

Reference

* Paper
R. E. Bryant
"Graph-based Algorithms for Boolean Function Manipulation"
IEEE Transaction on Computers,
Vol. C-35, No. 8, August 1986, pp. 677-691
(most cited CS paper !!!)
* Books
C. Meinel, T. Theobald
"Algorithms and Data Structure in VLSI Design"
Springer-Verlag, Berlin, August 1998
ISBN 3-540-64486-5
G. D. Hachtel, F. Somenzi
"Loginc Synthesis and Verification Algorithms"
Kluwer Academic Publishers

Outline

* Binary Decision Diagrams: Fundamentals
* Generation of BDDs from Network
* Variable Ordering Related Problems
* Complex Operations with BDDs
* Some Conclusions on BDDs
* BDD Packages

Binary Decision Diagrams

* Restricted Form of Branching Program (graph representation of Boolean function)
* Canonical form (constant time comparison)
* Simple (Polynomial) algorithms to construct e manipulate (Boolean operations: and, or, not, etc.)
* Exponential but practically efficient algorithm for boolean quantification
* Starting Point

1. If-Then-Else Decomposition

Decomposition
2. Ordered Decision Tree
3. Reduced Decision Tree

Reduction

Outline

* Binary Decision Diagrams: Fundamentals
* Generation of BDDs from Network
* Variable Ordering Related Problems
* Complex Operations with BDDs
* Some Conclusions on BDDs
* BDD Packages

If-Then-Else Decomposition

* All operators can be expressed in terms of ITE
\not Used to build BDD from logic network or formula

Arguments I, T, E

- Functions over variables X
- Represented as BDDs

Result

- ITE $(I, T, E)=(I \wedge T) \vee(\neg / \wedge E)$
- Represented as a BDD
* All operators can be expressed using ITE

If-Then-EIse(F, 1, G)

$\rightarrow \neg \mathrm{x} \rightarrow \mathrm{ITE}(\mathrm{x}, \mathbf{0}, \mathbf{1})$
$\bullet x==y \quad \rightarrow \quad \operatorname{ITE}(x, \operatorname{ITE}(y, 1,0), \operatorname{ITE}(y, 0,1))$

- ...

Example 1

$F(a, b, c)=(a \oplus b) \oplus c$

Example 1

$F(a, b, c, d)=(a \wedge b) \vee(c \wedge d)=a b+c d$
(order a, b, c, d)

Boole's (Shannon) Decomposition

- $\mathrm{F} \rightarrow$ ITE ($\mathrm{x}, \mathrm{FI}_{\mathrm{x}}, \mathrm{FI}_{-\mathrm{l}}$)
- $\mathrm{F}=\left(x \wedge \mathrm{~F}_{\mathrm{x}}\right) \vee\left(\neg x \wedge \mathrm{~F}_{\neg \mathrm{x}}\right)=x \cdot \mathrm{~F}_{\mathrm{x}=1}+\neg x \cdot \mathrm{~F}_{\mathrm{x}=0}$
* BDD from Boole's Decomposition

1. Form decomposition one variable at a time
2. Proceed till terminal (0-1) values

This gives an "Ordered Decision Tree"
$F(a, b, c)=(a \oplus b) \oplus c$

Ordered Decision Tree (complete tree ... exponential size !!!)

Example 2

$F(a, b, c, d)=(a \wedge b) \vee(c \wedge d)=a b+c d$
(order a, b, c, d)

Reduction Rules

1. Combine isomorphic subtrees
2. Eliminate redundant nodes (those with identical children)
3. Use edge attributes (inverted edges) (only one terminal nodes)
Then

* Tree becomes a graph
* Ordered Decision Tree becomes BDD or ROBDD

1. if the two children of a node are the same, the node is eliminated: f $=\mathrm{vf}+\mathrm{vf}$
2. if two nodes have isomorphic graphs, they are replaced by one of them
These two rules make it so that each node represents a distinct logic function.

Example 1

$F(a, b, c)=(a \oplus b) \oplus c$

Example 2

$F(a, b, c, d)=(a \wedge b) \vee(c \wedge d)=a b+c d$

Example 1

$F(a, b, c)=(a \oplus b) \oplus c$

Example 2

$F(a, b, c, d)=(a \wedge b) \vee(c \wedge d)=a b+c d$ (order a, b, c, d)

To sum up

* A BDD (ROBDD)

- Is a directed acyclic graph (DAG)
one root node, two terminals 0,1
\diamond each node, two children, and a variable
- It uses a Shannon co-factoring tree, except that it is
$\stackrel{\text { Reduced }}{ }$
$>$ Ordered
- Reduced
\diamond any node with two identical children is removed
$>$ any node with two identical children is removed
\diamond two nodes with isomorphic BDD's are merged
- Ordered
\diamond Co-factoring variables (splitting variables) always follow the same order along all paths

$$
\mathrm{x}_{\mathrm{i}_{1}}<\mathrm{x}_{\mathrm{i}_{2}}<\mathrm{x}_{\mathrm{i}_{3}}<\ldots<\mathrm{x}_{\mathrm{i}_{\mathrm{n}}}
$$

Outline

* Binary Decision Diagrams: Fundamentals
* Generation of BDDs from Network
* Variable Ordering Related Problems
* Complex Operations with BDDs
* Some Conclusions on BDDs
* BDD Packages

Representing Circuit Functions

* Functions

- All outputs of 4-bit adder
- Functions of data inputs

* Shared Representation
- Graph with multiple roots
- 31 nodes for 4-bit adder
- 571 nodes for 64-bit adder

Linear growth

Generating OBDD from Network
Task: Represent output functions of gate network as OBDDs.

Evaluation

A	\leftarrow new_var ("a");
B	\leftarrow new_var ("b");
C	\leftarrow new_var ("c");
T1	\leftarrow And (A, B);
T2	\leftarrow And (B, C);
Out \leftarrow Or (T1, T2);	

Generating OBDD from Network

* Strategy

- Represent data as set of OBDDs
\diamond Identical variable orderings
- Express solution method as sequence of symbolic operations
\triangleleft Sequence of constructor \& query operations
$>$ Similar style to on-line algorithm
- Implement each operation by OBDD manipulation \triangleleft Do all the work in the constructor operations
* Key Algorithmic Properties
- Arguments are OBDDs with identical variable orderings
- Result is OBDD with same ordering
- Each step polynomial complexity
- two BDDs one for f and one for g
- the logical operator op
* To build
- $r=f o p g$ (and of two BDDs, or of two BDDs etc.) call:

Do the following:

- Init computed table CT
- $r=\operatorname{APPLY}(f, g)$
with:

Execution Example

Result Generation

* Recursive calling structure implicitly defines unreduced BDD
* Apply reduction rules bottom-up as return from recursive calls
* Do not create new result node if both brances equal (return that result) or if equivalent node already exists in reduce table. (The apply function is also memoized.)

Example

Effect of Variable Ordering
$F\left(a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right)=\left(a_{1} \wedge b_{1}\right) \vee\left(a_{2} \wedge b_{2}\right) \vee\left(a_{3} \wedge b_{3}\right)$

Effect of Variable Ordering

Outline

* Binary Decision Diagrams: Fundamentals
* Generation of BDDs from Network
* Variable Ordering Related Problems
* Complex Operations with BDDs
* Some Conclusions on BDDs
* BDD Packages

Effect of Variable Ordering
$F\left(a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right)=\left(a_{1} \wedge b_{1}\right) \vee\left(a_{2} \wedge b_{2}\right) \vee\left(a_{3} \wedge b_{3}\right)$

Effect of Variable Ordering

```
F (a, , a},\mp@subsup{a}{3}{},\mp@subsup{a}{1}{},\mp@subsup{b}{2}{},\mp@subsup{b}{3}{})=(\mp@subsup{a}{1}{}\wedge\mp@subsup{b}{1}{})\vee(\mp@subsup{a}{2}{}\wedge\mp@subsup{b}{2}{})\vee(\mp@subsup{a}{3}{}\wedge\mp@subsup{b}{3}{}
    Good Ordering
```



```
Linear Growth
```


Exercise

Exercise

Sample Function Classes

Function Class	Best	Worst	Ordering Sensitivity
ALU (Add/Sub)	linear	exponential	High
Symmetric	linear	quadratic	None
Multiplication	exponential	exponential	Low
* General Experience			
\bullet Many tasks have reasonable OBDD representations			
\bullet Algorithms remain practical for up to 5,000,000 node OBDDs			
\bullet Heuristic ordering methods generally satisfactory			

Static Variable Ordering

* Different heuristic introduced over the years
* Usually based on the circuit structure - E.g., depth-first visit from the outputs
* Sufficient for "static problems"
\% Insufficient for "dynamic requirements"

Consideration on Variable Ordering

* Variable order is fixed

For each path from root to terminal node the order of "input" variables is exactly the same

* Strong dependency of the BDD size (terms of nodes) and variable ordering
* Ordering algorithm:
- Co-NP complete problem - heuristic approaches
- Static Variable Ordering Heuristic
- Dynamic Variable Ordering Heuristic
- ROBDDs - Reduced Ordered Binary DDs (BDDs!)

Dynamic Variable Reordering

* First Introduced by Richard Rudell, Synopsys, 1991
* Periodically Attempt to Improve Ordering for All BDDs
- Part of garbage collection
- Move each variable through ordering to find its best location
* Has Proved Very Successful
- Time consuming but effective
- Especially for sequential circuit analysis

Dynamic Reordering By Sifting

Outline

* Binary Decision Diagrams: Fundamentals
* Generation of BDDs from Network
* Variable Ordering Related Problems
* Complex Operations with BDDs
* Some Conclusions on BDDs
* BDD Packages

Swapping Adjacent Variables

* Localized Effect

- Add / delete / alter only nodes labeled by swapping variables
- Do not change any incoming pointers

Restriction

* Concept

- Effect of setting function argument x_{i} to constant k (0 or 1).
- Also called Cofactor operation (UCB)
F_{x} equivalent to $F[x=1]$
$\mathrm{F}_{-\mathrm{x}}$ equivalent to $\mathrm{F}[\mathrm{x}=0$]

Functional Composition

- Create new function by composing functions F and G.
- Useful for composing hierarchical modules.

Existential Variable Quantification

$* \exists_{b} f=\left.\left.f\right|_{b=0} \quad \vee \quad f\right|_{b=1}$

- Eliminate dependency on some argument
- Efficient algorithm for quantifying over a set of variables

Example

$\exists_{(b, c)} \cdot((a \wedge b) \vee(c \wedge d))=a \vee d$

Outline

* Binary Decision Diagrams: Fundamentals
* Generation of BDDs from Network
* Variable Ordering Related Problems
\star Complex Operations with BDDs
* Some Conclusions on BDDs
* BDD Packages

Example

$\exists_{(\mathrm{b}, \mathrm{c})} \cdot((\mathrm{a} \wedge \mathrm{b}) \vee(\mathrm{c} \wedge \mathrm{d}))=?$

Universal Variable Quantification

```
* *
- Obtained with existential quantification combine with AND
```


What's good about BDDs?

* Powerful Operations

- Creating, manipulating, testing
- Each step polynomial complexity < Graceful degradation
* Generally Stay Small Enough
- Especially for digital circuit applications
- Given good choice of variable ordering
* Extremely useful in practice
* (Till 5 years ago) Weak Competition
- No other method comes close in overall strength
- Especially with quantification operations

What's bad about BDDs?

\% Some formulas do not have small representation! (e.g., multipliers)

* BDD representation of a function can vary exponentially in size depending on variable ordering; users may need to play with variable orderings (less automatic)
* Size limitations: a big problem
* (Last 5 years) Competitive Approach: CNF representation + SATisfiability solvers

Thoughts on Algorithms Research

\nLeftarrow Need to be Willing to Attack Intractable Problems

- Many real-world problems NP-hard
- No approximations for verification
* Who Works on These?
- Mostly people in application domain \triangleleft Most work on BDDs in computer-aided design conferences
- Not by people with greatest talent in algorithms \diamond Probably many ways they could improve things
- Fundamental dilemma
\diamond Can only make weak formal statements about efficiency \triangleleft Utility demonstrated empirically

Outline

* Binary Decision Diagrams: Fundamentals
* Generation of BDDs from Network
* Variable Ordering Related Problems
* Complex Operations with BDDs
* Some Conclusions on BDDs
* BDD Packages
* Geert Janssen: EHV
- Eindhoven University of Technology
* Rajeev K. Ranjan: CAL
- UCB, Synopsys
* Bwolen Yang: PBF
- Carnegie Mellon
* Stefan Horeth: TUDD
- University TU Darmstadt
- http://marple.rs.e-technik.tu-darmastadt.del-sth
* Fabio Somenzi: CUDD
- University of Colorado
- http://vlsi.colorado.edul~fabio

A few BDD Packages

* Brace, Rudell, Bryant: KBDD

- Carnegie Mellon, 1990
- Synopsys, 1993 on
- Digital, Compaq, Intel, 1993 on
* Long: KBDD
- Carnegie Mellon, 1993
- AT\&T, 1995 on
* Armin Biere: ABCD
- Carnegie Mellon / Universität Karlsruhe
* Olivier Coudert: TiGeR
- Synopsys / Monterey Design Systems
* Geert Janssen: EHV
- Eindhoven University of Technology

