#inclede <iidiibh>
#include <slving h>
#include <clypa.h>

d#define MAXPAROLA 30
#define MANKIGA 80

int main(int orge, char *argv(])
{

Single Source Shortest Paths
Paolo Camurati and Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

Algorithms and Programming - Camurati & Quer 2

Problem definition

%+ Example
» Given a road map on which the distance between
each pair of adjacent intersactions is marked
» How is it possible to determine the shortest route?
» One possibility is to

= Enumerate all routes, add the distance on each
route, disallowing routes with cycles

= Select the shortes routes
» This implies examining an enourmous number of
possibilities
% A better solution implies solving the so called
Single-Source Shortest Path problem

-
Algorithms and Programming - Camurati & Que B 3

Shortest Paths

% Given a graph G = (V, E)

» Directed
> Weighted

= With a positive real-value weight function w: E>R
> With a weight w(p) over a path

" P =<Vy Vi ey V>

is equal to
= W(p) = Zi*W(Viy, V)

Algorithms and Programming - Camurati & Quen !

Shortest Paths

%+ We define the shortest path weight &(u,v) from u
tovas

min{w(p)} if Ou -, v
= &u,v) =

00 otherwise
% A shortest path from u to v is any path p with
weigth
= w(p) = d(u,v)

"/

Algorithms and Programming - Camurati & Quer 5

% Shortest path problems

» Single-source shortest-paths
= Minimum path and its weight from s to all other
vertices v
e Dijkstra’s algorithm
e Bellman-Ford'’s algorithm
> Notice that with unweighted graphs a simple
BFS (Breadth-First Search) solves the problem

"/ -

Algorithms and Programming - Camurati & Que U 6

Example

[Original gra&

[Shortest-paths #1

6 6
5 11ﬁ Distances]> 5 11

;/’/'

Algorithms and Programming - Camurati & Que _ 7

Observation

“» SSSPs and MSTs are different

Minimum Spanning Single Source
Shortes Paths 3

3
(A

undirected graphs

Connected, weighted,
weighted graphs

[Directed and

"/

Algorithms and Programming - Camurati & Quer 8

> Single-destination shortest-paths
= Find the shortest path to a given destination
= Use the reverse graph

> Single-pair shortest-paths

= Find a shortest path from v, to v, given vertices v,
to v,

= Soved when the SSSP is solved
= All alternative solutions have the same worst-case
asymptotic running time
> All-pairs shortest-path
= Find a shortest-path for every vertex pair
= Can be solved running SSSP from each vertex
= Can be solved faster

Algorithms and Programming - Camurati & Quer 9

Negative Weight Edges

% If there are edges with negative weight but there
are no cycles with negative weight

» Dijkstra’s algorithm
= Optimum solution not guaranted
» Bellman-Ford’s algorithm
= Optimum solution guaranted
% It there are cycle with negative weight
» The problem is not defined (there is no solution)
» Dijkstra’s algorithm
= Meaningless result

» Bellman-Ford’s algorithm
= Find cycles with negative weights

o

Algorithms and Programming - Camurati & Que i . 10

Example

Algorithms and Programming - Camurati & Quer 11

Representing Shortest Paths

% Often we wish to compute vertices on shorterst
path, not only weights

> A few representations are possible

» Array of predecessors v.pred
parent(v) if [
= OvOV v.pred =
NULL otherwise

< Predecessor’s SUb'graph 2 Attribute pred (predecessor) }
> Gpred=(vpredl Epred)r where for each vertex
" Vieg = {v OV: v.pred # NULL} O {s}
" Epred = {(v.pred, v) DE:v O Vired - {s}}

-
Algorithms and Programming - Camurati & Que B Iz

Representing Shortest Paths

*» Shortest-Paths Tree

» G =(V,E)
= Where VVOV&&X]E OE
= V' is the set of vertices reachable from s
= S is the tree root

= OvOV’ the unique simple path fromstovin G'is a
minimum weight from sto v in G

;/’/'

Algorithms and Programming - Camurati & Que ; 13

Theoretical Background

*» Lemma
> Sub-paths of shortest paths are shortest paths
> G=(V, E)
= Directed, weighted w: E-R
» P =<vy, v, ..., >
= Is a shortest path from v, to v,
> Ui, j 1<isjgk, py=<ViViygse. V>
= Sub-path of p from v; to v,
» The p; is a shortest path from v; to v;

@—O—O0—0—®

-
Algorithms and Programming - Camurati & Que B I

Theoretical Background

s+ Corollary
» G=(V,E)
= Directed, weighted w: E-R

> A shortest path p from s to v may be decomposed
into

= A shortest sub-path from s to u
= An edge (u,v)

» Then
= 3(s,v) = d(s,u) + w(u,v)

&

Algorithms and Programming - Camurati & Que _ 15

Theoretical Background

*» Lemma
» G =(V, E)
= Directed, weighted w: E-R
» O(u,v) OE
= 3(s,v) < 9(s,u) + w(u,v)
> A shortest path from s to v cannot have a weight

larger than the path formed by a shortest path
from s to u and an edge (u, v)

Algorithms and Programming - Camurati & Quen 16

% The algorithms we are going to anayze use the
technique of relaxation

*» For each vertex we mantain an estimate v.dist
(superior limit) of the weight of the path from s

tov gSingle) source]
I / D

initialize_single source (G, s)
for each v

v.dist =
v.pred = NULL
s.dist =0 v.dist
9 = shortest path estimate =

upper bound on the weight of
pred predecessor a shortest path from sto v

Algorithms and Programming - Camurati & Quer 74

++» Relaxation

» Update v.dist and v.pred by testing whether it is
possibile to improve the shortest path to v found
so far by going through the edge e = (u,v), where
w(u,v) is the weigth of the edge

e D
relax (u, v, w) {
if (v.dist > (u.dist +w(u, v))) {
v.dist = u.dist +w (u, v)
v.pred =u
}
}

&)

"/ -

Algorithms and Programming - Camurati & Quer

18

Example

v.dist =
u.dist =
w(u,v) =
v.dist >

u.dist + w(u,v)

9
5
2

Shortest path from s to v \
= shortest path from s to
u + edge (u,v)

v.dist =
u.dist +w(u,v) =
5+2=7

v.pred =u J

;/’/'

Algorithms and Programming - Camurati & Que U

19

v.dist = 6
u.dist = 5
5 9 w(u,v) = 2

2 v.dist <
u.dist + w(u,v)

Relaxation has no effect
v.dist = unchanged

=6
v.pred =unchanged

=

Example

Algorithms and Programming - Camurati & Quer 20

Properties

* Lemma

» Given G=(V,E)

» Directed, weighted w: E-R, withe = (u,v) O E
% After relaxing e = (u,v) we have

> v.dist < u.dist + w (u, v)
% That is, after relaxing e, v.d cannot increase

> Either v.dist is unchanged (relaxation with no
effect)

> Or v.dist is decreased (effective relaxation)

"/

Algorithms and Programming - Camurati & Que U 21

Properties
* Lemma
» Given G=(V,E), directed, weighted w: E - R, with
sources [V

> After a proper initialization of v.dist and v.pred
% Ov OV v.dist = (s, v)
> For all relaxation steps on the edges

» When v.dist = &(s,v), then v.dist does not change
any more

Algorithms and Programming - Camurati & Quer 22

%+ Lemma

» Given G=(V,E) directed, weighted w: E >R, with
sources [V

> After a proper initialization of v.dist and v.pred
% The shortest path from s to v is made-up of
» Path fromstou
> Edge e = (u, v)
% Application of relaxation on e=(u, v)
> If before relaxation u.dist = (s, u)
> After relaxation v.dist = &(s, V)

Algorithms and Programming - Camurati & Quer 23

Dijkstra’s Algorithm

% It works on graphs with no negative weigths

% It is a greedy strategy
> It applies relaxation once for all edges
% Algorithm
> S: set of vertices whose shortest path from s has
already been computed
» V-S: priority queue Q of vertices till to estimate

» Stop when Q is empty
= Extract u from V-S (u.dist is minimum)
= Insertuin$S
= Relax all outgoing edges from u

Algorithms and Programming - Camurati & Quer 24

Pseudo-code

Vs

Pseudo-code }

|

O N
sssp_Dijkstra (G, w, s)

initialize_single_source (G, s) For all vertices
S= 0@ starting from s
Q=V

while Q # @ (Extract vertex with
u = extract._ min (Q) —_ minimum distance
S=S U {u}
for each vertex v € adjacency list of u

relax (u, v, w) \

Insertifin S
[Relax all adjancecy }

vertices

Example 1

-
Algorithms and Programming - Camurati & Que B 26

Example 1

&

Algorithms and Programming - Camurati & Que ' . 27

Example 2: Negative edges

There are edges with
negative weight

T~

There are no cycles
with negative weight

&

Algorithms and Programming - Camurati & Que ' . 28

Example 2: Negative edges

With edge (B,E),

Non optimal solution
E would go to -2

P

Algorithms and Programming - Camurati & Quer 29

Implementation

struct graph_s { (same used for Kruskal’s algorithm)
vertex_t *g;
int nv;

Ve [Graph ADT J

int weight; array of edges
int dst;

Ji

struct vertex_s { /
int id;
int ne;
int color;
int dist;
int scc;
int disc_time;
int endp_time;
int pred;
edge_t *edges;

Ji
struct edge_s { Array of vertices of }

M.Ig W > { N . ; — @ 1‘; -
Algorl‘rhms and Pr‘og am uer S B ™ .

N (‘M' .. 1t & N Sy "oy \ , I koo
il izl

Implementation

Client
(code extract)

Algorithms and Programming - Camurati & Quer 31

Implementation

(0 N

void sssp_dijkstra (graph_t *g, int i) {
int j, k; :
g->g[i].dist = 0; For each outgoing vertex]
while (i >=0) {
g->g[i].color = GREY;

for (k=0; k<g->g[i].ne; k++) { Relax the connected nodes
j = g->g[i].edges[k].dst; y
if (g->g[j].color == WHITE) {

if (g->g[i].dist+g->q][i].edges[k].weight < g->q[j].di st) {
g->g[j].dist = g->g[i].dist + g->g][i].edges[k].weight ;
g->g[j].pred =1i;
}
}

}
g->g[i].color = BLACK;

I = graph_min (g);
} \{ Move to next vertex]
}

= . i o e

| ;Qbr'_i‘rhms and Prog _ Camt

il
-

Simplification:
Instead of a priority queue
there is an array with linear

searches of the maximum

Algorithms and Programming - Camurati & Quer 33

Complexity

Vs

Pseudo-code }

|

O(IVI)

O N
sssp_Dijkstra (G, w, s)

initialize_single_source (G, s)

S= 0@ [Executed |V| times]

Q=V

while Q # @ - 0 (Ig [V]) > O(|V] log |V
u = extract_min (Q) / (g V) > O(IVI log IV1) |
S=S U {u}

for each vertex v € adjacency list of u
relax (u, v, w)
% \ Overall

/\\ O(IE)
} [O(lg |V]) > O(|E]log|V])

Overall running time complexity due to PQ change
T(n) = O((IVI+IE) - 1g [V])

"/

Algorithms and Programming - Camurati & Que U 34

Complexity

% In general
> T(n) = O((IVI+|E[) - lg |[V])
%+ This can be reduced to
> T(n) = O(|E| - Ig [V])
if all vertices are reachable from the source s

Algorithms and Programming - Camurati & Quer 35

% Given the following graph apply Dijkstra’s
algorithm starting from vertex A

Algorithms and Programming - Camurati & Quer 36

% Given the following graph apply Dijkstra’s
algorithm starting from vertex S

Algorithms and Programming - Camurati & Quer S

Bellman-Ford’s Algorithm

%+ Bellman-Ford may run on graphs
» With negative weight edges
> If there is a cycle with negative weight it detects it
> It applies relaxation more than once for all edges
> |V|-1 step of relaxation on all edges
> At the i-th relaxation step either
= It decreases at least one estimate
or

= It has already found an optimal solution and it can
stop returning an optimum solution

Algorithms and Programming - Camurati & Quer 38

[Pseudo-code }

(Iterates |V|-1 times]

/
sssp_Bellman_Ford (G, w, s)
initialize_single_source (G, s)
fori=1to|V|-1
for each edge (u, v) € E <[Relaxes all edges J
relax (u, v, w)
for each edge (u, v) € E
if (v.dist > (u.d +w(u,Vv))) .
return FALSE <{ Che\szis 1;10trcr;/?:?east N }
return TRUE X ¥
& /\ Returns FALSE if a negative
\ L weight cycle is detected

Returns TRUE otherwise }

Algorithms and Programming - Camurati & Quer 39

After |V|-1 iterations, all vertices
reachable from s have been
reached with the shortest path

E

[Pseudo-code }

sssp_Bellman_Ford (G, w, s)
initialize_single_source (G, s)
fori=1to|V[-1

for each edge (u, v) €
relax (u, v, w)
for each edge (u, v) € E

if (v.dist > (u.d +w(u, v)))
return FALSE

return TRUE
Proof

S With |V] vertices the longest simple path includes
|V| vertices, that is |V|-1 edges. All of them are
relaxed in |V|-1 iterations. Thus, all paths are the
shortest ones for the property of relaxation

&

Algorithms and Programming - Camurati & Que Ui 40

Example 1

Lessicographic order of
the edges

(A, B)
(A, D)
(B, O)
(B, D)
(B, E)
(C, B)
(D, ©
(D, E)
(E, A)
(£ O

#0 #1 #2 #3 #4

Step #
(5 vertices = 4 iterations)

m T O W >

"/ -

Algorithms and Programming - Camurati & Que U 41

Example 1

Lessicographic order of

the edges
(A, B)
(A, D)
(8, C)
(B, D)
(B, E)
(G, B)
(D, ©)
(D, E)
#0 #1 #2 #3 #4 E A)
A 0 0 0 0 0 E©C)
B 00 6 2
C o 11>4 4 4 Step # }
D o v v (5 vertices = 4 iterations)
E 00 2 2 -2 -2

&

Algorithms and Programming - Camurati & Que Ui 42

Example 1

Lessicographic order of
the edges

(A, B)
(A, D)
(B, O)
(B, D)
(B, E)
(C, B)
(D, ©
(D, E)
(E, A)
(£ O

#0 #1 #2 #3 #4

Step #
(5 vertices = 4 iterations)

m T O W >

P

Algorithms and Programming - Camurati & Quen 43

Example 1

Lessicographic order of
the edges

(A, B)
(A, D)
(B, O)
(B, D)
(B, E)
(C, B)
(D, ©
(D, E)
(E, A)
(£ O

At the next iteration, edges
BC and CB would make B and
o 7 7 7 7 C reachable in -8 and -6

m O O @ >
8
Ul
v
S
w
1
w

P

Algorithms and Programming - Camurati & Quen b

Example 2: Negative cycles

(5 vertices = 4 iterations)

[Step #

#0 #1 #2

A 0 0 0 0 0 7 -7
B 00 6->3 1 -2 -5

) At the next iteration, edges
C ® 2= 3 L - BC and CB would make B and
D 00 7 7 7 C reachable in -8 and -6
E 00 2 -1 -3 -7

Algorithms and Programming - Camurati & Quer 45

Implementation

2 { Graph ADT }

(same used for Prim’s algorithm)

typedef struct graph_s graph_t;
typedef struct vertex s vertex t;

typedef struct edge_s edge_t; /struct edge s { b

int weight;
int dst;
edge_t *next;

struct graph_s {
vertex_t *g;)
int nv; ’

It struct vertex_s {
_ - int id;
int color;
| int dist;
int disc_time;
int endp_time;
int pred;
int scc;
edge_t *head;

Array of vertex of lists
of edges

Algorithms and Programming - Camurati & Quer 46

Implementation

Client

(code extract) |
g = graph_load (argv[l)); \

printf("Initial vertex? ");
scanf("%d", &i);

if (sssp_bellman_ford (g, i) !'=0) {
fprintf (stdout, "Negative weight loop detected!\n") ;
} else {
fprintf (stdout, "Weights starting from vertex %d\n" , D);
for (i=0; i<g->nv; i++) {
if (g->g[i].dist = INT_MAX) {
fprintf (stdout, "Node %d: %d (%d)\n",
i, g->g[i].dist, g->g[i].pred);
}
}
}

\graph_dispose (9); j

Algorithms and Programming - Camurati & Quer 47

Implementation

ﬁ]t sssp_bellman_ford (graph_t *g, int i) { \

edge_t *e;

int K, stop=0; _
g->g[i].dist = O; For each edge in the graph]

for (k=0; k<g->nv-1 && !stop; k++){
stop = 1;

for (i=0; i<g->nv; i++) {
if (g->g[i].dist = INT_MAX) { Relax the connected nodes]
e = g->gJi].head;
while (e !'= NULL) {

if (g->g[i].dist+e->weight < g->g[e->dst].dist) {
g->g[e->dst].dist = g->g[i].dist+e->weight;
g->g[e->dst].pred =1i;
stop = 0;
}

}
} e = e->next, \(Move to next edge]
}
N J

o

'.‘AI'!__gaf‘_iThms and Progra

Verify negative
weight loops

Relax the

connected nodes

Algorithms and Programming - Camurati & Quer 49

Complexity

‘ O (IVI) \

[Pseudo-code }

4 D
sssp_Bellman_Ford (G, w, s) Executed |V|-1 times
initialize_single_source (G, s) |
fori=1to|V|- 1 /[Executed |E| times
for each edge (u, v) € E -
relax (u, v, w) —)
O(1) > O(|E|"|V
for each edge (u, v) € E\L (1) CEIFIVI))
if (v.dist > (u.d +w(u, v))) |
return FALSE Executed |E| times >
return TRUE O(|E]|))
N\ /\\ ,

Overall running time complexity
T(n) = O(|V] - |E[)

Algorithms and Programming - Camurati & Quer 50

% Given the following graph apply Bellman-Ford’s
algorithm from vertex B

Algorithms and Programming - Camurati & Quer 29

% Given the following graph apply Bellman-Ford’s
algorithm from vertex A

