

The Boolean Space B^{n}

$\star \mathrm{B}=\{0,1\}$

* $B^{2}=\{0,1\} \times\{0,1\}=\{00,01,10,11\}$

Boolean Expressions

* If $B=\{0,1\}$ a Boolean Function is
- $y=f(X): B^{n} \rightarrow B$
* With
- $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in B^{n}$
- $x_{1} \in B$
- x_{1}, x_{2} are variable
- $\mathrm{x}_{1}, \mathbf{x}_{2}{ }_{2}$ are literals
* Basically
- f maps each vertex of B^{n} to 0 or 1

Boolean Operations:
 AND, OR, NOT

* Given two Boolean functions
$f: B^{n} \rightarrow B \quad g: B^{n} \rightarrow B$
we define
- The AND operation
$\mathrm{h}=\mathrm{f} \wedge \mathrm{g}$
$\diamond h=\{x \mid f(x)=1 \wedge g(x)=1\}$
- The OR operation
$h=f \vee g$
$>h=\{x \mid f(x)=1 \vee g(x)=1\}$
- The COMPLEMENT operation $h=\neg f$
$\diamond h=\{x \mid f(x)=0\}$

* Definitions

- The onset of f is $\diamond\{x \mid f(x)=1\}=f^{-1}(1)=f^{1}$
- The offset of f is
$\checkmark\{x \mid f(x)=0\}=f^{-1}(0)=f^{0}$
- f is a tautology iff ALL assignments are models, i.e., $\triangleleft \mathbf{f}^{1}=\mathrm{B}^{\mathrm{n}}$, i.e., $\mathrm{f}=1$
- f is contradictory (not satisfiable) iff NONE is, i.e., $\triangleleft f^{0}=B^{n}$, i.e., $f^{0}=\phi$, i.e., $f=0$
- If $f(x)=g(x)$ for all $x \in B^{n}$, then f and g are equivalent
- A satisfying assignment is a set of input values in the onset of the function

Cofactor and Quantification

* Given a Boolean function
$f: B^{n} \rightarrow B$
with the input variable ($x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}$), we define
- The positive cofactor
$h=f_{x i}$
$\stackrel{\mathrm{h}}{\mathrm{h} \mid}=\left\{\mathrm{x} \mid \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, 1, \ldots, \mathrm{x}_{\mathrm{n}}\right)=1\right\}$
- The negative cofactor
$h=f_{x i}$
$\left\{x \mid f\left(x_{1}, x_{2}, \ldots, 0, \ldots, x_{n}\right)=1\right\}$
- The existential quantification of variable x_{i} $h=\exists x_{i} . F$
$\stackrel{\sim}{r}=\left\{x \mid f\left(x_{1}, x_{2}, \ldots, 0, \ldots, x_{n}\right)=1 \vee f\left(x_{1}, x_{2}, \ldots, 1, \ldots, x_{n}\right)=1\right\}$
- The universal quantification of variable x_{i} $h=\forall \mathbf{x}_{1} \cdot \mathbf{F}$
$\diamond h=\left\{x \mid f\left(x_{1}, x_{2}, \ldots, 0, \ldots, x_{n}\right)=1 \wedge f\left(x_{1}, x_{2}, \ldots, 1, \ldots, x_{n}\right)=1\right\}$

Characteristic function

* Given a set A
* We define the Characteristic Function $\chi_{A}(s)$ of the set A as

$$
\chi_{A}(s)=\left\{\begin{array}{lll}
1 & \text { IFF } & s \in A \\
0 & \text { IFF } & s \notin A
\end{array}\right.
$$


```
Classical Methods
    - Canonical Forms
        Canonical: one and only one representation for each function, i.e., data
        structure uniquely represents function
        Decision procedure is trivial (e.g., just pointer comparison)
        Example: Reduced Ordered Binary Decision Diagrams
        Problem: Size of data structure is in general exponential
    * NON Canonical Forms
        Systematic search for satisfying assignment
        Size of data structure is linea
        Problem: decision may take an exponential amount of time
& Non-Classical Methods
```


Representation of Boolean Functions

* What do we need?

A good data structure for Boolean formulas !!!

* We need representations for Boolean Functions for two reasons
- A mechanism to build a data structure that represents the problem
- A set of algorithm to manipulate the representation used
- A decision procedure to decide about SAT or UNSAT, i.e., to perform Boolean reasoning

Classical Canonical Methods

```
* Truth Table
    F = Graphical/Tabular Representation
* Canonical Disjunctive Normal Form (cDNF) Normal Forms
    F=(\mp@subsup{x}{1}{*}}\wedge\mp@subsup{x}{2}{*}\mp@subsup{}{}{*}\wedge\ldots\wedge\mp@subsup{x}{n}{*})\vee\ldots\vee(\mp@subsup{x}{1}{}\mp@subsup{}{}{*}\wedge\mp@subsup{x}{2}{*}^^\ldots\wedge\mp@subsup{x}{n}{*
    Canonical Conjunctive Normal Form (cCNF)
```



```
* Automata
    F = Graphical/Graph Representation
    (Reduced Automatas are a Canonical Representation)
```

$\%$ Pros
- Unique representation (one and only for each function)
- Constant Time Comparison (same representation)

* Cons
Exponential Size
Complex Resolution Algorithms
Satisfiability is NP-complete (Cook) (i.e., resolution
algorithms require exponential time)
 - Examples
$\diamond D N F \rightarrow$ satisfiability requires polynomial time, tautology is co-NP
$\xrightarrow{\text { complete }} \rightarrow \ldots$ vice-versa
$\xrightarrow[\text { CNF }]{\rightarrow} \rightarrow \ldots$ vice-versa \ldots.
 - Example

* Truth Table
* DNF
$F=\left(\neg x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge \neg x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3}\right)$
* CNF
$F=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \ldots$
* Automata

Classical NON Canonical Methods

```
* Disjunctive Normal Form (DNF)
```



```
* Conjunctive Normal Form (CNF)
    \bulletF=(\mp@subsup{x}{1}{}\mp@subsup{}{}{*}\vee\ldots
* Automata
    - F = Graphical/Graph Representation
    - (Not-Reduced Automatas)
```


Non Classical Methods

* Decision Diagrams
- BDDs - Binary Decision Diagrams
- ZBDDs - Zero Suppressed Binary Decision Diagrams
- Etc.
* Boolean Circuits
- RBCs - Reduced Boolean Circuits
- BEDs - Boolean Expression Diagrams
- AIGs - And Inverter Graphs

Boolean Circuits

* Used for two main purposes

- As representation for Boolean reasoning engine
- As target structure for logic implementation which gets restructured in a series of logic synthesis steps until result is acceptable
* Efficient representation for most Boolean problems we have in CAD
- Memory complexity is same as the size of circuits we are actually building
* Close to input representation and output representation in logic synthesis

* Pros

- Non-Exponential Representation's Size
* Cons

Non-Unique representation (more representations for each function)
Complex Algorithms for Comparison
Complex Algorithms for Conversions

Binary Decision Diagram (BDD)

* Graph representation of a Boolean function f
- vertices represent decision nodes for variables
- two children represent the two subfunctions
- $f(x=0)$ and $f(x=1)$ (cofactors)
- restrictions on ordering and reduction rules
- can make a BDD
representation canonical
1 \qquad

Definition

- A Boolean circuit is a directed graph $C(G, N)$ where G are the gates and $\mathbf{N} \subseteq \mathbf{G} \times \mathbf{G}$ is the set of directed edges (nets) connecting the gates
- Some of the vertices are designated $\begin{array}{ll}\diamond \text { Inputs: } & I \subseteq G \\ \diamond \text { Outputs: } & O \subseteq G, I \cap O=\varnothing\end{array}$
- Each gate g is assigned a Boolean function f_{q} which computes the output of the gate in terms of its inputs
- The fanin $\mathrm{Fl}(\mathrm{g})$ of a gate \mathbf{g} are all predecessor vertices of \mathbf{g} $\diamond F I(g)=\left\{g^{\prime} \mid\left(g^{\prime}, g\right) \in N\right\}$
- The fanout $\mathrm{FO}(\mathrm{g})$ of a gate g are all successor vertices of g $\triangleleft F O(g)=\left\{g^{\prime} \mid\left(\underline{g}, g^{\prime}\right) \in N\right\}$
- The cone CONE (\mathbf{g}) of a gate \mathbf{g} is the transitive fanin of g and g itself.
- The support SUPPORT(g) of a gate g are all inputs in its cone $\diamond \operatorname{SUPPORT}(\mathrm{g})=\operatorname{CONE}(\mathrm{g}) \cap \mathrm{I}$

Example

And Inverter Graphs (AIGs)

* Base data structure uses two-input AND function for vertices and INVERTER attributes at the edges (individual bit)
- use De'Morgan's law to convert OR operation etc.
* Hash table to identify and reuse structurally isomorphic circuits

