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Motivations
Digital systems continuously grow in scale and 
functionality, 10Mgates now, ...

Performance of integrated circuits (IC) doubling every year
Microprocessors containing 5M gates, doubling of frequency per 
generation, transistor scale by 30% per generation
Telecommunication chips are deep submicron application-specific 
integrated circuits (ASICs) with more than 1M gates
I/O pins limit observability and controllability, likelihood of design 
errors increasing
In 1994, problems with Intel Pentium and Pentium Pro 
microprocessors. Cost of correction about $250 M. In 1995, 
problem with TI 320C32 floating point digital signal processor
Failure of Ariane 6 due to bad specification of SW module for
reuse

French Guyana, June 4, 1996
$800 million software failure

Mars, December 3, 1999
Crashed due to uninitialized
variable

$4 billion development effort
> 50% system integration & validation cost
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400 horses
100 microprocessors

Embedded System

Cell phone

more & more software

Concurrency:- component-based design
- system interacts with environment

Heterogeneity: - digital and analog components  
- discrete-time and real-time interaction

The Curse of Concurrency
300,000 latches 10    stars11

10    stars

10           states100,000
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Verification is an Industry-wide issue Goals of Formal Verification
Complement to simulation to improve design 
quality.
Formal Methods: mathematically-based
languages, techniques, and tools for specifying
and verifying systems
Increase understanding of a system by revealing
inconsistencies, ambiguities, and incompleteness

.... often even by just going through the process of 
rigorous specification...
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The main point is NOT

correctness proof of entire systems

replacing test entirely

BUT
one proof can replace  many test cases

formal methods can be used in automatic test 
case generation

Successful formal methods
Integrated in the design flow

Avoid new demands on the user

Work at large scale

Save time or money in getting a good quality 
product out

Terminology
Formal Methods is the application of logic to the 
development of “correct” systems
Correctness is classically viewed as two separate 
problems, validation and verification
Validation: answers “are we building the right system?”
Verification: answers “are we building the system right?”
Formal Validation: Can we use logic to help ensuring that
the specification is complete, consistent, and accurately
captures the customer’s requirements
Formal Verification: Can we use logic to help ensuring
that the system built faithfully implements its specification

Application of Formal Verification
Formal methods are used today in many
applications including:

- Microprocessor Design
- Cache Coherency Protocols
- Telecommunications Protocols
- Rail and Track Signaling
- Security Protocols
- Automotive Companies

Design Process
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Verification
Design Verification
Implementation Verification
Manufacture Verification (Test)

Design Verification

Implementation Verification Manufacture Verification (Test)

Verification Gap Why the gap
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Filling in reasonable numbers Raising the Level of Abstraction

The Verification Bottleneck Approaches to Design Verification
Software Simulation

Application of simulation stimulus to model of circuit
Hardware Accelerated Simulation

Use of special purpose hardware to accelerate 
simulation of circuit

Emulation
Emulate actual circuit behavior - e.g. using FPGA’s

Rapid prototyping
Create a prototype of actual hardware

Formal verification
Model checking - verify properties relative to model
Theorem proving - prove theorems regarding properties
of a model

Simulation: The Current Picture

SHORTCOMINGS:
Hard to generate high quality input stimuli

A lot of user effort
No formal way to identify unexercised aspects

No good measure of comprehensiveness of validation
Low bug detection rate is the main criterion

Only means that current method of stimulus generation is not
achieving more.

Simulation-based Verification
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Event vs. Cycle-based Simulation Symbolic Simulation

Symbolic Simulation
IDEA: One symbolic run covers many runs

with concrete values.
Some inputs driven with symbols instead of 

concrete values
2(# symbols) equivalent binary coverage

Automated Synthesis: an Alternative 
to Simulation?

An alternative to post-design verification is the use of 
automated synthesis techniques—correct-by-construction
Logic synthesis techniques successful in automating low-
level (gate-level) logic design
Progress needed to automate the design process at higher
levels.
Until synthesis technology matures high-level design done
manually

Requires post-design verification.
Top-level specification/design must always be checked
against properties of the “idea”

No golden reference at that level

Formal Verification: Another
Alternative to Simulation!
Formal Verification is the process of constructing a proof that

a target system will behave in accordance with its
specification.
Use of mathematical reasoning to prove that an
implementation satisfies a specification
Like a mathematical proof: correctness of a formally
verified hardware design holds regardless of input values.
Consideration of all cases is implicit in formal verification.
Must establish:

A formal specification (properties or high-level behavior).
A formal description of the implementation (design at higher level
of abstraction — model (observationally) equivalent to
implementation or implied by implementation).

Formal Verification
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Formal Verification
Complete with respect to a given property (!)
Correctness guaranteed mathematically, regardless 
the input values
No need to generate expected output sequences
Can generate an error trace if a property fails: 
better understand, confirm by simulation
Formal verification useful to detect and locate 
errors in designs
Consideration of all cases is implicit in formal
verification

Simulation vs. Formal Verification
Example:  (x +1)2  = x2 + 2x +1
Simulation Values:

Simulation vs. Formal Verification
Formal Proof

Simulation vs. Formal Verification
Simulation: complete (real) model, partial verification
Verification: partial (abstract) model, complete 
verification
Simulation still needed to tune specifications; for large
complete designs
Verification can generate counter-examples (error traces); 
possibly false negatives!
Techniques are complementary — formal verification
gives additional confidence, e.g.,

Apply formal verification of abstract model
Obtain error trace if bug found (may be false negative!)
Simulate error trace on the real model

Simulation vs. Formal Verification
Common difficulty in all verification methods:

lack of “golden” reference
what properties to verify .....?

“Simulation and formal verification have to play 
together.” [IEEE Spectrum, January 1996]

Hierarchical Verification
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Hierarchical Verification
Specification (Spec)

Properties: enumeration of assumptions and requirements,
Functions: desired behavior or design descriptions,
State machines: desired behavior or design descriptions,
Timing requirements, etc.

Implementation (Imp) refers to the design to be verified.
Corresponds to a description at any level of abstraction, not just the 
final physical level.
Can serve as a specification for the next lower level.

Formal Specification
A specification is a description of a system and its
desired properties
Useful as a communication device:

between customer and designer,
between designer and implementor, and
between implementors and tester

Companion document to the system’s source code, 
but at a higher level of abstraction
Properties relate to function, interfaces, timing, 
performance, power, layout, etc.

Formal Specification
Formal specification. Use of formal methods (a language
with mathematically-defined syntax and semantics) to
describe the intended behavior of the system:

The language of logic provides an unambiguous method of 
recording the specification
We can reason about a formal specification to check that the 
system specified will possess other desired properties

The process of writing a formal specification helps
uncover ambiguity and incompleteness
Formal specifications most successful for functional
behavior, also interface & timing
Trend to integrate different specification languages, each 
for a different aspect (e.g. VERA, SystemC, VHDL+)

Specification Validation
Whether the specification means what it is
intended to mean
Whether it expresses the required properties
Whether it completely characterizes correct 
operation, etc.

(Validation methods: simulation or formal
techniques)

Formalisms for representing
specifications

Logic: propositional, first-order predicate, higher-
order, modal (temporal), etc.
Automata/language theory: finite state, omega 
automata, etc.

Types of properties
Functional correctness properties;
Safety (invariant) and Liveness properties
E.g.: in a mutual exclusion system with two processes A 
and B

Safety property (nothing bad will ever happen): e.g. 
simultaneous access will never be granted to both A and B. If false, 
can be detected by finite sequences
Liveness property (something good will eventually happen): e.g. 
if A wants to enter its critical section, it will eventually do so. Can 
only be proved false by infinite sequences (any finite sequence can 
be extended to satisfy the eventuality condition)
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Limitations of Formal Verification
Just because we have proved something correct does not

mean it will work! There are gaps where formal
verification connects with the real world.
Does the specification actually capture the designer’s 
intentions?

Specification must be simple and abstract
Example of a good specification for a half-adder: out = (in1 + in2) 
mod 2

Does the implementation in the real world behave like the 
model?

Can in1 drive three inputs
What happens if the wires are fabricated too close together?
Do we need to model quantum effects on the silicon surface?

State of the Art
In the 1960-70’s, high expectations for “software 
verification”, but hopes gradually fizzled out by the late
1970’s
Theorem proving approaches have “cultural roots” in 
software verification in 1970’s (Hoare, Owicki, Gries)
The use of formal methods did not seem practical

notations too obscure
techniques did not scale with problem size
tool support inadequate or too hard to use
Only a few non-trivial case studies available
Few people had the necessary training

State of the Art
Why formal methods might work well for
“hardware verification”?

Hardware is often regular and hierarchical
Re-use of design is common practice
Hardware specification is more common, e.g., VHDL 
models
Primitives are simpler, e.g., behavior of an NAND-Gate 
easier to describe than the
semantics of a while-loop
Cost of design error can mean a 6 months delay and a 
costly set of lithography masks

State of the Art
Recently more promising picture

Software specification: industry trying out notations like SDL or Z 
to document system’s properties
Protocol verification successful
Hardware verification: industry adopting model checking and 
some theorem proving to complement simulation
Industrial case studies increasing confidence in using formal
methods
Verification groups: IBM, Intel, Motorola, HP, Nortel, NEC, 
Fujitsu, SUN, Cadence, Siemens, Synopsys, Lucent Technologies, 
.......
Commercial tools from: Chrysalis, Cadence, Synopsys, Verysys, 
IBM, .......

Focus
In this course, we focus on formal verification
methods of digital hardware
... but model checking is making inroads into 
software verification of real-time reactive systems
and protocols

Formal Logic
A method is formal if its rules for manipulation are based
on form (syntax) and not on content (semantics)
Majority of existing formal techniques are based on some 
flavor of formal (symbolic) logic: Propositional logic, 
Predicate logic, other logics.
Formal logic

Every logic comprises a formal language for making statements
about objects and reasoning about properties of these objects.
Statements in a logic language are constructed according to a 
predefined set of formation rules (depending on the language) 
called syntax rules.
A logic language can be used in different ways.
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Types of Logic
Propositional logic: traditional Boolean algebra, 
variables ∈{0,1}
First-order logic (Predicate logic): quantifies for 
all (∀) and there exists (∃) over variables
Higher-order logic: adds reasoning about
(quantifying over) sets and functions (predicates)
Modal/temporal logics: reason about what must or 
may happen

Types of Logic

Propositional logic: decidable and complete

First-order logic: decidable but not complete

Higher-order logic: not decidable nor complete

Proof Theory
A formal logic system consists of:

a notation (syntax)
a set of axioms (facts)
a set of inference (deduction) rules

A formal proof is a sequence of statements where every
statement follows from a preceding one by a rule of 
inference
Purely syntactic (mechanical) activity; not concerned with
the meaning of statements, but with the arrangement of 
these statements, and whether proofs can be constructed

Model Theory

The second use of a logic language is for
expressing statements that receive a meaning
when given an interpretation
The language of logic is used here to formalize
properties of structures, to determine when a 
statement is true on a structure
This use of a logic language is called model theory
Forces a precise and rigorous definition of the 
concept of truth on a structure

Logic = Syntax + Semantics
Syntax and semantics of logic are not independent
A logic language has a syntax, and the meaning of 
statements by an interpretation on a structure
The interaction between model theory and proof
theory makes logic an interesting and effective
tool
Proof System

Given a logic (syntax and semantics), there can be one 
or more proof systems, e.g. HOL and PVS are two
proof systems based on higher-order logic.

Issues of proof systems
Consistency (Soundness): all provable formulas
(theorems) are logically (semantically) true
Completeness: all valid formulas (semantically
true) are provable (theorems)
Decidability: there is an algorithm for deciding 
the (semantical) truth of any formula (theorems)
⇒A proof system is acceptable only if it is consistent

(may not be complete nor decidable)
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Application of logic to verification
Specification represented as a formula
Implementation represented as a formula or as a semantic 
model
Formula  |- Formula:

Verification as theorem proving, i.e., relationship (implication or 
equivalence) between the specification and the implementation is a 
theorem to be proven.

Model  |= Formula:
Both theorem proving and model checking can be used
Model checking deals with the semantic relationship: shows that
the implementation is a model for the specification formula 
(property).

Relation between Spec and Imp
Imp ≡ Spec: the implementation is equivalent to
the specification
Imp→ Spec: the implementation logically implies 
the specification
Imp |= Spec: the implementation is a semantic 
model in which the specification is true

Formal Verification Methods
FV methods can be categorized in following main groups:

Interactive (deductive) Methods
Theorem Proving: relationship between a specification and an
implementation is a theorem in a logic, to be proven within the 
context of a proof calculus

Automated Methods
Combinational Equivalence Checking: proof of structural
equivalence of logic designs
Sequential Equivalence Checking: proof of behavioral equivalence
of FSMs
Model Checking: proof of (temporal) logic property (safety & 
liveness) against a semantic model of the design
Invariant Checking (safety property)
Language Containment (model checking of w-automata)

Issues in Verification methods
Soundness: every statement that is provable is actually
true.
Completeness: every statement that is actually true is
provable.
Automation: proof generation process automatic, semi-
automatic or user driven
Can it handle:

Compositional proofs: constructed syntactically from proofs of 
component parts
Hierarchical proofs: for system organized hierarchically at various 
levels of abstraction
Inductive proofs: reason inductively about parameterized
descriptions

Theorem Proving
Prove that an implementation satisfies a specification by
mathematical reasoning.

Implementation and specification expressed as formulas in a 
formal logic.
Relationship (logical equivalence/logical implication) described as 
a theorem to be proven.

A proof system:
A set of axioms and inference rules (simplification, rewriting, 
induction, etc.)

Theorem Proving
Some known theorem proving systems

Boyer-Moore/ACL2 (first-order logic)
HOL (higher-order logic)
PVS (higher-order logic)
Lambda (higher-order logic)

Advantages
High abstraction and powerful logic expressiveness
Unrestricted applications
Useful for verifying parameterized datapath-dominated circuits

Limitations
Interactive (under user guidance)
Requires expertise for efficient use
Automated for narrow classes of designs
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FSM-based Methods
Finite State Machines (FSM)

Well-developed theory for analyzing FSMs (e.g., reachable
states, equivalence)
An FSM (I, O, S, δ, λ, S0)

I : input alphabet,
O: output alphabet,
S: set of states,
δ: next-state relation, δ ⊆ S×I×S,
λ: output relation, λ ⊆ S×I×O (Mealy), λ ⊆ S×O (Moore)
S0: set of initial states.

Deterministic machines: δ: S×I -> S and λ: S×I −> Ο are 
functions, S0 = {s0}.

FSM Equivalence Verification
Basic method:

If same state variables — Combinational Equivalence
of δ and λ
If state space different - State Enumeration by 
Reachability Analysis
Two FSMs are equivalent if they produce the same
output for every possible input sequence — Sequential
Equivalence Checking

Equivalence Checking
Equivalence by reachability analysis of the 
Product Machine

Reachability Analysis
Start from initial state

repeat
Apply transition relation to determine next state
In each reached state, check equivalence of corresponding outputs
of M1, M2

until all reachable states visited
Involves building a state transition graph (Finite Kripke
structure)
Problem: “State explosion”e.g., 32-bit register → 232 states
Partial solution: Implicit State Enumeration with

Reduced Ordered Binary Decision Diagrams (ROBDD)
Represent transition/output relations and sets of states
symbolically using ROBDD

Equivalence Checking: Application
example Equivalence Checking

Combinational equivalence:
possible if one-to-one state mapping do exit
relatively straightforward (equivalence of sets of 
functions (BDDs))
tools already part of verification flow

Sequential equivalence:
no state mapping required (building of product
machine)
hard to handle large circuits (also must consider all 
initial states)
no tools for industrial use
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Model Checking - Basic idea Model Checking
Property described by temporal logic formula.
System modeled by Labeled Transition Graph (LTG, LTS, 
Finite Kripke structure).
Exhaustive search through the state space of the system 
(Reachability Analysis) to determine if the property holds
(provides counterexamples for identifying design errors).
Problem: “State explosion”
Partial Solution: Symbolic Model Checking
Represent transition/output relations and sets of states
symbolically using ROBDD

Binary Decision Diagrams
Idea from 70s (maybe earlier)
Adapted by Bryant  ’86
Take a formula
Make decision tree for fixed variable order
Reduction rules

merge duplicate nodes
both children point to same node -- remove 
redundant node

Symbolic Model Checking - Basic idea

Problem: again “State explosion” (max ~ 400 Boolean
variables), low abstraction level.

Model Checking

MC

G(p -> F q)
yes

nop

q

p
q

property

finite-state model

algorithm

counterexample

(Ken McMillan)

Model Checking vs. Simulation



14

Symbolic simulation
Constants   1  0
unknown       X
symbolic values   a,b,c…

Adapt logic simulation to represent values on 
wires
BDDs represent functions of symbolic values

Symbolic simulation
X  halves  # simulation runs but loses info.

a halves # runs but makes BDDs bigger

Tradeoff

Theorem Proving vs. Model Checking
Theorem Proving: useful for architectural design and 

verification
Process: 

Implementation description: Formal logic
Specification description: Formal logic
Correctness: |- Imp ⇒ Spec (implication) or |- Imp⇔Spec
(equivalence)

High abstraction level possible, expressive notation, powerful logic 
and reasoning
Interactive and deep understanding of design and higher-order 
logic required
Need to develop rules (lemmas) and tactics for class of designs
Need a refinement method to synthesizable VHDL / Verilog

Theorem Proving vs. Model Checking
Model Checking: at RT-level (or below) with at most ~400 

Boolean state variables
Process: 

Implementation description: Model as FSM
Specification description: Properties in temporal logic
Correctness: Impl Spec (property holds in the FSM model)

Easy to learn and apply (completely automatic), properties must be
carefully prepared
Integrated with design process, refinement from skeletal model
State space explosion problem (not scalable to large circuits)
Increase confidence, better verification coverage

Design Flow and Formal Verification
RT level

⇒ Simulation of RTL
(+) efficient for less interacting concurrent components
(-) incomplete for complicated control parts and 
difficult error trace

⇒ Model checking of RTL
(+) efficient for complicated interacting concurrent
components
(+) counter-examples can trace design errors
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Design Flow and Formal Verification
Netlist (Gate level)

⇒ Equivalence checking of netlist vs. RTL
(+) check the equivalence of submodules to ensure the 
correctness of synthesis
(+) trace synthesis errors using counter-examples

⇒ Model checking of netlist
(+) correctness of the entire gate-level implementation
(-) unpractical: state space explosion


