

Boolean Expressions Definitions The onset of f is $(x \mid f(x) = 1) = f^{-1}(1) = f^{-1}(1)$ * If B = {0, 1} a Boolean Function is ♦ $y = f(X) : B^n \rightarrow B$ f is a tautology iff ALL assignments are models, i.e., ☆ fⁱ =Bⁿ, i.e., f=1 With $\blacklozenge \ \mathsf{X}=(\mathsf{x}_1,\,\mathsf{x}_2,\,...,\,\mathsf{x}_n)\in\mathsf{B}^n$ + f is contradictory (not satisfiable) iff NONE is, i.e., $\Leftrightarrow f^0 = B^n$, i.e., $f^0 = \phi$, i.e., fm0 ♦ X₁∈ B ♦ x₁, x₂ are variable If f(x)=g(x) for all x∈Bⁿ, then f and g are equivalent ♦ x₁, x'₂... are literals A satisfying assignment is a set of input values in the onset of the function * Basically + f maps each vertex of Bⁿ to 0 or 1

Boolean Operations: AND, OR, NOT

* Given two Boolean functions

$$f : B^n \rightarrow B \qquad g : B^n \rightarrow B$$

- we define
- The AND operation
- $\begin{array}{l} h = f \land g \\ \diamond h = \{x \mid f(x) = 1 \land g(x) = 1\} \end{array}$
- The OR operation
- $h = f \lor g$ $\diamond h = \{x \mid f(x)=1 \lor g(x)=1\}$
- ♦ The COMPLEMENT operation

Cofactor and Quantification

- ✤ Given a Boolean function
 - $f: B^n \rightarrow B$
- with the input variable $(x_1, x_2, ..., x_i, ..., x_n)$, we define
 - The positive cofactor
 - $h = f_{xi}$ $\Leftrightarrow h = \{x \mid f(x_1, x_2, \dots, 1, \dots, x_n) = 1\}$ The negative cofactor

 - $h = f_{xi}$ $\Leftrightarrow h = \{x \mid f(x_1, x_2, \dots, 0, \dots, x_n) = 1\}$ The existential quantification of variable x_i $h = \exists x_i . F$ $\diamond h = \{x \mid f(x_1, x_2, ..., 0, ..., x_n) = 1 \lor f(x_1, x_2, ..., 1, ..., x_n) = 1\}$
- The universal quantification of variable x

Classical NON Canonical Methods

- * Disjunctive Normal Form (DNF)
- ♦ F = (x₁* ∧ ... <some i missing> ... ∧ x_n*) ∨ ... ∨/(x₁*
- * Conjunctive Normal Form (CNF) • $F = (x_1^* \vee ... < \text{some i missing} > ... \vee x_n^*) \land ..$ ∧ (X₁* ∨
- Automata
 - F = Graphical/Graph Representation
 - (Not-Reduced Automatas)

- Pros
 - Non-Exponential Representation's Size

Cons

∧ ... ∧ X_n*)

... v x_n*)

- Non-Unique representation (more representations for each function)
- Complex Algorithms for Comparison
- Complex Algorithms for Conversions

Non Classical Methods

* Decision Diagrams

- BDDs Binary Decision Diagrams
- ◆ ZBDDs Zero Suppressed Binary Decision Diagrams
- + Etc.

* Boolean Circuits

- RBCs Reduced Boolean Circuits
- BEDs Boolean Expression Diagrams
- AIGs And Inverter Graphs

Binary Decision Diagram (BDD)

Λ

- Graph representation of a Boolean function f
 - vertices represent decision nodes for variables
 - two children represent the two subfunctions
 - f(x = 0) and f(x = 1) (cofactors) restrictions on ordering and reduction rules
 - can make a BDD
 - representation canonical

Boolean Circuits

- Used for two main purposes
 - As representation for Boolean reasoning engine
 - ◆ As target structure for logic implementation which gets restructured in a series of logic synthesis steps until result is acceptable
- * Efficient representation for most Boolean problems we have in CAD
 - Memory complexity is same as the size of circuits we are actually building
- * Close to input representation and output representation in logic synthesis

Definition

- A Boolean circuit is a directed graph C(G,N) where G are the gates and N ⊆ GxG is the set of directed edges (nets) connecting the gates
- · Some of the vertices are designated l<u>⊆</u>G 0⊆G,l∩0=Ø ♦ Inputs:
 ♦ Outputs:
- ♦ Each gate g is assigned a Boolean function fg which computes the output of the gate in terms of its inputs
- ♦ The fanin FI(g) of a gate g are all predecessor vertices of g
- ◆ The fanout FO(g) of a gate g are all successor vertices of g \diamond FO(a) = {a' | (a.a') \in N}
- ◆ The cone CONE(g) of a gate g is the transitive fanin of g and g itself.
- The support SUPPORT(g) of a gate g are all inputs in its cone
 SUPPORT(g) = CONE(g)

 I

And Inverter Graphs (AIGs)

- Base data structure uses two-input AND function for vertices and INVERTER attributes at the edges (individual bit)
- use De'Morgan's law to convert OR operation etc.
- Hash table to identify and reuse structurally isomorphic circuits

