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Problem definition

 Example

 Given a road map on which the distance between
each pair of adjacent intersactions is marked

 How is it possible to determine the shortest route?

 One possibility is to

 Enumerate all routes, add the distance on each
route, disallowing routes with cycles

 Select the shortes routes

 This implies examining an enourmous number of 
possibilities

 A better solution implies solving the so called
Single-Source Shortest Path problem
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Shortest Paths

 Given a graph G = (V, E)

 Directed

 Weighted

 With a positive real-value weight function w: ER

 With a weight w(p) over a path

 p = <v0, v1, …, vk>

is equal to

 w(p) = Σi=1
k w(vi-1, vi)
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Shortest Paths

 We define the shortest path weight δ(u,v) from u 
to v as

min{w(p)} if ∃ u →p v

 δ(u,v) = 

∞ otherwise

 A shortest path from u to v is any path p with 
weigth

 w(p) = δ(u,v)
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Variants

 Shortest path problems

 Single-source shortest-paths

 Minimum path and its weight from s to all other
vertices v

● Dijkstra’s algorithm

● Bellman-Ford’s algorithm

 Notice that with unweighted graphs a simple
BFS (Breadth-First Search) solves the problem
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Example
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Observation
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Variants

 Single-destination shortest-paths

 Find the shortest path to a given destination

 Use the reverse graph

 Single-pair shortest-paths

 Find a shortest path from v1 to v2 given vertices v1

to v2

 Soved when the SSSP is solved

 All alternative solutions have the same worst-case 
asymptotic running time 

 All-pairs shortest-path

 Find a shortest-path for every vertex pair

 Can be solved running SSSP from each vertex

 Can be solved faster
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Negative Weight Edges

 If there are edges with negative weight but there
are no cycles with negative weight

 Dijkstra’s algorithm

 Optimum solution not guaranted

 Bellman-Ford’s algorithm

 Optimum solution guaranted

 It there are cycle with negative weight

 The problem is not defined (there is no solution)

 Dijkstra’s algorithm

 Meaningless result

 Bellman-Ford’s algorithm

 Find cycles with negative weights
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Example
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Representing Shortest Paths

 Often we wish to compute vertices on shorterst
path, not only weights

 A few representations are possible

 Array of predecessors v.pred

parent(v) if ∃
 ∀v∈V v.pred = 

NULL otherwise

 Predecessor’s sub-graph

 Gpred=(Vpred, Epred), where

 Vpred = {v ∈V: v.pred ≠ NULL} ∪ {s}

 E pred = {(v.pred, v) ∈ E : v ∈ Vpred - {s}}

Attribute pred (predecessor) 
for each vertex
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Representing Shortest Paths

 Shortest-Paths Tree

 G’ = (V’, E’)

 Where V’ ⊆ V && E’ ⊆ E 

 V’ is the set of vertices reachable from s

 S is the tree root

 ∀v∈V’ the unique simple path from s to v in G’ is a 
minimum weight from s to v in G
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Theoretical Background

 Lemma

 Sub-paths of shortest paths are shortest paths

 G = (V, E)

 Directed, weighted w: E→R

 P = <v1, v2, …, vk>

 Is a shortest path from v1 to vk

 ∀i, j 1≤i≤j≤k, pij=<vi,vi+1,…,vj>

 Sub-path of p from vi to vj

 The pij is a shortest path from vi to vj

v1 vk



14Algorithms and Programming – Camurati & Quer

Theoretical Background

 Corollary

 G = (V, E)

 Directed, weighted w: E→R

 A shortest path p from s to v may be decomposed
into

 A shortest sub-path from s to u

 An edge (u,v)

 Then

 δ(s,v) = δ(s,u) + w(u,v)
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Theoretical Background

 Lemma

 G = (V, E)

 Directed, weighted w: E→R

 ∀(u,v) ∈ E 

 δ(s,v) ≤ δ(s,u) + w(u,v)

 A shortest path from s to v cannot have a weight
larger than the path formed by a shortest path
from s to u and an edge (u, v)
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Relaxation

 The algorithms we are going to anayze use the 
technique of relaxation

 For each vertex we mantain an estimate v.dist
(superior limit) of the weight of the path from s 
to v

initialize_single_source (G, s)
for each v ∈ V

v.dist = ∞
v.pred = NULL

s.dist = 0 v.dist
= shortest path estimate = 

upper bound on the weight of 
a shortest path from s to vv.pred = predecessor

(Single) source
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Relaxation

 Relaxation

 Update v.dist and v.pred by testing whether it is
possibile to improve the shortest path to v found
so far by going through the edge e = (u,v), where
w(u,v) is the weigth of the edge

relax (u, v, w) {
if ( v.dist > (u.dist + w(u, v)) ) {

v.dist = u.dist + w (u, v)
v.pred = u

}
}
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Example
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Example
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Properties

 Lemma

 Given G=(V,E)

 Directed, weighted w: E→R, with e = (u,v) ∈ E

 After relaxing e = (u,v) we have

 v.dist ≤ u.dist + w (u, v)

 That is, after relaxing e, v.d cannot increase

 Either v.dist is unchanged (relaxation with no 
effect)

 Or v.dist is decreased (effective relaxation)
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Properties

 Lemma

 Given G=(V,E), directed, weighted w: E→R, with 
source s ∈ V

 After a proper initialization of v.dist and v.pred

 ∀ v ∈ V  v.dist ≥ δ(s, v)

 For all relaxation steps on the edges

 When v.dist =  δ(s,v), then v.dist does not change
any more
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Properties

 Lemma

 Given G=(V,E) directed, weighted w: E→R, with 
source s ∈ V

 After a proper initialization of v.dist and v.pred

 The shortest path from s to v is made-up of

 Path from s to u

 Edge e = (u, v) 

 Application of relaxation on e=(u, v)

 If before relaxation u.dist = δ(s, u)

 After relaxation v.dist = δ(s, v)



23Algorithms and Programming – Camurati & Quer

Dijkstra’s Algorithm

 It works on graphs with no negative weigths

 It is a greedy strategy

 It applies relaxation once for all edges

 Algorithm

 S: set of vertices whose shortest path from s has
already been computed

 V-S: priority queue Q of vertices till to estimate

 Stop when Q is empty

 Extract u from V-S (u.dist is minimum)

 Insert u in S

 Relax all outgoing edges from u
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Pseudo-code

sssp_Dijkstra (G, w, s) 
initialize_single_source (G, s)
S = φ
Q = V
while Q ≠ φ

u = extract_min (Q)
S = S ∪ {u}
for each vertex v ∈ adjacency list of u

relax (u, v, w)

Pseudo-code

For all vertices
starting from s

Extract vertex with 
minimum distance

Insert if in S
Relax all adjancecy

vertices
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Example 2: Negative edges

CB

A

7

-3

7

6

5

ED

3

2

82

S

-4

-2

There are edges with 
negative weight

There are no cycles
with negative weight



28Algorithms and Programming – Camurati & Quer

Example 2: Negative edges
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Implementation

struct graph_s {
vertex_t *g;
int nv;

};
struct edge_s {

int weight;
int dst;

};
struct vertex_s {

int id;
int ne;
int color;
int dist;
int scc;
int disc_time;
int endp_time;
int pred;
edge_t *edges;

};

Graph ADT
(same used for Kruskal’s algorithm)

Array of vertices of 
array of edges
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g = graph_load (argv[1]);

fprintf (stdout, "Initial vertex? ");
scanf("%d", &i);

sssp_dijkstra (g, i);

fprintf (stdout, "Weights starting from vertex %d\n" , i);
for (i=0; i<g->nv; i++) {

if (g->g[i].dist != INT_MAX) {
fprintf (stdout, "Node %d: %d (%d)\n",

i, g->g[i].dist, g->g[i].pred);
}

}

graph_dispose (g);

Implementation
Client

(code extract)
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void sssp_dijkstra (graph_t *g, int i) {
int j, k;
g->g[i].dist = 0;
while (i >= 0) {

g->g[i].color = GREY;
for (k=0; k<g->g[i].ne; k++) {

j = g->g[i].edges[k].dst;
if (g->g[j].color == WHITE) {

if (g->g[i].dist+g->g[i].edges[k].weight < g->g[j].di st) {
g->g[j].dist = g->g[i].dist + g->g[i].edges[k].weight ;
g->g[j].pred = i;

}
}

}
g->g[i].color = BLACK;
i = graph_min (g);

}
}

Implementation

For each outgoing vertex

Relax the connected nodes

Move to next vertex
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int graph_min (graph_t *g) {
int i, pos=-1, min=INT_MAX;

for (i=0; i<g->nv; i++) {
if (g->g[i].color==WHITE && g->g[i].dist<min) {

min = g->g[i].dist;
pos = i;

}
}

return pos;
}

Implementation

Simplification:
Instead of a priority queue
there is an array with linear 
searches of the maximum
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sssp_Dijkstra (G, w, s) 
initialize_single_source (G, s)
S = φ
Q = V
while Q ≠ φ

u = extract_min (Q)
S = S ∪ {u}
for each vertex v ∈ adjacency list of u

relax (u, v, w)

Complexity

Executed |V| times

O (lg |V|)  O(|V| log|V|)

Overall
O(|E|)

O(lg |V|)  O(|E|log|V|)

due to PQ changeOverall running time complexity
T(n) = O((|V|+|E|) ∙ lg |V|)

Pseudo-code

O(|V|)
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Complexity

 In general

 T(n) =  O((|V|+|E|) ∙ lg |V|) 

 This can be reduced to

 T(n) =  O(|E| ∙ lg |V|)

if all vertices are reachable from the source s 
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 Given the following graph apply Dijkstra’s
algorithm starting from vertex A

Exercise
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 Given the following graph apply Dijkstra’s
algorithm starting from vertex S

Exercise
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Bellman-Ford’s Algorithm

 Bellman-Ford may run on graphs

 With negative weight edges

 If there is a cycle with negative weight it detects it

 It applies relaxation more than once for all edges

 |V|-1 step of relaxation on all edges

 At the i-th relaxation step either

 It decreases at least one estimate

or

 It has already found an optimal solution and it can 
stop returning an optimum solution
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Pseudo-code

sssp_Bellman_Ford (G, w, s)
initialize_single_source (G, s)
for i = 1 to |V| − 1

for each edge (u, v) ∈ E
relax (u, v, w)

for each edge (u, v) ∈ E
if ( v.dist > (u.d + w(u, v)) )

return FALSE
return TRUE

Pseudo-code

Iterates |V|-1 times

Relaxes all edges

Checks for negative 
weight cycles

Returns FALSE if a negative 
weight cycle is detected

Returns TRUE otherwise



39Algorithms and Programming – Camurati & Quer

Pseudo-code

sssp_Bellman_Ford (G, w, s)
initialize_single_source (G, s)
for i = 1 to |V| − 1

for each edge (u, v) ∈ E
relax (u, v, w)

for each edge (u, v) ∈ E
if ( v.dist > (u.d + w(u, v)) )

return FALSE
return TRUE

Pseudo-code
After |V|-1 iterations, all vertices

reachable from s have been
reached with the shortest path

Proof
With |V| vertices the longest simple path includes
|V| vertices, that is |V|-1 edges. All of them are 

relaxed in |V|-1 iterations. Thus, all paths are the 
shortest ones for the property of relaxation
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Example 1
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Example 1

Lessicographic order of 
the edges
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Example 1
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Example 1

Lessicographic order of 
the edges
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#0 #1 #2 #3 #4
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At the next iteration, edges
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C reachable in -8 and -6
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Example 2: Negative cycles

#0 #1 #2 #3 #4

A 0 0 0 0 0

B ∞ 63 1 -2 -5

C ∞ 54 3 0 -3
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E ∞ 2 -1 -3 -7
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Step #
(5 vertices  4 iterations)

At the next iteration, edges
BC and CB would make B and 

C reachable in -8 and -6
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Implementation

typedef struct graph_s graph_t;
typedef struct vertex_s vertex_t;
typedef struct edge_s edge_t;

struct graph_s {
vertex_t *g;
int nv;

};

struct edge_s {
int weight;
int dst;
edge_t *next;

};

struct vertex_s {
int id;
int color;
int dist;
int disc_time;
int endp_time;
int pred;
int scc;
edge_t *head;

};

Array of vertex of lists
of edges

Graph ADT
(same used for Prim’s algorithm)
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g = graph_load (argv[1]);

printf("Initial vertex? ");
scanf("%d", &i);

if (sssp_bellman_ford (g, i) != 0) {
fprintf (stdout, "Negative weight loop detected!\n") ;

} else {
fprintf (stdout, "Weights starting from vertex %d\n" , i);
for (i=0; i<g->nv; i++) {

if (g->g[i].dist != INT_MAX) {
fprintf (stdout, "Node %d: %d (%d)\n",

i, g->g[i].dist, g->g[i].pred);
}

}
}

graph_dispose (g);

Implementation
Client

(code extract)
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int sssp_bellman_ford (graph_t *g, int i) {
edge_t *e;
int k, stop=0;
g->g[i].dist = 0;
for (k=0; k<g->nv-1 && !stop; k++){

stop = 1;
for (i=0; i<g->nv; i++) {

if (g->g[i].dist != INT_MAX) {
e = g->g[i].head;
while (e != NULL) {

if (g->g[i].dist+e->weight < g->g[e->dst].dist) {
g->g[e->dst].dist = g->g[i].dist+e->weight;
g->g[e->dst].pred = i;
stop = 0;

}
e = e->next;

}
}

}
}

Implementation

For each edge in the graph

Relax the connected nodes

Move to next edge
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if (!stop) {
for (i=0; i<g->nv; i++) {

if (g->g[i].dist != INT_MAX) {
e = g->g[i].head;
while (e != NULL) {

if (g->g[i].dist+e->weight < g->g[e->dst].dist) {
return 1;

}
e = e->next;

}
}

}
}

return 0;
}

Implementation

Verify negative 
weight loops

Relax the 
connected nodes
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sssp_Bellman_Ford (G, w, s)
initialize_single_source (G, s)
for i = 1 to |V| − 1

for each edge (u, v) ∈ E
relax (u, v, w)

for each edge (u, v) ∈ E
if ( v.dist > (u.d + w(u, v)) )

return FALSE
return TRUE

Complexity

O (|V|)

Executed |E| times 

O(|E|)

Overall running time complexity
T(n) = O(|V| ∙ |E|)

Pseudo-code

Executed |V|-1 times

Executed |E| times

O(1)  O(|E|·|V|)
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 Given the following graph apply Bellman-Ford’s
algorithm from vertex B

Exercise
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 Given the following graph apply Bellman-Ford’s
algorithm from vertex A

Exercise


