g., multipliers)
BDD representation of a function can vary
exponentially in size depending on variable ordering;
users may need to play with variable orderings (less
automatic)
Size limitations: a big problem
(Last 5 years) Competitive Approach: CNF
representation + SATisfiability solvers

What’s bad about BDDs? Thoughts on Algorithms Research
Need to be Willing to Attack Intractable Problems

Many real-world problems NP-hard
No approximations for verification

Who Works on These?
Mostly people in application domain

Most work on BDDs in computer-aided design conferences
Not by people with greatest talent in algorithms

Probably many ways they could improve things
Fundamental dilemma

Can only make weak formal statements about efficiency
Utility demonstrated empirically

Outline
Binary Decision Diagrams: Fundamentals
Generation of BDDs from Network
Variable Ordering Related Problems
Complex Operations with BDDs
Some Conclusions on BDDs
BDD Packages

A few BDD Packages

Brace, Rudell, Bryant: KBDD
Carnegie Mellon, 1990
Synopsys, 1993 on
Digital, Compaq, Intel, 1993 on

Long: KBDD
Carnegie Mellon, 1993
AT&T, 1995 on

Armin Biere: ABCD
Carnegie Mellon / Universität Karlsruhe

Olivier Coudert: TiGeR
Synopsys / Monterey Design Systems

Geert Janssen: EHV
Eindhoven University of Technology

Geert Janssen: EHV
Eindhoven University of Technology

Rajeev K. Ranjan: CAL
UCB, Synopsys

Bwolen Yang: PBF
Carnegie Mellon

Stefan Horeth: TUDD
University TU Darmstadt
http://marple.rs.e-technik.tu-darmastadt.de/~sth

Fabio Somenzi: CUDD
University of Colorado
http://vlsi.colorado.edu/~fabio

