Boolean Functions and Circuits

Gianpiero Cabodi Stefano: Quer

Politecnico di Torino

Torino, Italy

{gianpiero.cabodi,stefano.quer}@polito.it

http://staff.polito.it/{gianpiero.cabodi,stefano.quer}/ :

Boolean Expressions

« If B = {0, 1} a Boolean Function is
ey=f(X):B">B
« With
* X =(Xq, Xp, -y X,) € B?
* xeB
* X4 X, are variable
* x4 X', _are literals

< Basically
¢ f maps each vertex of B" to 0 or 1

Boolean Operations:
AND, OR, NOT

« Given two Boolean functions
f: B">B g: B">B
we define

¢ The AND operation
h=fag
< h={x|f(x)=1A g(x)=1}
¢ The OR operation
h=fvg
< h={x|f(x)=1v g(x)=1}
¢ The COMPLEMENT operation

=—f

% h={x|f(x)=0}

The Boolean Space B"

% B={0,1}
< B?={0,1} X {0,1} = {00, 01, 10, 11}

Karnaugh Maps: Boolean Cubes:
e [] O
T
s [1] oo
“Hh 33
T
83 %
Bd
R
4

« Definitions

¢ The onset of fis
x| f(x)=1}=F1(1)=f

« The offset of f is
< {x | f(x) =0} =£1(0) =

« fis a tautology iff ALL assignments are models, i.e.,
<+ f1=B", i.e., f=1

« fis contradictory (not satisfiable) iff NONE s, i.e.,
<+ f0=B", i.e., f0=¢, i.e., =0

« If f(x)=g(x) for all xeB", then f and g are equivalent

+ A satisfying assignment is a set of input values in the onset
of the function

Cofactor and Quantification

< Given a Boolean function
f: B>B

with the input variable (x;,x,,...,X;,...,X;,), we define
¢ The positive cofactor

h=f;
< h={x | f(xq,X5,.0001,..0,X,)=1}
¢ The negative cofactor
h=f;
< h={x| f(x;,X5..-,0,...,,)=1}
+ The existential quantification of variable x;
h=3x.F
< h = {x | f(Xq,X5,..0,0,..,X,)=1 v (X4, Xg,...,1,...,%,)=1}
The universal quantification of variable x;
h=vx.F
< h={x| f(x4,Xz..-,0,...,%)=1 A f(X4,X5,...,1,...,%,)=1}

Characteristic function

< Given aset A

< XVe define the Characteristic Function y,(s) of the set
as

1 IFF seA

Xals) = IFF segA

Xals) =0

«+ Classical Methods

« Canonical Forms
< Canonical: one and only one repr ion for each i i.e., data
structure uniquely represents function
< Decision procedure is trivial (e.g., just pointer comparison)
< Example: Reduced Ordered Binary Decision Diagrams
< Problem: Size of data structure is in general exponential
+ NON Canonical Forms
< Sy ic search for satisfying
< Size of data structure is linear
< Problem: decision may take an exponential amount of time

< Non-Classical Methods

X1 X2 X f

Example 12275
000 0
00 1 0
010 0
011 1
1000
10 1 1
110 0
111 1

< Truth Table

“ DNF

F = (=X A Xy A X3) V (Xg A= X5 A X3) V (Xg A Xy A X3)
« CNF

F = (Xq VX5V X3) A(Xq V Xy V=1 X3) A(Xy V=1 X5V X3) o

< Automata

« Canonical Disjunctive Normal Form (cDNF)

Representation of Boolean
Functions

< What do we need?
A good data structure for Boolean formulas !!!

<+ We need representations for Boolean Functions for
two reasons
¢ A mechanism to build a data structure that represents the
problem
+ A set of algorithm to manipulate the representation used

¢ A decision procedure to decide about SAT or UNSAT, i.e., to
perform Boolean reasoning

Classical Canonical Methods

< Truth Table

F = Graphical/Tabular R tati
raphical/Tabular Representation Two-Level

Normal Forms

F=(X* AX* A AX) Ve V(XF A XA Ll AXF)

« Canonical Conjunctive Normal Form (cCNF)

F=(X*V XV VA e A VRV v X))

< Automata
F = Graphical/Graph Representation
(Reduced Automatas are a Canonical Representation)

< Pros
+ Unique representation (one and only for each function)
+ Constant Time Comparison (same representation)

< Cons
+ Exponential Size
+ Complex Resolution Algorithms
+ Satisfiability is NP-complete (Cook) (i.e., resolution
algorithms require exponential time)
* Examgles
< DNF = satisfiability requires polynomial time, tautology is co-NP
complete
< CNF ' ... vice-versa ...
< Conversion CNF €=> DNF is exponential
+ Example

2 Fonr = (ot ¥ Xa1) A (Xaz ¥ X2) A e A (Xn ¥ Xtn) sizen
DNE = ==+ sizen+2"

Classical NON Canonical Methods

« Disjunctive Normal Form (DNF)
& F=(x*A ...<some i missing> ... AX,*) v ... V/(X* A ... AX¥)

<+ Conjunctive Normal Form (CNF)
¢ F=(x;*v..<someimissing>... vX,*) A .. A (X* vV ... vX¥)

< Automata
¢ F = Graphical/Graph Representation
¢ (Not-Reduced Automatas)

Non Classical Methods

< Decision Diagrams
+ BDDs - Binary Decision Diagrams
¢ ZBDDs - Zero Suppressed Binary Decision Diagrams
+ Etc.

« Boolean Circuits
¢ RBCs — Reduced Boolean Circuits
¢ BEDs - Boolean Expression Diagrams
¢ AIGs — And Inverter Graphs

Boolean Circuits

« Used for two main purposes
+ As representation for Boolean reasoning engine

« As target structure for logic implementation which gets
restructured in a series of logic synthesis steps until result is
acceptable

« Efficient representation for most Boolean problems
we have in CAD
¢ Memory complexity is same as the size of circuits we are
actually building

« Close to input representation and output
representation in logic synthesis

< Pros
+ Non-Exponential Representation’s Size
« Cons
+ Non-Unique representation (more representations for each
function)
+ Complex Algorithms for Comparison
+ Complex Algorithms for Conversions

Binary Decision Diagram (BDD)

« Graph representation of a f = ab+a'c+a’bd
Boolean function f
+ vertices represent decision foot I

nodes for variables

+ two children represent the two
subfunctions

« f(x = 0) and f(x = 1) (cofactors)

+ restrictions on ordering and c ;
reduction rules c+d ° i
+ can make a BDD) A

representation canonical

« Definition
+ A Boolean circuit is a directed graph C(G,N) where G are the
gates and N ¢ GxG is the set of directed edges'(nets)
connecting the gates
+ Some of the vertices are designated
< Inputs: IcG
< Outputs: 0cGINn0=2
+ Each gate g is assigned a Boolean function f, which
computes the output of the gate in terms of ifs inputs
+ The fanin FI(g) of a gate g are all predecessor vertices of g
< Fl(g) = {9’ | (g’,9) € N}
+ The fanout FO(g) of a gate g are all successor vertices of g
% FO(9) ={g’ | (9.9) € N}
+ The cone CONE(g) of a gate g is the transitive fanin of g and
g itself.

+ The support SUPPORT(g) of a gate g are all inputs in its cone
< SUPPORT(g) = CONE(g) N |

Example

FI (6) = {2,4}

FO (6) = {7,9}

CONE (6) = {1,2,4,6}
SUPPORT (6) = {1,2}

And Inverter Graphs (AIGS)

« Base data structure uses two-input AND function for
vertices and INVERTER attributes at the edges
(individual bit)

¢ use De’Morgan’s law to convert OR operation etc.

< Hash table to identify and reuse structurally
isomorphic circuits

f

@OLO/O’(Q

