

Graphs

Single Source Shortest Paths

Paolo Camurati and Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

Problem definition

* Example
> Given a road map on which the distance between each pair of adjacent intersactions is marked
$>$ How is it possible to determine the shortest route?
$>$ One possibility is to
- Enumerate all routes, add the distance on each route, disallowing routes with cycles
- Select the shortes routes
$>$ This implies examining an enourmous number of possibilities
* A better solution implies solving the so called Single-Source Shortest Path problem

Shortest Paths

* Given a graph G = (V, E)
> Directed
$>$ Weighted
- With a positive real-value weight function w: $\mathrm{E} \rightarrow \mathrm{R}$
$>$ With a weight $\mathrm{w}(\mathrm{p})$ over a path
- $\mathrm{p}=\left\langle\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right\rangle$
is equal to
- $w(p)=\Sigma_{i=1}{ }^{k} w\left(v_{i-1}, v_{i}\right)$

Shortest Paths

*We define the shortest path weight $\delta(u, v)$ from u to v as
: $\delta(u, v)= \begin{cases}\min \{w(p)\} & \text { if } \exists u \rightarrow_{p} v \\ \infty & \text { otherwise }\end{cases}$

* A shortest path from u to v is any path p with weigth
- $w(p)=\delta(u, v)$

Variants

- Shortest path problems
> Single-source shortest-paths
- Minimum path and its weight from s to all other vertices v
- Dijkstra's algorithm
- Bellman-Ford's algorithm
> Notice that with unweighted graphs a simple BFS (Breadth-First Search) solves the problem

Example

*SSSPs and MSTs are different

Variants

Single-destination shortest-paths

- Find the shortest path to a given destination
- Use the reverse graph
> Single-pair shortest-paths
- Find a shortest path from v_{1} to v_{2} given vertices v_{1} to V_{2}
- Soved when the SSSP is solved
- All alternative solutions have the same worst-case asymptotic running time
> All-pairs shortest-path
- Find a shortest-path for every vertex pair
- Can be solved running SSSP from each vertex
- Can be solved faster

Negative Weight Edges

If there are edges with negative weight but there are no cycles with negative weight
> Dijkstra's algorithm

- Optimum solution not guaranted
> Bellman-Ford's algorithm
- Optimum solution guaranted
* It there are cycle with negative weight
$>$ The problem is not defined (there is no solution)
> Dijkstra's algorithm
- Meaningless result
> Bellman-Ford's algorithm
- Find cycles with negative weights

Example

Representing Shortest Paths

* Often we wish to compute vertices on shorterst path, not only weights
> A few representations are possible
* Array of predecessors v.pred
- $\forall \mathrm{v} \in \mathrm{V}$ v.pred $=\left\{\begin{array}{l}\text { parent(} \mathrm{v} \text {) if } \exists \\ \text { NULL otherwise }\end{array}\right.$
* Predecessor's sub-graph
$>\mathrm{G}_{\text {pred }}=\left(\mathrm{V}_{\text {pred }}, \mathrm{E}_{\text {pred }}\right)$, where for each vertex
- $\mathrm{V}_{\text {pred }}=\{\mathrm{v} \in \mathrm{V}: \mathrm{v}$. pred $\neq \mathrm{NULL}\} \cup\{\mathrm{s}\}$
- $\mathrm{E}_{\text {pred }}=\left\{(\mathrm{v}\right.$. pred, v$\left.) \in \mathrm{E}: \mathrm{v} \in \mathrm{V}_{\text {pred }}-\{\mathrm{s}\}\right\}$

Representing Shortest Paths

* Shortest-Paths Tree
$>\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$
- Where $\mathrm{V}^{\prime} \subseteq \mathrm{V} \& \& \mathrm{E}^{\prime} \subseteq \mathrm{E}$
- V^{\prime} is the set of vertices reachable from s
- S is the tree root
- $\forall \mathrm{v} \in \mathrm{V}^{\prime}$ the unique simple path from s to v in G^{\prime} is a minimum weight from s to v in G

Theoretical Background

* Lemma
$>$ Sub-paths of shortest paths are shortest paths
$>\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Directed, weighted w: $\mathrm{E} \rightarrow \mathrm{R}$
$>\mathrm{P}=\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}\right\rangle$
- Is a shortest path from v_{1} to v_{k}
$>\forall \mathrm{i}, \mathrm{j} 1 \leq \mathrm{i} \leq j \leq \mathrm{k}, \mathrm{p}_{\mathrm{ij}}=\left\langle\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}, \ldots, \mathrm{v}_{\mathrm{j}}\right\rangle$
- Sub-path of p from v_{i} to v_{j}
$>$ The $p_{i j}$ is a shortest path from v_{i} to v_{j}

Theoretical Background

* Corollary

$>G=(V, E)$

- Directed, weighted w: $\mathrm{E} \rightarrow \mathrm{R}$
$>\mathrm{A}$ shortest path p from s to v may be decomposed into
- A shortest sub-path from s to u
- An edge (u, v)
$>$ Then
- $\delta(\mathrm{s}, \mathrm{v})=\delta(\mathrm{s}, \mathrm{u})+\mathrm{w}(\mathrm{u}, \mathrm{v})$

Theoretical Background

- Lemma
$>\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Directed, weighted w: $\mathrm{E} \rightarrow \mathrm{R}$
$\Rightarrow \forall(u, v) \in E$
- $\delta(\mathrm{s}, \mathrm{v}) \leq \delta(\mathrm{s}, \mathrm{u})+\mathrm{w}(\mathrm{u}, \mathrm{v})$
$>$ A shortest path from s to v cannot have a weight larger than the path formed by a shortest path from s to u and an edge (u, v)

Relaxation

The algorithms we are going to anayze use the technique of relaxation

* For each vertex we mantain an estimate v.dist (superior limit) of the weight of the path from s to v
(Single) source
initialize_single_source (G, s)
for each $v \in V$
v.dist $=\infty$
v.pred $=$ NULL
s.dist $=0$

Relaxation

* Relaxation

> Update v.dist and v.pred by testing whether it is possibile to improve the shortest path to v found so far by going through the edge $e=(u, v)$, where $w(u, v)$ is the weigth of the edge

```
relax (u, v, w) {
    if ( v.dist > (u.dist + w(u, v)) ) {
        v.dist = u.dist + w (u, v)
        v.pred = u
    }
}
```


Example

Shortest path from s to v $=$ shortest path from s to u + edge (u, v)
v.dist $=$

u.dist $+w(u, v)=$
$5+2=7$
v.pred $=\mathbf{u}$

Example

* Lemma
$>$ Given $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
$>$ Directed, weighted $w: E \rightarrow R$, with $e=(u, v) \in E$
After relaxing $e=(u, v)$ we have
$>v . d i s t \leq u$.dist $+w(u, v)$
That is, after relaxing e, v.d cannot increase
$>$ Either v.dist is unchanged (relaxation with no effect)
$>$ Or v.dist is decreased (effective relaxation)
* Lemma
$>$ Given $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, directed, weighted $\mathrm{w}: \mathrm{E} \rightarrow \mathrm{R}$, with source $s \in V$
> After a proper initialization of v.dist and v.pred
- $\forall \mathrm{V} \in \mathrm{V}$ v.dist $\geq \delta(\mathrm{s}, \mathrm{v})$
$>$ For all relaxation steps on the edges
$>$ When v.dist $=\delta(\mathrm{s}, \mathrm{v})$, then v.dist does not change any more
- Lemma
$>$ Given $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ directed, weighted $\mathrm{w}: \mathrm{E} \rightarrow \mathrm{R}$, with source $s \in V$
$>$ After a proper initialization of v.dist and v.pred
The shortest path from s to v is made-up of
$>$ Path from s to u
\rightarrow Edge $e=(u, v)$
* Application of relaxation on $\mathrm{e}=(\mathrm{u}, \mathrm{v})$
$>$ If before relaxation u.dist $=\delta(\mathrm{s}, \mathrm{u})$
$>$ After relaxation v.dist $=\delta(\mathrm{s}, \mathrm{v})$

Dijkstra's Algorithm

It works on graphs with no negative weigths

* It is a greedy strategy
> It applies relaxation once for all edges
* Algorithm
> S: set of vertices whose shortest path from s has already been computed
$>$ V-S: priority queue Q of vertices till to estimate
\Rightarrow Stop when Q is empty
- Extract u from V-S (u.dist is minimum)
- Insert u in S
- Relax all outgoing edges from u

Pseudo-code

Pseudo-code
sssp_Dijkstra (G, w, s)
initialize_single_source (G, s)
$\mathbf{S}=\phi$
$\mathrm{Q}=\mathrm{V}$
while $Q \neq \phi$
u = extract_min (Q)
$S=S U\{u\}$
for each vertex $v \in$ adjacency list of u relax ($u, v, w)$

Insert if in S
Relax all adjancecy vertices

Example 1

Example 1

Example 2: Negative edges

Example 2: Negative edges

Implementation

Implementation

Client
(code extract)

```
g = graph_load (argv[1]);
```

fprintf (stdout, "Initial vertex? ");
scanf("\%d", \&i);
sssp_dijkstra (g, i);
fprintf (stdout, "Weights starting from vertex \%d\n", i);
for (i=0; i<g->nv; i++) \{
if (g->g[i].dist != INT_MAX) \{
fprintf (stdout, "Node \%d: \%d (\%d) \n",
i, $g->g[i] . d i s t, \quad g->g[i] . p r e d) ;$
\}
\}
graph_dispose (g);

Implementation

```
void sssp_dijkstra (graph_t *g, int i) {
    int j, k;
    g->g[i].dist = 0;
    while (i >= 0) {
        g->g[i].color = GREY;
        for (k=0; k<g->g[i].ne; k++) {
            j = g->g[i].edges[k].dst;
            if (g->g[j].color == WHITE) {
            if (g->g[i].dist+g->g[i].edges[k].weight < g->g[j].dist) {
                g->g[j].dist = g->g[i].dist + g->g[i].edges[k].weight;
                    g->g[j].pred = i;
            }
        }
        }
        g->g[i].color = BLACK;
        i = graph_min (g);
    }
}
                                Move to next vertex
```


Implementation

```
int graph_min (graph_t *g) {
```

 int \(i\), pos=-1, min=INT_MAX;
 for (i=0; i<g->nv; i++) \{
 if (g->g[i].color==WHITE \&\& g->g[i].dist<min) \{
 \(\min =g->g[i] . d i s t ;\)
 pos = i;
 \}
 \}
 return pos;
 \}

Complexity

Pseudo-code

sssp_Dijkstra (G, w, s)
initialize_single_source (G, s)
$\mathbf{S}=\phi$
$\mathrm{Q}=\mathrm{V}$
while $Q \neq \phi$
$\mathrm{u}=$ extract_min (Q)
$\mathbf{S}=\mathbf{S} U\{u\}$
for each vertex $v \in$ adjacency list of u relax (u, v, w)

Overall running time complexity
$\mathrm{O}(\lg |\mathrm{V}|) \rightarrow \mathbf{O}(|\mathrm{E}| \log |\mathrm{V}|)$ $\mathrm{T}(\mathrm{n})=\mathrm{O}((|\mathrm{V}|+|\mathrm{E}|) \cdot \lg |\mathrm{V}|)$

Complexity

- In general
$>\mathrm{T}(\mathrm{n})=\mathrm{O}((|\mathrm{V}|+|\mathrm{E}|) \cdot \lg |\mathrm{V}|)$
* This can be reduced to
$>\mathrm{T}(\mathrm{n})=\mathrm{O}(|\mathrm{E}| \cdot \lg |\mathrm{V}|)$
if all vertices are reachable from the source s
* Given the following graph apply Dijkstra's algorithm starting from vertex A

Given the following graph apply Dijkstra's algorithm starting from vertex S

Bellman-Ford's Algorithm

* Bellman-Ford may run on graphs
$>$ With negative weight edges
$>$ If there is a cycle with negative weight it detects it
> It applies relaxation more than once for all edges
$>|\mathrm{V}|-1$ step of relaxation on all edges
> At the i-th relaxation step either
- It decreases at least one estimate
or
- It has already found an optimal solution and it can stop returning an optimum solution

Pseudo-code

Pseudo-code

Pseudo-code

Example 1

Lessicographic order of the edges
(A, B)
(A, D)
(B, C)
(B, D)
(B, E)
(C, B)
(D, C)
(D, E)
(E, A)
(E, C)

	$\# 0$	$\# 1$	$\# 2$	$\# 3$	$\# 4$
A	0	0	0	0	0
B	∞	6	2	2	2
C	∞	$11 \rightarrow 4$	4	4	4
D	∞	7	7	7	7
E	∞	2	2	-2	-2

Step \#
$(5$ vertices $\rightarrow 4$ iterations $)$

Example 1

Example 2: Negative cycles

$\begin{gathered} \text { Step \# } \\ \text { (5 vertices } \rightarrow 4 \text { iterations) } \end{gathered}$					S
	\#0	\#1	\#2	\#3	\#4
A	0	0	0	0	0
B	∞	$6 \rightarrow 3$	1	-2	-5
C	∞	$5 \rightarrow 4$	3	0	-3
D	∞	7	7	7	7
E	∞	2	-1	-3	-7

Implementation

Array of vertex of lists of edges

```
struct edge_s {
    int weight;
    int dst;
    edge_t *next;
};
struct vertex_s {
    int id;
    int color;
    int dist;
    int disc_time;
    int endp_time;
    int pred;
    int scc;
    edge_t *head;
};
```


Implementation

Client
(code extract)
g = graph_load (argv[1]);
printf("Initial vertex? ");
scanf("\%d", \&i);
if (sssp_bellman_ford (g, i) ! = 0) \{
fprintf (stdout, "Negative weight loop detected!\n");
\} else \{
fprintf (stdout, "Weights starting from vertex \%d\n", i); for (i=0; i<g->nv; i++) \{
if (g->g[i].dist ! = INT_MAX) \{
fprintf (stdout, "Node \%d: \%d (\%d) \n",
i, g->g[i].dist, g->g[i].pred);
\}
\}
\}
graph_dispose (g);

Implementation

```
int sssp_bellman_ford (graph_t *g, int i) {
    edge_t *e;
    int k, stop=0;
    g->g[i].dist = 0;
    for (k=0; k<g->nv-1 && !stop; k++) {
        stop = 1;
        for (i=0; i<g->nv; i++) {
            if (g->g[i].dist != INT_MAX) { Relax the connected nodes
                e = g->g[i].head;
                while (e != NULL) {
                    if (g->g[i].dist+e->weight < g->g[e->dst].dist) {
                        g->g[e->dst].dist = g->g[i].dist+e->weight;
                        g->g[e->dst].pred = i;
                        stop = 0;
                            }
                    e = e->next;
                }
            }
        }
    }
```


Implementation

Complexity

Exercise

* Given the following graph apply Bellman-Ford's algorithm from vertex B

* Given the following graph apply Bellman-Ford's algorithm from vertex A

