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Problem definition

 Example

 Given a road map on which the distance between
each pair of adjacent intersactions is marked

 How is it possible to determine the shortest route?

 One possibility is to

 Enumerate all routes, add the distance on each
route, disallowing routes with cycles

 Select the shortes routes

 This implies examining an enourmous number of 
possibilities

 A better solution implies solving the so called
Single-Source Shortest Path problem
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Shortest Paths

 Given a graph G = (V, E)

 Directed

 Weighted

 With a positive real-value weight function w: ER

 With a weight w(p) over a path

 p = <v0, v1, …, vk>

is equal to

 w(p) = Σi=1
k w(vi-1, vi)
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Shortest Paths

 We define the shortest path weight δ(u,v) from u 
to v as

min{w(p)} if ∃ u →p v

 δ(u,v) = 

∞ otherwise

 A shortest path from u to v is any path p with 
weigth

 w(p) = δ(u,v)
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Variants

 Shortest path problems

 Single-source shortest-paths

 Minimum path and its weight from s to all other
vertices v

● Dijkstra’s algorithm

● Bellman-Ford’s algorithm

 Notice that with unweighted graphs a simple
BFS (Breadth-First Search) solves the problem
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Example
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Observation
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Variants

 Single-destination shortest-paths

 Find the shortest path to a given destination

 Use the reverse graph

 Single-pair shortest-paths

 Find a shortest path from v1 to v2 given vertices v1

to v2

 Soved when the SSSP is solved

 All alternative solutions have the same worst-case 
asymptotic running time 

 All-pairs shortest-path

 Find a shortest-path for every vertex pair

 Can be solved running SSSP from each vertex

 Can be solved faster
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Negative Weight Edges

 If there are edges with negative weight but there
are no cycles with negative weight

 Dijkstra’s algorithm

 Optimum solution not guaranted

 Bellman-Ford’s algorithm

 Optimum solution guaranted

 It there are cycle with negative weight

 The problem is not defined (there is no solution)

 Dijkstra’s algorithm

 Meaningless result

 Bellman-Ford’s algorithm

 Find cycles with negative weights



10Algorithms and Programming – Camurati & Quer

Example
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Representing Shortest Paths

 Often we wish to compute vertices on shorterst
path, not only weights

 A few representations are possible

 Array of predecessors v.pred

parent(v) if ∃
 ∀v∈V v.pred = 

NULL otherwise

 Predecessor’s sub-graph

 Gpred=(Vpred, Epred), where

 Vpred = {v ∈V: v.pred ≠ NULL} ∪ {s}

 E pred = {(v.pred, v) ∈ E : v ∈ Vpred - {s}}

Attribute pred (predecessor) 
for each vertex
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Representing Shortest Paths

 Shortest-Paths Tree

 G’ = (V’, E’)

 Where V’ ⊆ V && E’ ⊆ E 

 V’ is the set of vertices reachable from s

 S is the tree root

 ∀v∈V’ the unique simple path from s to v in G’ is a 
minimum weight from s to v in G
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Theoretical Background

 Lemma

 Sub-paths of shortest paths are shortest paths

 G = (V, E)

 Directed, weighted w: E→R

 P = <v1, v2, …, vk>

 Is a shortest path from v1 to vk

 ∀i, j 1≤i≤j≤k, pij=<vi,vi+1,…,vj>

 Sub-path of p from vi to vj

 The pij is a shortest path from vi to vj

v1 vk
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Theoretical Background

 Corollary

 G = (V, E)

 Directed, weighted w: E→R

 A shortest path p from s to v may be decomposed
into

 A shortest sub-path from s to u

 An edge (u,v)

 Then

 δ(s,v) = δ(s,u) + w(u,v)
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Theoretical Background

 Lemma

 G = (V, E)

 Directed, weighted w: E→R

 ∀(u,v) ∈ E 

 δ(s,v) ≤ δ(s,u) + w(u,v)

 A shortest path from s to v cannot have a weight
larger than the path formed by a shortest path
from s to u and an edge (u, v)
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Relaxation

 The algorithms we are going to anayze use the 
technique of relaxation

 For each vertex we mantain an estimate v.dist
(superior limit) of the weight of the path from s 
to v

initialize_single_source (G, s)
for each v ∈ V

v.dist = ∞
v.pred = NULL

s.dist = 0 v.dist
= shortest path estimate = 

upper bound on the weight of 
a shortest path from s to vv.pred = predecessor

(Single) source
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Relaxation

 Relaxation

 Update v.dist and v.pred by testing whether it is
possibile to improve the shortest path to v found
so far by going through the edge e = (u,v), where
w(u,v) is the weigth of the edge

relax (u, v, w) {
if ( v.dist > (u.dist + w(u, v)) ) {

v.dist = u.dist + w (u, v)
v.pred = u

}
}
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Example
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Example
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Properties

 Lemma

 Given G=(V,E)

 Directed, weighted w: E→R, with e = (u,v) ∈ E

 After relaxing e = (u,v) we have

 v.dist ≤ u.dist + w (u, v)

 That is, after relaxing e, v.d cannot increase

 Either v.dist is unchanged (relaxation with no 
effect)

 Or v.dist is decreased (effective relaxation)
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Properties

 Lemma

 Given G=(V,E), directed, weighted w: E→R, with 
source s ∈ V

 After a proper initialization of v.dist and v.pred

 ∀ v ∈ V  v.dist ≥ δ(s, v)

 For all relaxation steps on the edges

 When v.dist =  δ(s,v), then v.dist does not change
any more
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Properties

 Lemma

 Given G=(V,E) directed, weighted w: E→R, with 
source s ∈ V

 After a proper initialization of v.dist and v.pred

 The shortest path from s to v is made-up of

 Path from s to u

 Edge e = (u, v) 

 Application of relaxation on e=(u, v)

 If before relaxation u.dist = δ(s, u)

 After relaxation v.dist = δ(s, v)
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Dijkstra’s Algorithm

 It works on graphs with no negative weigths

 It is a greedy strategy

 It applies relaxation once for all edges

 Algorithm

 S: set of vertices whose shortest path from s has
already been computed

 V-S: priority queue Q of vertices till to estimate

 Stop when Q is empty

 Extract u from V-S (u.dist is minimum)

 Insert u in S

 Relax all outgoing edges from u
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Pseudo-code

sssp_Dijkstra (G, w, s) 
initialize_single_source (G, s)
S = φ
Q = V
while Q ≠ φ

u = extract_min (Q)
S = S ∪ {u}
for each vertex v ∈ adjacency list of u

relax (u, v, w)

Pseudo-code

For all vertices
starting from s

Extract vertex with 
minimum distance

Insert if in S
Relax all adjancecy

vertices
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Example 1
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CB

A

5

9
4

10

6

1

ED

3

2

3 2

S

0

8 9

5 7



27Algorithms and Programming – Camurati & Quer

Example 2: Negative edges

CB

A

7

-3

7

6

5

ED

3

2

82

S

-4

-2

There are edges with 
negative weight

There are no cycles
with negative weight



28Algorithms and Programming – Camurati & Quer

Example 2: Negative edges
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Implementation

struct graph_s {
vertex_t *g;
int nv;

};
struct edge_s {

int weight;
int dst;

};
struct vertex_s {

int id;
int ne;
int color;
int dist;
int scc;
int disc_time;
int endp_time;
int pred;
edge_t *edges;

};

Graph ADT
(same used for Kruskal’s algorithm)

Array of vertices of 
array of edges
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g = graph_load (argv[1]);

fprintf (stdout, "Initial vertex? ");
scanf("%d", &i);

sssp_dijkstra (g, i);

fprintf (stdout, "Weights starting from vertex %d\n" , i);
for (i=0; i<g->nv; i++) {

if (g->g[i].dist != INT_MAX) {
fprintf (stdout, "Node %d: %d (%d)\n",

i, g->g[i].dist, g->g[i].pred);
}

}

graph_dispose (g);

Implementation
Client

(code extract)
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void sssp_dijkstra (graph_t *g, int i) {
int j, k;
g->g[i].dist = 0;
while (i >= 0) {

g->g[i].color = GREY;
for (k=0; k<g->g[i].ne; k++) {

j = g->g[i].edges[k].dst;
if (g->g[j].color == WHITE) {

if (g->g[i].dist+g->g[i].edges[k].weight < g->g[j].di st) {
g->g[j].dist = g->g[i].dist + g->g[i].edges[k].weight ;
g->g[j].pred = i;

}
}

}
g->g[i].color = BLACK;
i = graph_min (g);

}
}

Implementation

For each outgoing vertex

Relax the connected nodes

Move to next vertex
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int graph_min (graph_t *g) {
int i, pos=-1, min=INT_MAX;

for (i=0; i<g->nv; i++) {
if (g->g[i].color==WHITE && g->g[i].dist<min) {

min = g->g[i].dist;
pos = i;

}
}

return pos;
}

Implementation

Simplification:
Instead of a priority queue
there is an array with linear 
searches of the maximum
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sssp_Dijkstra (G, w, s) 
initialize_single_source (G, s)
S = φ
Q = V
while Q ≠ φ

u = extract_min (Q)
S = S ∪ {u}
for each vertex v ∈ adjacency list of u

relax (u, v, w)

Complexity

Executed |V| times

O (lg |V|)  O(|V| log|V|)

Overall
O(|E|)

O(lg |V|)  O(|E|log|V|)

due to PQ changeOverall running time complexity
T(n) = O((|V|+|E|) ∙ lg |V|)

Pseudo-code

O(|V|)
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Complexity

 In general

 T(n) =  O((|V|+|E|) ∙ lg |V|) 

 This can be reduced to

 T(n) =  O(|E| ∙ lg |V|)

if all vertices are reachable from the source s 
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 Given the following graph apply Dijkstra’s
algorithm starting from vertex A

Exercise
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 Given the following graph apply Dijkstra’s
algorithm starting from vertex S

Exercise
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Bellman-Ford’s Algorithm

 Bellman-Ford may run on graphs

 With negative weight edges

 If there is a cycle with negative weight it detects it

 It applies relaxation more than once for all edges

 |V|-1 step of relaxation on all edges

 At the i-th relaxation step either

 It decreases at least one estimate

or

 It has already found an optimal solution and it can 
stop returning an optimum solution
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Pseudo-code

sssp_Bellman_Ford (G, w, s)
initialize_single_source (G, s)
for i = 1 to |V| − 1

for each edge (u, v) ∈ E
relax (u, v, w)

for each edge (u, v) ∈ E
if ( v.dist > (u.d + w(u, v)) )

return FALSE
return TRUE

Pseudo-code

Iterates |V|-1 times

Relaxes all edges

Checks for negative 
weight cycles

Returns FALSE if a negative 
weight cycle is detected

Returns TRUE otherwise



39Algorithms and Programming – Camurati & Quer

Pseudo-code

sssp_Bellman_Ford (G, w, s)
initialize_single_source (G, s)
for i = 1 to |V| − 1

for each edge (u, v) ∈ E
relax (u, v, w)

for each edge (u, v) ∈ E
if ( v.dist > (u.d + w(u, v)) )

return FALSE
return TRUE

Pseudo-code
After |V|-1 iterations, all vertices

reachable from s have been
reached with the shortest path

Proof
With |V| vertices the longest simple path includes
|V| vertices, that is |V|-1 edges. All of them are 

relaxed in |V|-1 iterations. Thus, all paths are the 
shortest ones for the property of relaxation
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Example 1
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Example 1
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Example 1
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Example 1

Lessicographic order of 
the edges
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Example 2: Negative cycles

#0 #1 #2 #3 #4

A 0 0 0 0 0
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Implementation

typedef struct graph_s graph_t;
typedef struct vertex_s vertex_t;
typedef struct edge_s edge_t;

struct graph_s {
vertex_t *g;
int nv;

};

struct edge_s {
int weight;
int dst;
edge_t *next;

};

struct vertex_s {
int id;
int color;
int dist;
int disc_time;
int endp_time;
int pred;
int scc;
edge_t *head;

};

Array of vertex of lists
of edges

Graph ADT
(same used for Prim’s algorithm)
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g = graph_load (argv[1]);

printf("Initial vertex? ");
scanf("%d", &i);

if (sssp_bellman_ford (g, i) != 0) {
fprintf (stdout, "Negative weight loop detected!\n") ;

} else {
fprintf (stdout, "Weights starting from vertex %d\n" , i);
for (i=0; i<g->nv; i++) {

if (g->g[i].dist != INT_MAX) {
fprintf (stdout, "Node %d: %d (%d)\n",

i, g->g[i].dist, g->g[i].pred);
}

}
}

graph_dispose (g);

Implementation
Client

(code extract)
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int sssp_bellman_ford (graph_t *g, int i) {
edge_t *e;
int k, stop=0;
g->g[i].dist = 0;
for (k=0; k<g->nv-1 && !stop; k++){

stop = 1;
for (i=0; i<g->nv; i++) {

if (g->g[i].dist != INT_MAX) {
e = g->g[i].head;
while (e != NULL) {

if (g->g[i].dist+e->weight < g->g[e->dst].dist) {
g->g[e->dst].dist = g->g[i].dist+e->weight;
g->g[e->dst].pred = i;
stop = 0;

}
e = e->next;

}
}

}
}

Implementation

For each edge in the graph

Relax the connected nodes

Move to next edge



48Algorithms and Programming – Camurati & Quer

if (!stop) {
for (i=0; i<g->nv; i++) {

if (g->g[i].dist != INT_MAX) {
e = g->g[i].head;
while (e != NULL) {

if (g->g[i].dist+e->weight < g->g[e->dst].dist) {
return 1;

}
e = e->next;

}
}

}
}

return 0;
}

Implementation

Verify negative 
weight loops

Relax the 
connected nodes
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sssp_Bellman_Ford (G, w, s)
initialize_single_source (G, s)
for i = 1 to |V| − 1

for each edge (u, v) ∈ E
relax (u, v, w)

for each edge (u, v) ∈ E
if ( v.dist > (u.d + w(u, v)) )

return FALSE
return TRUE

Complexity

O (|V|)

Executed |E| times 

O(|E|)

Overall running time complexity
T(n) = O(|V| ∙ |E|)

Pseudo-code

Executed |V|-1 times

Executed |E| times

O(1)  O(|E|·|V|)
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 Given the following graph apply Bellman-Ford’s
algorithm from vertex B

Exercise
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 Given the following graph apply Bellman-Ford’s
algorithm from vertex A

Exercise


