Boolean Functions and Circuits

Gianpiero Cabodi Stefano Quer
Politecnico di Torino
Torino, Italy
{gianpiero.cabodi,stefano.quer}@polito.it
http://staff.polito.it/{gianpiero.cabodi,stefano.quer}/

Boolean Expressions

- If \(B = \{0, 1\} \) a Boolean Function is
 \[y = f(X) : B^n \rightarrow B \]
- With
 \[X = (x_1, x_2, ..., x_n) \in B^n \]
 \[x_1, x_2, ... \text{ are variables} \]
 \[x_1, x_2' \text{ are literals} \]
- Basically
 \[f \] maps each vertex of \(B^n \) to 0 or 1

Boolean Operations:
AND, OR, NOT

- Given two Boolean functions
 \[f : B^n \rightarrow B \quad g : B^n \rightarrow B \]
 we define
 - The AND operation
 \[h = f \land g \]
 \[h = \{ x | f(x)=1 \land g(x)=1 \} \]
 - The OR operation
 \[h = f \lor g \]
 \[h = \{ x | f(x)=1 \lor g(x)=1 \} \]
 - The COMPLEMENT operation
 \[h = \overline{f} \]
 \[h = \{ x | \overline{f(x)} = 0 \} \]

Cofactor and Quantification

- Given a Boolean function \(f : B^n \rightarrow B \)
 with the input variable \((x_1,x_2,...,x_i,...,x_n) \), we define
 - The positive cofactor
 \[h = f_{x_i} \]
 \[h = \{ x | f(x_1,x_2,...,1,...,x_n)=1 \} \]
 - The negative cofactor
 \[h = f_{x_i} \]
 \[h = \{ x | f(x_1,x_2,...,0,...,x_n)=1 \} \]
 - The existential quantification of variable \(x_i \)
 \[h = \exists x_i . F \]
 \[h = \{ x | f(x_1,x_2,...,0,...,x_n)=1 \lor f(x_1,x_2,...,1,...,x_n)=1 \} \]
 - The universal quantification of variable \(x_i \)
 \[h = \forall x_i . F \]
 \[h = \{ x | f(x_1,x_2,...,0,...,x_n)=1 \land f(x_1,x_2,...,1,...,x_n)=1 \} \]
Characteristic function

- Given a set \(A \)
- We define the Characteristic Function \(\chi_A(s) \) of the set \(A \) as

\[
\chi_A(s) = \begin{cases}
1 & \text{IFF } s \in A \\
0 & \text{IFF } s \notin A
\end{cases}
\]

\(\chi_A(s) = 0 \)
\(\chi_A(s) = 1 \)

Representation of Boolean Functions

- What do we need?
 - A good data structure for Boolean formulas !!!
- We need representations for Boolean Functions for two reasons
 - A mechanism to build a data structure that represents the problem
 - A set of algorithm to manipulate the representation used
 - A decision procedure to decide about SAT or UNSAT, i.e., to perform Boolean reasoning

Classical Methods

- Canonical Forms
 - Canonical: one and only one representation for each function, i.e., data structure uniquely represents function
 - Decision procedure is trivial (e.g., just pointer comparison)
 - Example: Reduced Ordered Binary Decision Diagrams
 - Problem: Size of data structure is in general exponential
- NON Canonical Forms
 - Systematic search for satisfying assignment
 - Size of data structure is linear
 - Problem: decision may take an exponential amount of time

Non-Classical Methods

- Truth Table
- DNF
- CNF
- Automata

Example

<table>
<thead>
<tr>
<th>(x_0)</th>
<th>(x_1)</th>
<th>(x_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Classical Canonical Methods

- Truth Table
 - \(F \) = Graphical/Tabular Representation
 - Two-Level Normal Forms
 - Canonical Disjunctive Normal Form (cDNF)
 - \(F = (x_1^* \land x_2^* \land ... \land x_n^*) \lor ... \lor (x_1^* \land x_2^* \land ... \land x_n^*) \)
 - Canonical Conjunctive Normal Form (cCNF)
 - \(F = (x_1^* \lor x_2^* \lor ... \lor x_n^*) \land ... \land (x_1^* \lor x_2^* \lor ... \lor x_n^*) \)
 - Automata
 - \(F \) = Graphical/Graph Representation
 - (Reduced Automatas are a Canonical Representation)

Pros

- Unique representation (one and only for each function)
- Constant Time Comparison (same representation)

Cons

- Exponential Size
- Complex Resolution Algorithms
- Satisfiability is NP-complete (Cook) (i.e., resolution algorithms require exponential time)

Examples

- \(F \) satisfiability requires polynomial time, tautology is co-NP
 - \(F \) is \(\leq_{m} \) tautology
 - Conversion CNF \(\iff \) DNF is exponential

Example

- \(F = (x_0 \lor x_1 \lor x_2 \land (x_3 \lor x_4 \land ... \land (x_{n-1} \lor x_n)) \)
Classical NON Canonical Methods

- **Disjunctive Normal Form (DNF)**
 \[F = (x_1^* \land \ldots \land x_n^*) \lor \ldots \lor (x_1^* \land \ldots \land x_n^*) \]

- **Conjunctive Normal Form (CNF)**
 \[F = (x_1^* \lor \ldots \lor x_n^*) \land \ldots \land (x_1^* \lor \ldots \lor x_n^*) \]

- **Automata**
 - \(F = \) Graphical/Graph Representation
 - (Not-Reduced Automatas)

Pros
- Non-Exponential Representation’s Size

Cons
- Non-Unique representation (more representations for each function)
- Complex Algorithms for Comparison
- Complex Algorithms for Conversions

Non Classical Methods

- **Decision Diagrams**
 - BDDs - Binary Decision Diagrams
 - ZBDDs - Zero Suppressed Binary Decision Diagrams
 - Etc.

- **Boolean Circuits**
 - RBCs – Reduced Boolean Circuits
 - BEDs – Boolean Expression Diagrams
 - AIGs – And Inverter Graphs

Definition
- A Boolean circuit is a directed graph \(C(G,N) \) where \(G \) are the gates and \(N \subseteq G \times G \) is the set of directed edges (nets) connecting the gates.
- Some of the vertices are designated
 - Inputs: \(\{ x \} \)
 - Outputs: \(\{ 0, 1 \} \)
- Each gate \(g \) is assigned a Boolean function \(f_g \) which computes the output of the gate in terms of its inputs
- The fanin \(\text{Fin}(g) \) of a gate \(g \) are all predecessor vertices of \(g \)
- The fanout \(\text{FOut}(g) \) of a gate \(g \) are all successor vertices of \(g \)
- The cone \(\text{Cone}(g) \) of a gate \(g \) is the transitive fanin of \(g \) and \(g \) itself.
- The support \(\text{Support}(g) \) of a gate \(g \) are all inputs in its cone
 \[\text{Support}(g) = \text{Cone}(g) \land I \]

Boolean Circuits

- Used for two main purposes
 - As representation for Boolean reasoning engine
 - As target structure for logic implementation which gets restructured in a series of logic synthesis steps until result is acceptable

- Efficient representation for most Boolean problems we have in CAD
 - Memory complexity is same as the size of circuits we are actually building
 - Close to input representation and output representation in logic synthesis

Binary Decision Diagram (BDD)

- **Graph representation of a Boolean function** \(f \)
 - Vertices represent decision nodes for variables
 - Two children represent the two subfunctions
 - \(f(x = 0) \) and \(f(x = 1) \) (cofactors)
 - Restrictions on ordering and reduction rules
 - Can make a BDD representation canonical
Example

- \(F(I) = \{2, 4\} \)
- \(F(O) = \{7, 9\} \)
- \(\text{CONE}(6) = \{1, 2, 4, 6\} \)
- \(\text{SUPPORT}(6) = \{1, 2\} \)

And Inverter Graphs (AIGs)

- Base data structure uses two-input AND function for vertices and INVERTER attributes at the edges (individual bit)
 - Use De Morgan’s law to convert OR operation etc.
- Hash table to identify and reuse structurally isomorphic circuits