
1

Boolean Functions and Circuits

Gianpiero Cabodi Stefano Quer

Politecnico di Torino
Torino, Italy

{gianpiero.cabodi,stefano.quer}@polito.it
http://staff.polito.it/{gianpiero.cabodi,stefano.quer}/

The Boolean Space Bn

B = { 0,1}

B2 = {0,1} X {0,1} = {00, 01, 10, 11}

B0

B1

B2

B3

B4

Karnaugh Maps: Boolean Cubes:

Boolean Expressions
If B = {0, 1} a Boolean Function is

y = f (X) : Bn → B

With
X = (x1, x2, ..., xn) ∈ Bn

x1∈ B
x1, x2 ... are variable
x1, x’2 ... are literals

Basically
f maps each vertex of Bn to 0 or 1

Definitions
The onset of f is

{x | f(x) = 1} = f-1(1) = f1

The offset of f is
{x | f(x) = 0} = f-1(0) = f0

f is a tautology iff ALL assignments are models, i.e.,
f1 =Bn, i.e., f≡1

f is contradictory (not satisfiable) iff NONE is, i.e.,
f0 =Bn, i.e., f0 =φ, i.e., f≡0

If f(x)=g(x) for all x∈Bn, then f and g are equivalent
A satisfying assignment is a set of input values in the onset
of the function

Boolean Operations:
AND, OR, NOT

Given two Boolean functions

f : Bn → B g : Bn → B
we define

The AND operation
h = f ∧ g

h = {x | f(x)=1 ∧ g(x)=1}
The OR operation
h = f ∨ g

h = {x | f(x)=1 ∨ g(x)=1}
The COMPLEMENT operation
h = ¬f

h = {x | f(x) = 0}

Cofactor and Quantification
Given a Boolean function
f : Bn → B
with the input variable (x1,x2,…,xi,…,xn), we define

The positive cofactor
h = fxi

h = {x | f(x1,x2,…,1,…,xn)=1}
The negative cofactor
h = fxi

h = {x | f(x1,x2,…,0,…,xn)=1}
The existential quantification of variable xi
h = ∃ xi . F

h = {x | f(x1,x2,…,0,…,xn)=1 ∨ f(x1,x2,…,1,…,xn)=1}
The universal quantification of variable xi
h = ∀ xi . F

h = {x | f(x1,x2,…,0,…,xn)=1 ∧ f(x1,x2,…,1,…,xn)=1}

2

Characteristic function
Given a set A
We define the Characteristic Function χA(s) of the set
A as

1 IFF s ∈ A

0 IFF s ∉ A

Bn

A

χA(s) = 1

χA(s) = 0

χA(s) =

Representation of Boolean
Functions
What do we need?
A good data structure for Boolean formulas !!!
We need representations for Boolean Functions for
two reasons

A mechanism to build a data structure that represents the
problem
A set of algorithm to manipulate the representation used
A decision procedure to decide about SAT or UNSAT, i.e., to
perform Boolean reasoning

Classical Methods
Canonical Forms

Canonical: one and only one representation for each function, i.e., data
structure uniquely represents function
Decision procedure is trivial (e.g., just pointer comparison)
Example: Reduced Ordered Binary Decision Diagrams
Problem: Size of data structure is in general exponential

NON Canonical Forms
Systematic search for satisfying assignment
Size of data structure is linear
Problem: decision may take an exponential amount of time

Non-Classical Methods

Classical Canonical Methods
Truth Table
F = Graphical/Tabular Representation

Canonical Disjunctive Normal Form (cDNF)
F = (x1* ∧ x2* ∧ ... ∧ xn*) ∨ ... ∨ (x1* ∧ x2* ∧ ... ∧ xn*)

Canonical Conjunctive Normal Form (cCNF)
F = (x1* ∨ x2* ∨ ... ∨ xn*) ∧ ... ∧ (x1* ∨ x2* ∨ ... ∨ xn*)

Automata
F = Graphical/Graph Representation
(Reduced Automatas are a Canonical Representation)

Two-Level
Normal Forms

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
0
1

x1 x2 x3 f

0 1

1 0,1

1

Truth Table
DNF
F = (¬x1 ∧ x2 ∧ x3) ∨ (x1 ∧ ¬ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

CNF
F = (x1 ∨ x2 ∨ x3) ∧(x1 ∨ x2 ∨ ¬ x3) ∧(x1 ∨ ¬ x2 ∨ x3) ...

Automata

Example Pros
Unique representation (one and only for each function)
Constant Time Comparison (same representation)

Cons
Exponential Size
Complex Resolution Algorithms
Satisfiability is NP-complete (Cook) (i.e., resolution
algorithms require exponential time)
Examples

DNF satisfiability requires polynomial time, tautology is co-NP
complete
CNF … vice-versa …
Conversion CNF DNF is exponential

Example
FCNF = (x01 ∨ x11) ∧ (x02 ∨ x12) ∧ ... ∧ (x0n ∨ x1n) size n
FDNF = ... size n • 2n

3

Classical NON Canonical Methods

Disjunctive Normal Form (DNF)
F = (x1* ∧ ... <some i missing> ... ∧ xn*) ∨ ... ∨ (x1* ∧ ... ∧ xn*)

Conjunctive Normal Form (CNF)
F = (x1* ∨ ... <some i missing> ... ∨ xn*) ∧ ... ∧ (x1* ∨ ... ∨ xn*)

Automata
F = Graphical/Graph Representation
(Not-Reduced Automatas)

Pros
Non-Exponential Representation’s Size

Cons
Non-Unique representation (more representations for each
function)
Complex Algorithms for Comparison
Complex Algorithms for Conversions

Non Classical Methods

Decision Diagrams
BDDs - Binary Decision Diagrams
ZBDDs - Zero Suppressed Binary Decision Diagrams
Etc.

Boolean Circuits
RBCs – Reduced Boolean Circuits
BEDs – Boolean Expression Diagrams
AIGs – And Inverter Graphs

Binary Decision Diagram (BDD)

f = ab+a’c+a’bd

1

0

c

a

b b

c c

d

0 1

c+bd b

root
node

c+d

d

Graph representation of a
Boolean function f

vertices represent decision
nodes for variables
two children represent the two
subfunctions
f(x = 0) and f(x = 1) (cofactors)
restrictions on ordering and
reduction rules
can make a BDD
representation canonical

Boolean Circuits
Used for two main purposes

As representation for Boolean reasoning engine
As target structure for logic implementation which gets
restructured in a series of logic synthesis steps until result is
acceptable

Efficient representation for most Boolean problems
we have in CAD

Memory complexity is same as the size of circuits we are
actually building

Close to input representation and output
representation in logic synthesis

Definition
A Boolean circuit is a directed graph C(G,N) where G are the
gates and N ⊆ G×G is the set of directed edges (nets)
connecting the gates
Some of the vertices are designated

Inputs: I ⊆ G
Outputs: O ⊆ G, I ∩ O = ∅

Each gate g is assigned a Boolean function fg which
computes the output of the gate in terms of its inputs
The fanin FI(g) of a gate g are all predecessor vertices of g

FI(g) = {g’ | (g’,g) ∈ N}
The fanout FO(g) of a gate g are all successor vertices of g

FO(g) = {g’ | (g,g’) ∈ N}
The cone CONE(g) of a gate g is the transitive fanin of g and
g itself.
The support SUPPORT(g) of a gate g are all inputs in its cone

SUPPORT(g) = CONE(g) ∩ I

4

Example

I

O

6

FI (6) = {2,4}
FO (6) = {7,9}
CONE (6) = {1,2,4,6}
SUPPORT (6) = {1,2}

1

5
3

4
7

8

9
2

And Inverter Graphs (AIGs)
Base data structure uses two-input AND function for
vertices and INVERTER attributes at the edges
(individual bit)

use De’Morgan’s law to convert OR operation etc.

Hash table to identify and reuse structurally
isomorphic circuits

f

g g

f

