

Graphs

Minimum Spanning Trees

Paolo Camurati and Stefano Quer Dipartimento di Automatica e Informatica Politecnico di Torino

Problem definition

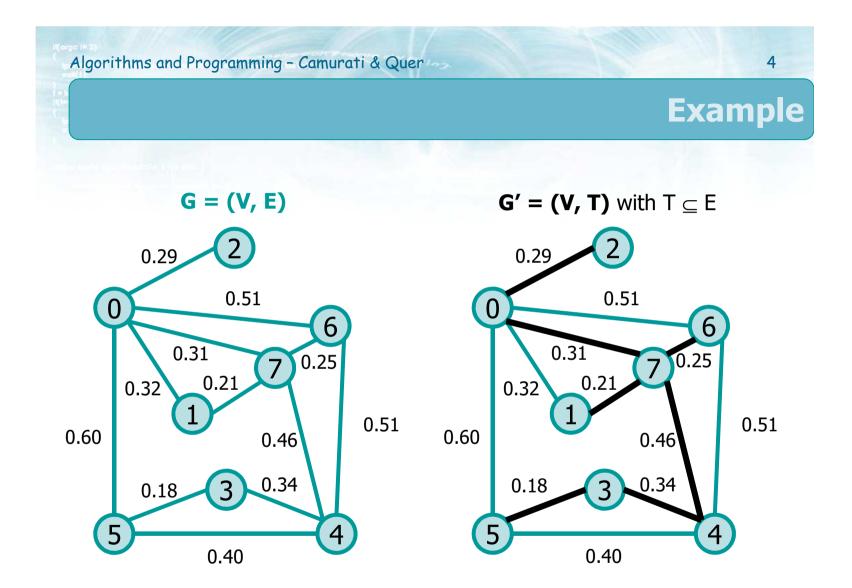
2

Example

- Given an electronic circuit, designers often need to make the pins of several components electrically equivalent by wiring them togheter
- > To interconnect n pins we can use n-1 connections
- Of all such arrangements the one that uses the least amount of wire is usually the most desiderable
- Such a problem can be mapped as a Minimum
 Spanning Tree problem

Minimum Spanning Trees

- ✤ Given a graph G=(V,E)
 - Connected
 - Undirected
 - Weighted
 - With a positive real-value weight function w: $E \rightarrow R$
- A Minimum-weight Spanning Tree (MST) G' is a graph such that
 - ≻ G'=(V, T) with T⊆E
 - ➤ G` is acyclic
 - ➤ G' minimizes
 - $w(T) = \sum_{(u,v) \in T} w(u,v)$



MST properties

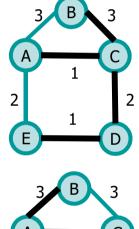
- > As G' is acyclic and cover all vertices
 - G' is a tree

> The MST is generally not unique

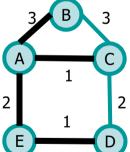
It is unique only iff all weights are distinct

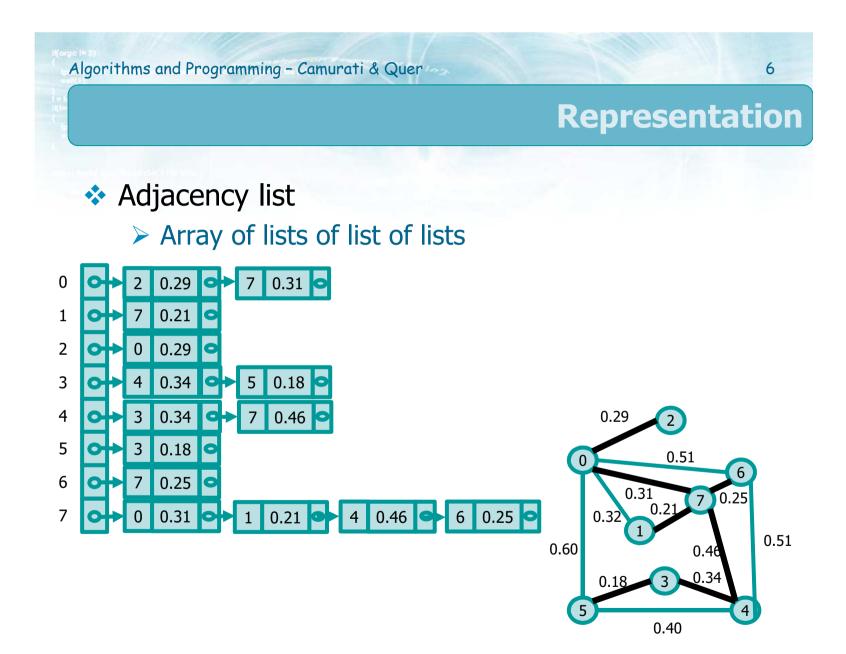
> A MST may be represented as

- An adjacency matrix or list
- A list of edges plus weights
- A list of parents plus weights



Properties





Representation

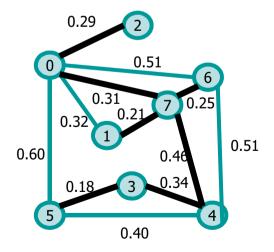
7

List of edges (and weights)

Static or dynamic array

edge	weight
0-2	0.29
4-3	0.34
5-3	0.18
7-4	0.46
7-0	0.31
7-6	0.25
7-1	0.21

Specifically used for the Kruskal's algorithm



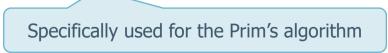
Representation

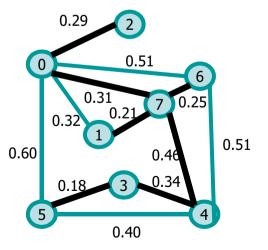
8

List of parents (and weights)

Static or dynamic array

	parent	weight
0	0	0
1	7	0.21
2	0	0.29
3	4	0.34
4	7	0.46
5	3	0.18
6	7	0.25
7	0	0.31
	\sim	



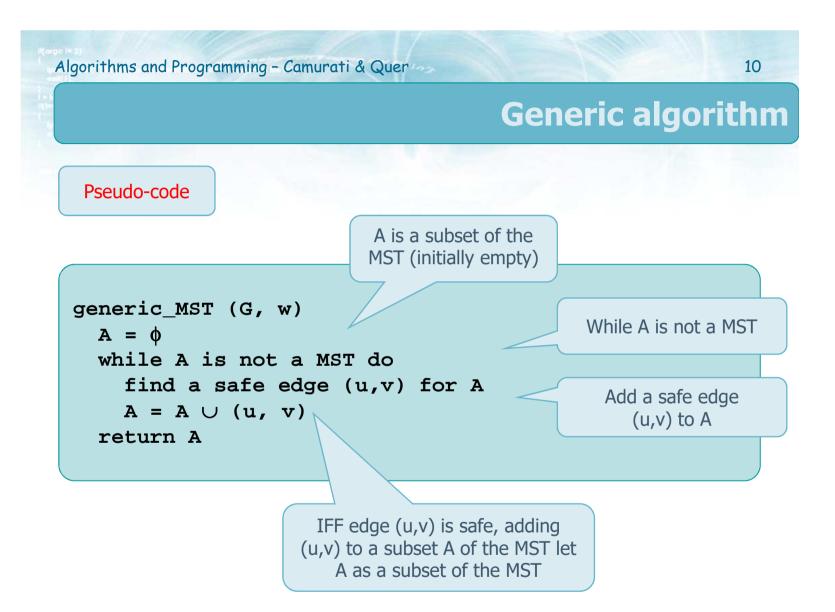


9

- We will analyze two greedy algorithms
 - Greedy algorithms do not generally guarantee globally optimal soluzions
 - Fortunately, for the MST problem they do
- Both algorithms
 - Kruskal's algorithm
 - Prim's algorithm

are based on a generic method

The generic method grows a spanning tree by adding one edge at a time



Generic algorithm

11

Given a set A

- Set of edges, i.e., a sub-set of a MST
- Initially empty
- While A is not a MST
 - Find a safe edge
 - Add this edge to A
- Invariant
 - The edge (u,v) is safe if and only if added to a sub-set of the MST it produces another sub-set of the MST

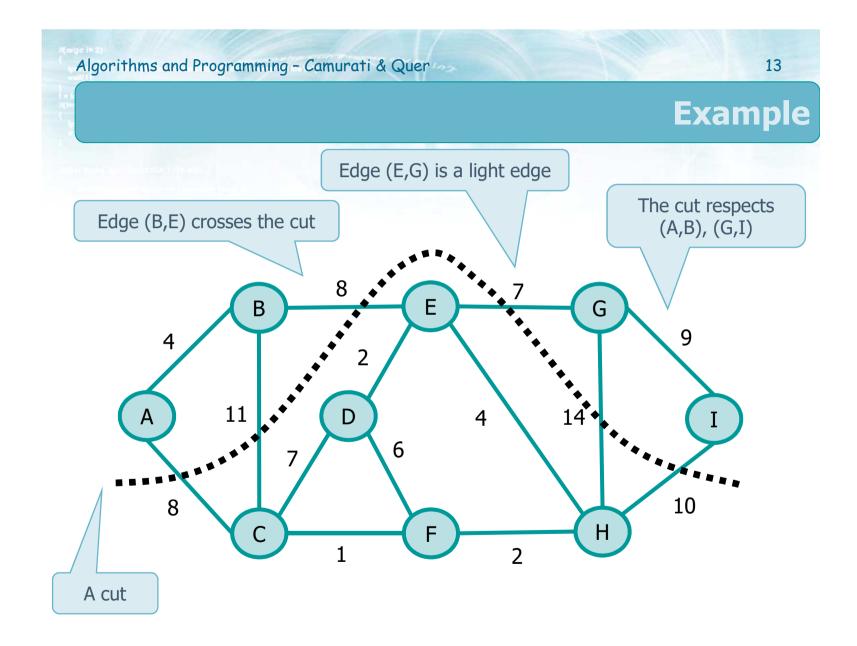
Definitions

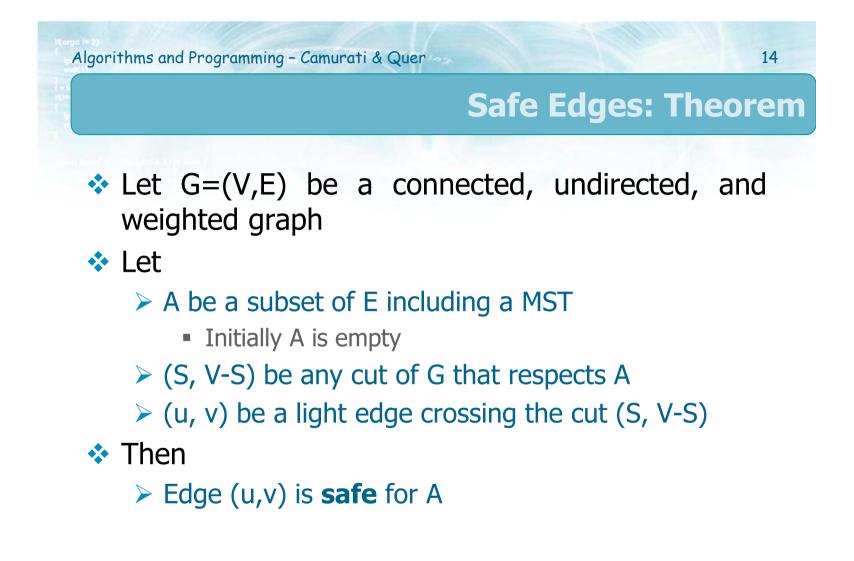
G=(V,E) connected, undirected, and weighted
 Cut

- A partition of V into S and V-S such that
- $V = S \cup (V-S) \&\& S \cap (V-S) = \emptyset$
- Crossing edge
 - An edge $(u,v) \in E$ crosses the cut if and only if
 - $u \in S \&\& v \in (V-S)$ or vice-versa
- > A cut respecting a set of edges
 - A cut respect a set A of edges if no edge of A crosses the cut

> A light edge

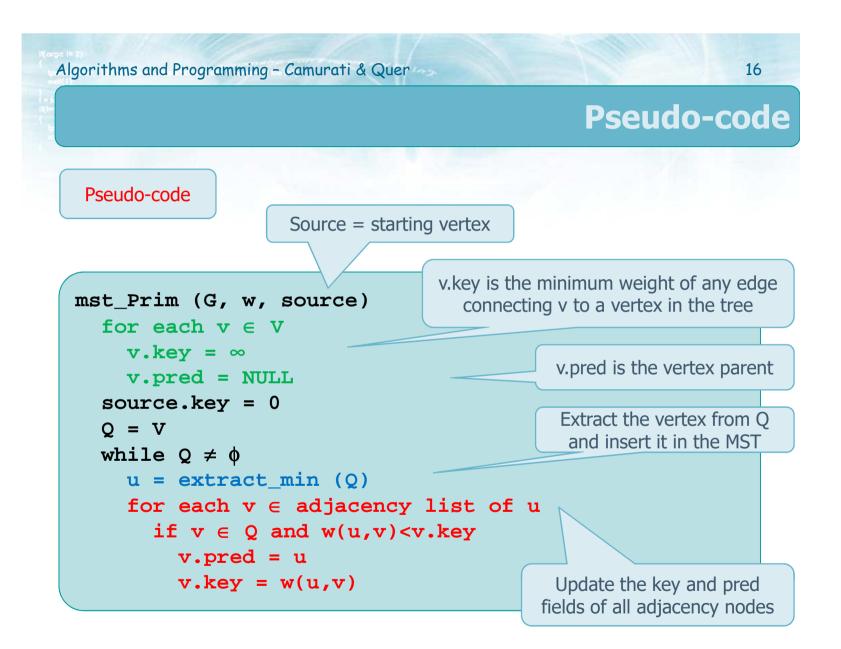
 An edge if a light edge if its weight is minimum among the edges crossing the cut





Prim's Algorithm

- Known as DJP algorithm, Jarnik's algorithm, Prim-Jarnik algorithm, Prim-Dijkstra algorithm
 - Developed in 1930 by Vojtech Jarnik
 - Rediscovered in 1957 by Robert Prim
 - Rediscovered in 1959 by Edsger Dijkstra
- Based on the generic algorithm
- Use the theorem to select the safe edge



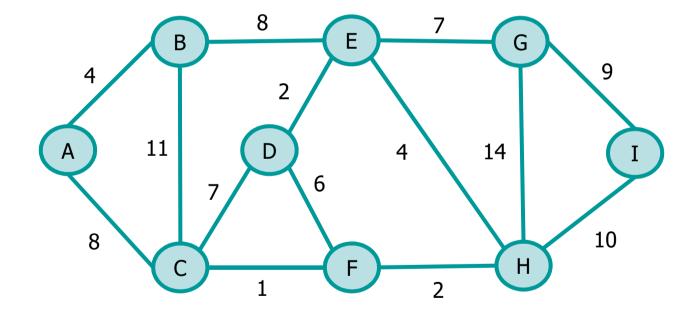
Pseudo-code

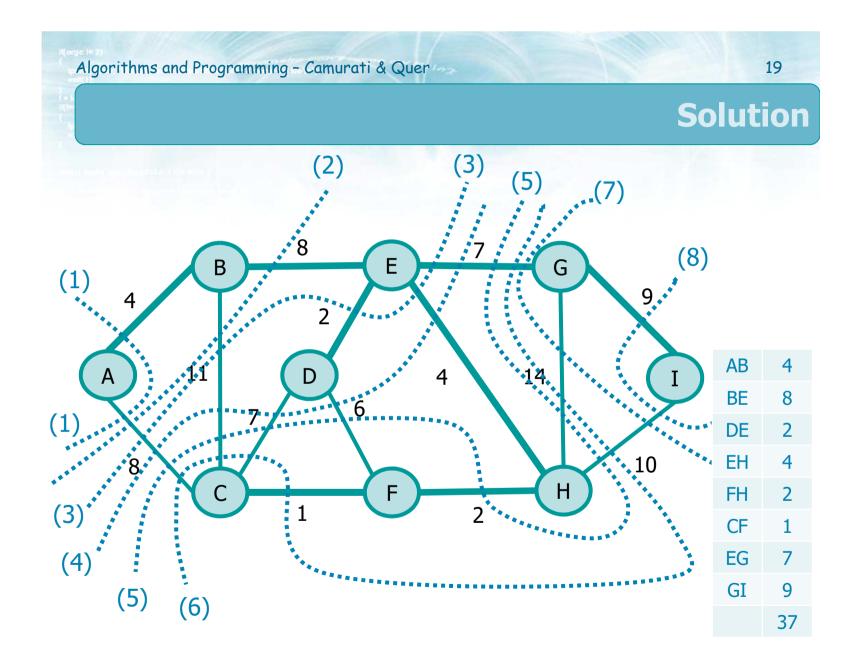
17

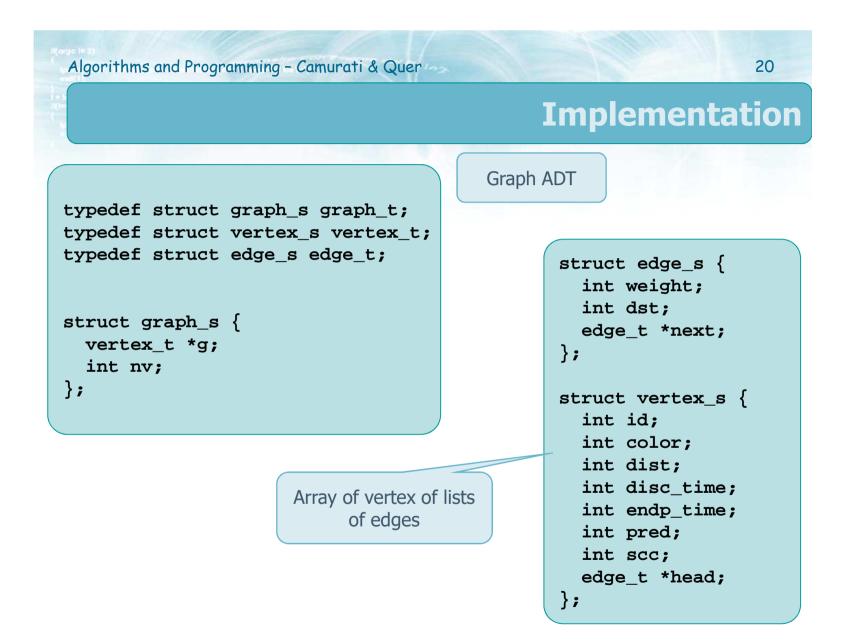
Pseudo-code

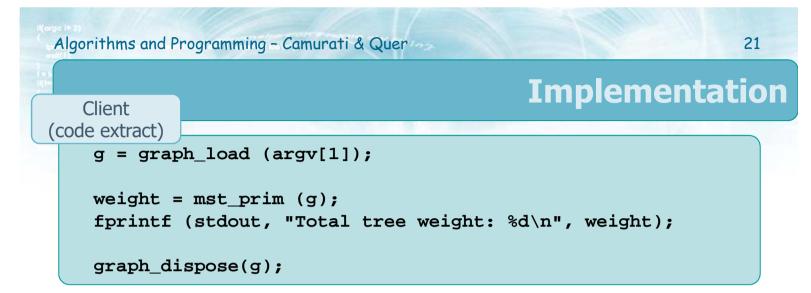
```
End when all
                                   vertices belong to
mst_Prim (G, w, source)
                                     the same tree
  for each v \in V
     v.key = \infty
                                         Select all edges crossing the cut
     v.pred = NULL
                                        Among those, select the edge with
  source.key = 0
                                          minimun weight and add it to A
  Q = V
  while Q \neq \phi
     u = extract min (Q)
     for each v \in adjacency list of u
       if v \in Q and w(u,v) < v.key
          v.pred = u
                                            Adjust S and the set of edges
          v.key = w(u,v)
                                          crossing the cut depending on the
                                                   selected edge
```


Example









```
Prim's
algorithm
```

```
int mst_prim (graph_t *g) {
    int i, j, min, weight=0;
    int *fringe;
    edge_t *e;
    fringe = (int *) util_malloc (g->nv * sizeof(int));
    for (i=0; i<g->nv; i++) {
        fringe[i] = i;
    }
}
```

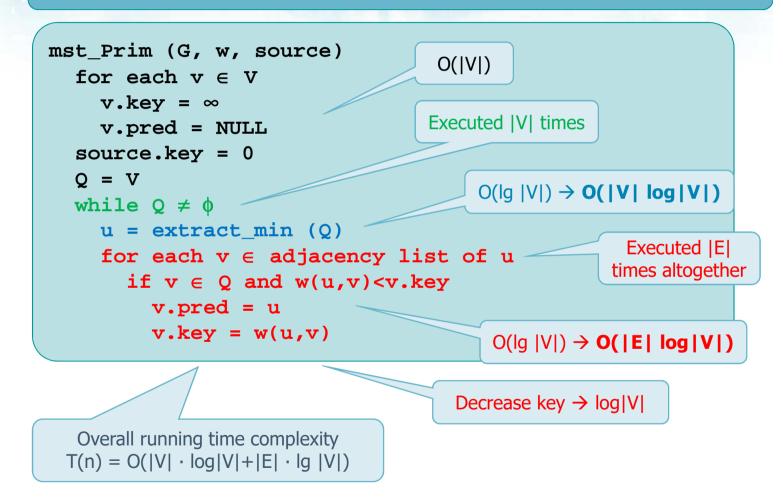
Implementation

```
fprintf (stdout, "List of edges making an MST:\n");
min = 0;
g->g[min].dist = 0;
while (min != -1) {
    i = min;
    g->g[i].pred = fringe[i];
    weight += g->g[i].dist;
    if (g->g[i].dist != 0) {
        printf("Edge %d-%d (w=%d)\n",
            fringe[i], i, g->g[i].dist);
    }
    min = -1;
    e = g->g[i].head;
```

Implementation

```
while (e != NULL) {
    j = e->dst;
    if (g->g[j].pred == -1) {
       if (e->weight < g->g[j].dist) {
         g->g[j].dist = e->weight;
         fringe[j] = i;
       }
    e = e - \operatorname{next};
  for (j=0; j<g->nv; j++) {
    if (g->g[j].pred == -1) {
       if (min==-1 || g->g[j].dist<g->g[min].dist) {
         \min = j;
free(fringe);
return weight;
```

Complexity



25

In general

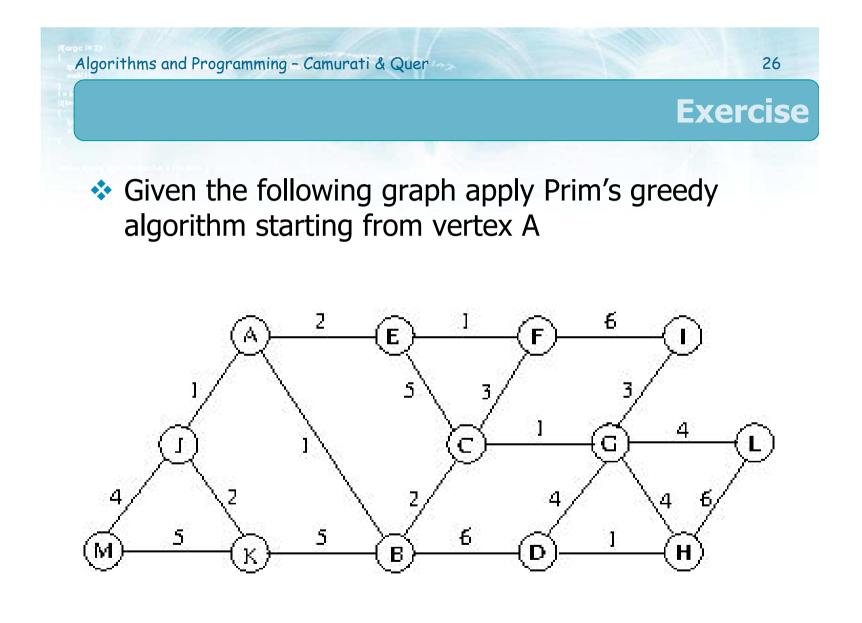
```
\succ T(n) = O(|V| \cdot |g| |V| + |E| \cdot |g| |V|)
```

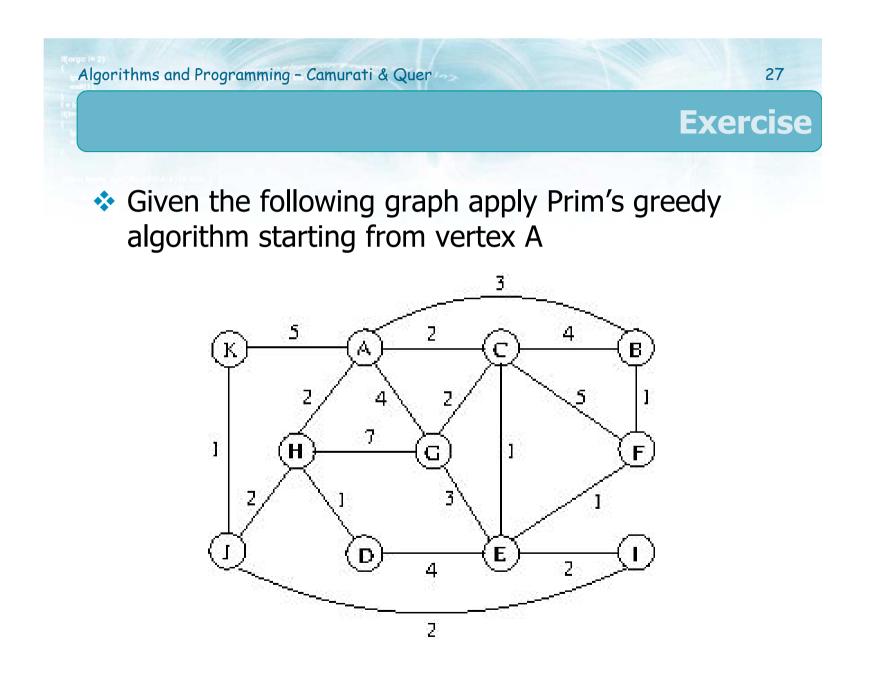
that is

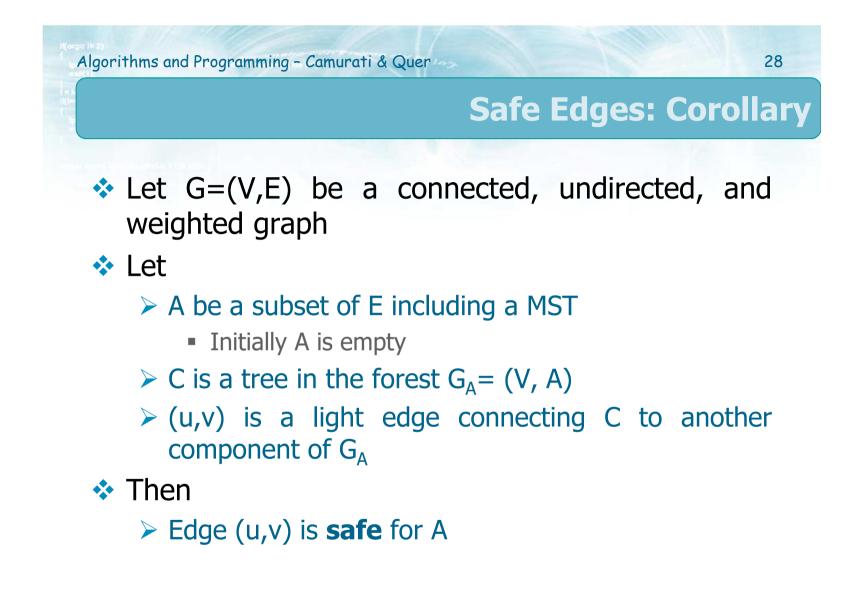
 \succ T(n) = O(|E| · lg |V|)

- Using an efficient data structure the running time can be improved
 - With a Fibonacci-Heap decrease key is no longer of cost O(|V|) but becomes of cost O(1)

• $T(n) = O(|E| + |V| \cdot |g||V|)$

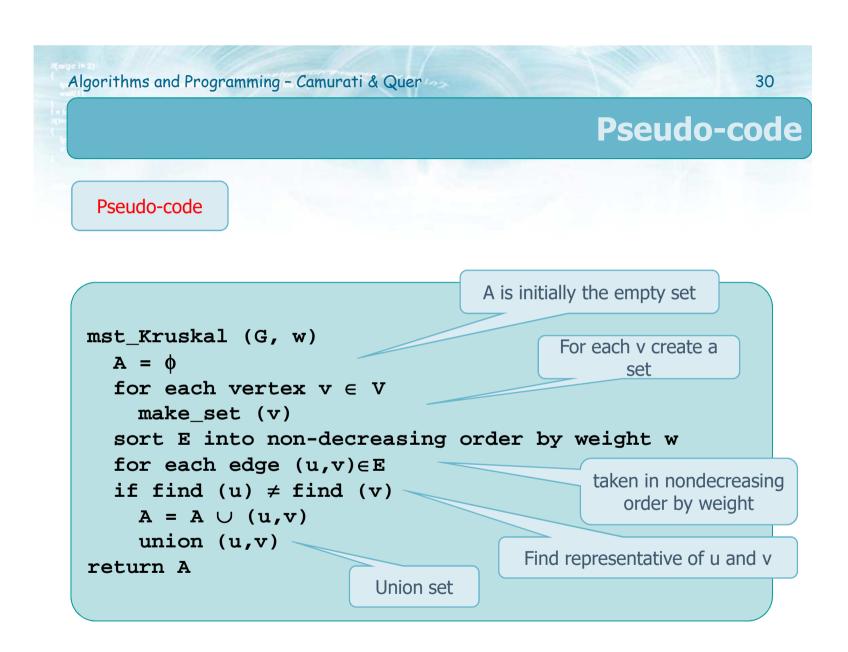




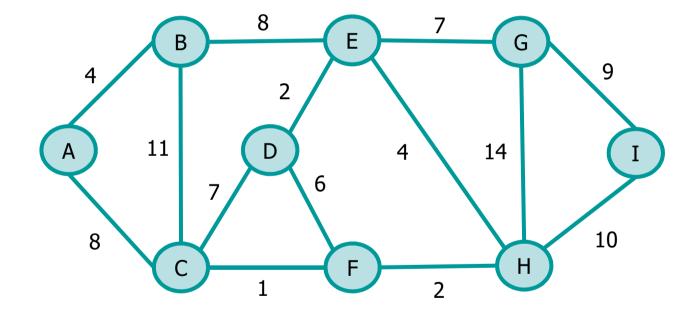


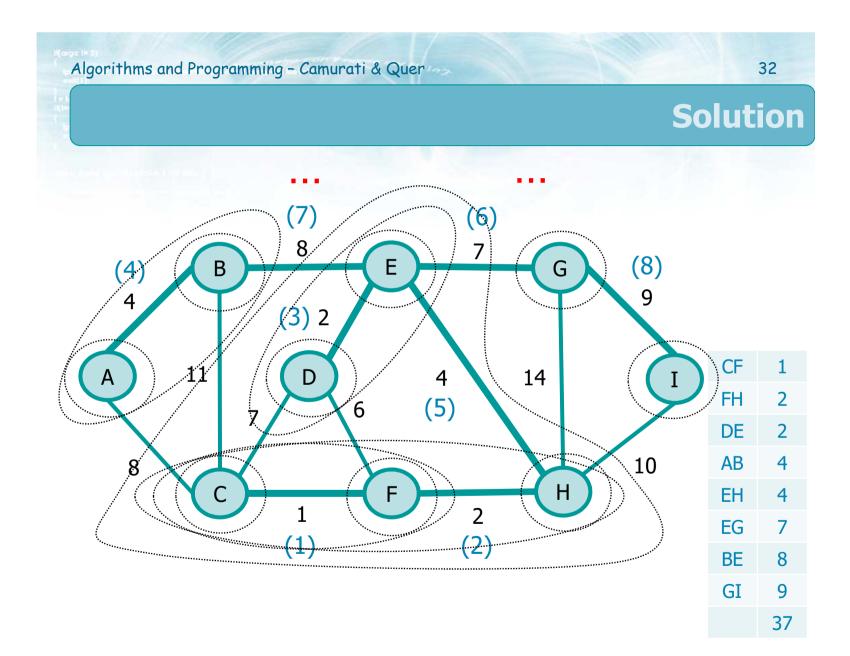
Kruskal's Algorithm

- Algorithm proposed by Joseph Kruskal in 1956
- Based on the generic algorithm
- Use the corollary to select the safe edge
 - Forest of tree, initially single vertices
 - Sort edges into nondecreasing order by weigth w
 - Iteration
 - Select a safe edge, i.e., an edge with minimum weight connecting two trees and generating one single tree (Union-Find)
 - ➤ End
 - All vertices belong to the same tree

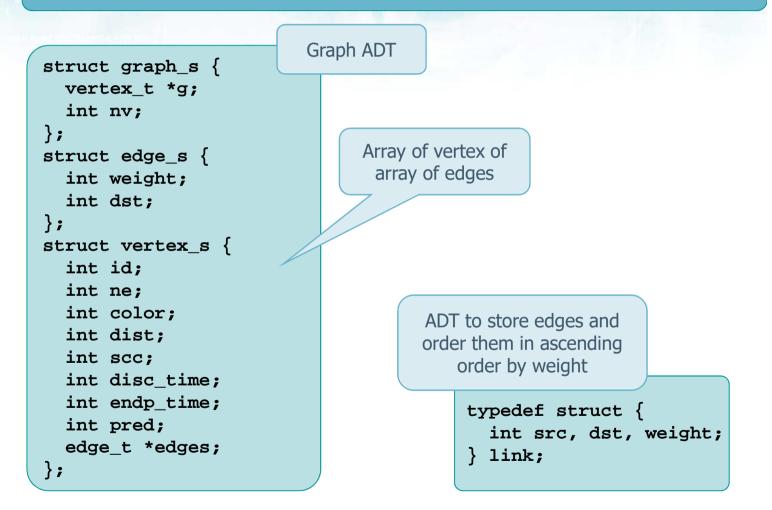


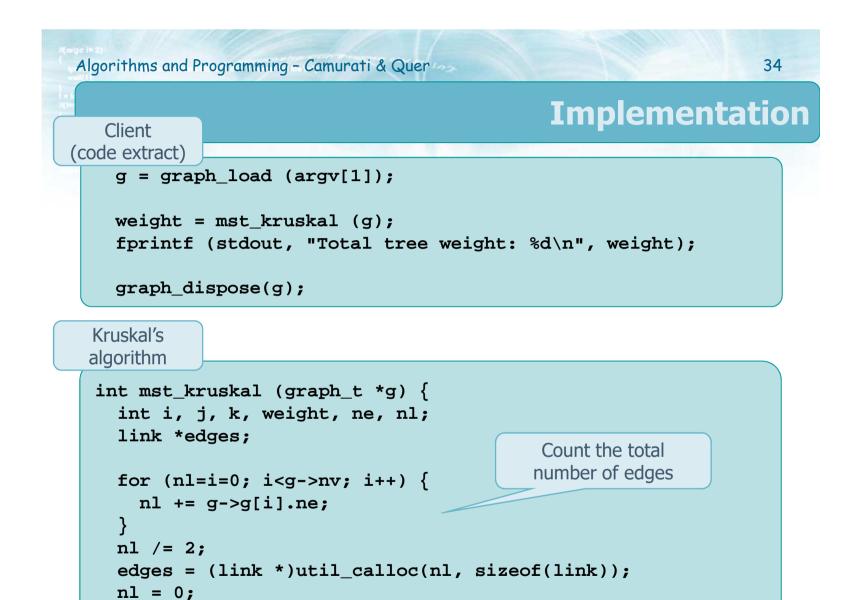
Example





Implementation





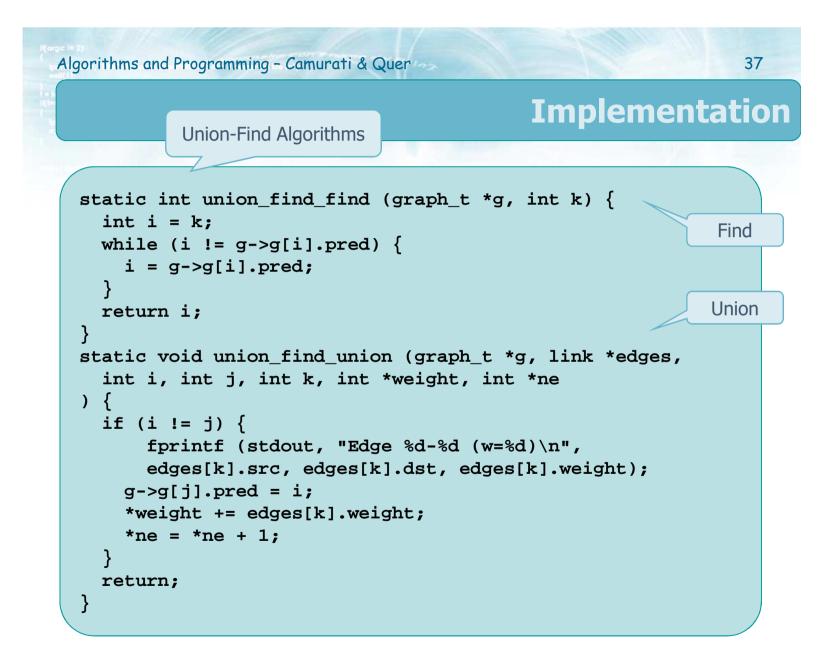
Implementation

Create array of link elements

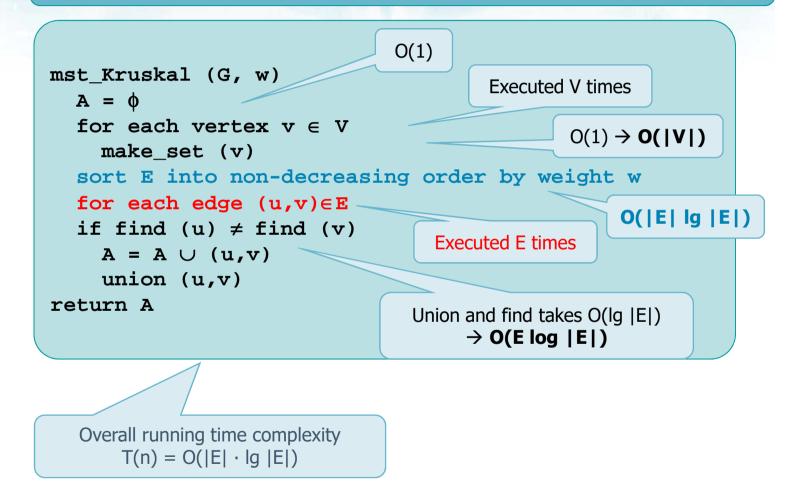
```
AND
Order elements by weight
for (i=0; i<g->nv; i++) {
    for (j=0; j<g->g[i].ne; j++) {
        if (i < g->g[i].edges[j].dst) {
            k = nl - 1;
            while (k>=0 &&
                 edges[k].weight>g->g[i].edges[j].weight) {
                edges[k+1] = edges[k];
                k--;
            }
            edges[k+1].src = i;
            edges[k+1].dst = g->g[i].edges[j].dst;
            edges[k+1].weight = g->g[i].edges[j].weight;
            nl++;
            }
        }
    }
}
```

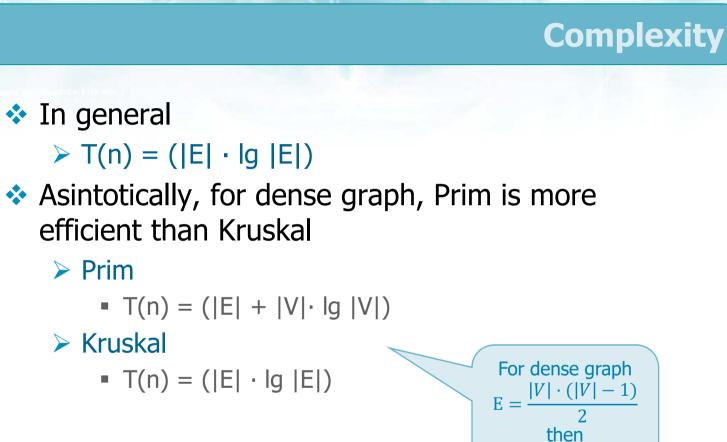
Implementation

```
/* build the tree */
 fprintf(stdout, "List of edges making an MST:\n");
 for (i=0; i<g->nv; i++) {
   g->g[i].pred = i;
                                                    Create the tree
  }
 weight = ne = 0;
 for (k=0; k<nl && ne<g->nv-1; k++) {
   i = union find_find (g, edges[k].src);
    j = union_find_find (g, edges[k].dst);
   union_find_union (g, edges, i, j, k, &weight, &ne);
 }
 free(edges);
 return weight;
}
```



Complexity





39

|E| > |V|

