
Graphs

Minimum Spanning Trees
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2Algorithms and Programming – Camurati & Quer

Problem definition

 Example

 Given an electronic circuit, designers often need to
make the pins of several components elettrically
equivalent by wiring them togheter

 To interconnect n pins we can use n-1 connections

 Of all such arrangements the one that uses the
least amount of wire is usually the most
desiderable

 Such a problem can be mapped as a Minimum
Spanning Tree problem

3Algorithms and Programming – Camurati & Quer

 Given a graph G=(V,E)

 Connected

 Undirected

 Weighted

 With a positive real-value weight function w: ER

 A Minimum-weight Spanning Tree (MST) G’ is a
graph such that

 G'=(V, T) with T⊆E

 G‘ is acyclic

 G‘ minimizes

 w(T)=Σ(u,v)∈T w(u,v)

Minimum Spanning Trees

4Algorithms and Programming – Camurati & Quer

Example

7

1

0

2

6

4

3

5

0.29

0.51

0.31

0.32

0.60

0.18 0.34

0.40

0.46
0.51

0.25
0.21

7

1

0

2

6

4

3

5

0.29

0.51

0.31

0.32

0.60

0.18 0.34

0.40

0.46
0.51

0.25

0.21

G = (V, E) G’ = (V, T) with T ⊆ E

5Algorithms and Programming – Camurati & Quer

 MST properties

 As G’ is acyclic and cover all vertices

 G’ is a tree

 The MST is generally not unique

 It is unique only iff all weights are distinct

 A MST may be represented as

 An adjacency matrix or list

 A list of edges plus weights

 A list of parents plus weights

Properties

A

B

C

DE

3

2
1

2

1

3

A

B

C

DE

3

2
1

2

1

3

6Algorithms and Programming – Camurati & Quer

Representation

 Adjacency list

 Array of lists of list of lists

0

1

2

3

4

2 0.29 7 0.31

5

6

7

7 0.21

0 0.29

3 0.18

7 0.25

4 0.34 5 0.18

3 0.34 7 0.46

0 0.31 1 0.21 4 0.46 6 0.25
7

1

0

2

6

4

3

5

0.29

0.51

0.31

0.32

0.60

0.18 0.34

0.40

0.46
0.51

0.25
0.21

7Algorithms and Programming – Camurati & Quer

Representation

 List of edges (and weights)

 Static or dynamic array

edge weight

0-2 0.29

4-3 0.34

5-3 0.18

7-4 0.46

7-0 0.31

7-6 0.25

7-1 0.21

Specifically used for the
Kruskal’s algorithm

7

1

0

2

6

4

3

5

0.29

0.51

0.31

0.32

0.60

0.18 0.34

0.40

0.46
0.51

0.25
0.21

8Algorithms and Programming – Camurati & Quer

Representation

parent weight

0 0 0

1 7 0.21

2 0 0.29

3 4 0.34

4 7 0.46

5 3 0.18

6 7 0.25

7 0 0.31

Specifically used for the Prim’s algorithm

 List of parents (and weights)

 Static or dynamic array

7

1

0

2

6

4

3

5

0.29

0.51

0.31

0.32

0.60

0.18 0.34

0.40

0.46
0.51

0.25
0.21

9Algorithms and Programming – Camurati & Quer

 We will analyze two greedy algorithms

 Greedy algorithms do not generally guarantee
globally optimal soluzions

 Fortunately, for the MST problem they do

 Both algorithms

 Kruskal’s algorithm

 Prim’s algorithm

are based on a generic method

 The generic method grows a spanning tree by
adding one edge at a time

Algorithms

10Algorithms and Programming – Camurati & Quer

generic_MST (G, w)
A = φ
while A is not a MST do

find a safe edge (u,v) for A
A = A ∪ (u, v)

return A

Generic algorithm

A is a subset of the
MST (initially empty)

While A is not a MST

IFF edge (u,v) is safe, adding
(u,v) to a subset A of the MST let

A as a subset of the MST

Add a safe edge
(u,v) to A

Pseudo-code

11Algorithms and Programming – Camurati & Quer

Generic algorithm

 Given a set A

 Set of edges, i.e., a sub-set of a MST

 Initially empty

 While A is not a MST

 Find a safe edge

 Add this edge to A

 Invariant

 The edge (u,v) is safe if and only if added to a
sub-set of the MST it produces another sub-set of
the MST

12Algorithms and Programming – Camurati & Quer

Definitions

 G=(V,E) connected, undirected, and weighted

 Cut

 A partition of V into S and V-S such that

 V = S ∪ (V-S) && S ∩ (V-S) = ∅
 Crossing edge

 An edge (u,v) ∈ E crosses the cut if and only if

 u∈S && v∈(V-S) or vice-versa

 A cut respecting a set of edges

 A cut respect a set A of edges if no edge of A
crosses the cut

 A light edge

 An edge if a light edge if its weight is minimum
among the edges crossing the cut

13Algorithms and Programming – Camurati & Quer

Example

EB

D

FC H

G

A I

4 9

4 1411

2

2

6

8

7

7

1

8

10

A cut

Edge (B,E) crosses the cut
The cut respects

(A,B), (G,I)

Edge (E,G) is a light edge

14Algorithms and Programming – Camurati & Quer

Safe Edges: Theorem

 Let G=(V,E) be a connected, undirected, and
weighted graph

 Let

 A be a subset of E including a MST

 Initially A is empty

 (S, V-S) be any cut of G that respects A

 (u, v) be a light edge crossing the cut (S, V-S)

 Then

 Edge (u,v) is safe for A

15Algorithms and Programming – Camurati & Quer

Prim’s Algorithm

 Known as DJP algorithm, Jarnik’s algorithm, Prim-
Jarnik algorithm, Prim-Dijkstra algorithm

 Developed in 1930 by Vojtech Jarnik

 Rediscovered in 1957 by Robert Prim

 Rediscovered in 1959 by Edsger Dijkstra

 Based on the generic algorithm

 Use the theorem to select the safe edge

16Algorithms and Programming – Camurati & Quer

mst_Prim (G, w, source)
for each v ∈ V

v.key = ∞
v.pred = NULL

source.key = 0
Q = V
while Q ≠ φ

u = extract_min (Q)
for each v ∈ adjacency list of u

if v ∈ Q and w(u,v)<v.key
v.pred = u
v.key = w(u,v)

Pseudo-code

Source = starting vertex

v.key is the minimum weight of any edge
connecting v to a vertex in the tree

v.pred is the vertex parent

Pseudo-code

Extract the vertex from Q
and insert it in the MST

Update the key and pred
fields of all adjacency nodes

17Algorithms and Programming – Camurati & Quer

mst_Prim (G, w, source)
for each v ∈ V

v.key = ∞
v.pred = NULL

source.key = 0
Q = V
while Q ≠ φ

u = extract_min (Q)
for each v ∈ adjacency list of u

if v ∈ Q and w(u,v)<v.key
v.pred = u
v.key = w(u,v)

Pseudo-code

Pseudo-code

Select all edges crossing the cut
Among those, select the edge with

minimun weight and add it to A

Adjust S and the set of edges
crossing the cut depending on the

selected edge

End when all
vertices belong to

the same tree

18Algorithms and Programming – Camurati & Quer

Example

EB

D

FC H

G

A I

4 9

4 1411

2

2

6

8

7

7

1

8

10

19Algorithms and Programming – Camurati & Quer

Solution

EB

D

FC H

G

A I

4 9

4 1411

2

2

6

8

7

7

1

8

10

(1)

(3)(2)

(4)

(5) (6)

(7)

(8)

AB 4

BE 8

DE 2

EH 4

FH 2

CF 1

EG 7

GI 9

37

(1)

(5)

(3)

20Algorithms and Programming – Camurati & Quer

Implementation

typedef struct graph_s graph_t;
typedef struct vertex_s vertex_t;
typedef struct edge_s edge_t;

struct graph_s {
vertex_t *g;
int nv;

};

Graph ADT

struct edge_s {
int weight;
int dst;
edge_t *next;

};

struct vertex_s {
int id;
int color;
int dist;
int disc_time;
int endp_time;
int pred;
int scc;
edge_t *head;

};

Array of vertex of lists
of edges

21Algorithms and Programming – Camurati & Quer

int mst_prim (graph_t *g) {
int i, j, min, weight=0;
int *fringe;
edge_t *e;

fringe = (int *) util_malloc (g->nv * sizeof(int));
for (i=0; i<g->nv; i++) {
fringe[i] = i;

}

Implementation

g = graph_load (argv[1]);

weight = mst_prim (g);
fprintf (stdout, "Total tree weight: %d\n", weight);

graph_dispose(g);

Client
(code extract)

Prim’s
algorithm

22Algorithms and Programming – Camurati & Quer

fprintf (stdout, "List of edges making an MST:\n");
min = 0;
g->g[min].dist = 0;

while (min != -1) {
i = min;
g->g[i].pred = fringe[i];
weight += g->g[i].dist;
if (g->g[i].dist != 0) {
printf("Edge %d-%d (w=%d)\n",
fringe[i], i, g->g[i].dist);

}
min = -1;
e = g->g[i].head;

Implementation

Consider vertex 0
as a starting one

23Algorithms and Programming – Camurati & Quer

while (e != NULL) {
j = e->dst;
if (g->g[j].pred == -1) {

if (e->weight < g->g[j].dist) {
g->g[j].dist = e->weight;
fringe[j] = i;

}
}
e = e->next;

}
for (j=0; j<g->nv; j++) {
if (g->g[j].pred == -1) {

if (min==-1 || g->g[j].dist<g->g[min].dist) {
min = j;

}
}

}
}
free(fringe);
return weight;

}

Implementation

24Algorithms and Programming – Camurati & Quer

Complexity

mst_Prim (G, w, source)
for each v ∈ V

v.key = ∞
v.pred = NULL

source.key = 0
Q = V
while Q ≠ φ

u = extract_min (Q)
for each v ∈ adjacency list of u

if v ∈ Q and w(u,v)<v.key
v.pred = u
v.key = w(u,v)

O(|V|)

Executed |V| times

O(lg |V|)  O(|V| log|V|)

O(lg |V|)  O(|E| log|V|)

Executed |E|
times altogether

Overall running time complexity
T(n) = O(|V| ∙ log|V|+|E| ∙ lg |V|)

Decrease key  log|V|

25Algorithms and Programming – Camurati & Quer

Complexity

 In general

 T(n) = O(|V| ∙ lg |V| + |E| ∙ lg |V|)

that is

 T(n) = O(|E| ∙ lg |V|)

 Using an efficient data structure the running time
can be improved

 With a Fibonacci-Heap decrease key is no longer of
cost O(|V|) but becomes of cost O(1)

 T(n) = O(|E| + |V| ∙ lg |V|)

26Algorithms and Programming – Camurati & Quer

 Given the following graph apply Prim’s greedy
algorithm starting from vertex A

Exercise

27Algorithms and Programming – Camurati & Quer

 Given the following graph apply Prim’s greedy
algorithm starting from vertex A

Exercise

28Algorithms and Programming – Camurati & Quer

Safe Edges: Corollary

 Let G=(V,E) be a connected, undirected, and
weighted graph

 Let

 A be a subset of E including a MST

 Initially A is empty

 C is a tree in the forest GA= (V, A)

 (u,v) is a light edge connecting C to another
component of GA

 Then

 Edge (u,v) is safe for A

29Algorithms and Programming – Camurati & Quer

Kruskal’s Algorithm

 Algorithm proposed by Joseph Kruskal in 1956

 Based on the generic algorithm

 Use the corollary to select the safe edge

 Forest of tree, initially single vertices

 Sort edges into nondecreasing order by weigth w

 Iteration

 Select a safe edge, i.e., an edge with minimum
weight connecting two trees and generating one
single tree (Union-Find)

 End

 All vertices belong to the same tree

30Algorithms and Programming – Camurati & Quer

mst_Kruskal (G, w)
A = φ
for each vertex v ∈ V

make_set (v)
sort E into non-decreasing order by weight w
for each edge (u,v)∈E
if find (u) ≠ find (v)

A = A ∪ (u,v)
union (u,v)

return A

Pseudo-code

taken in nondecreasing
order by weight

Pseudo-code

A is initially the empty set

For each v create a
set

Find representative of u and v

Union set

31Algorithms and Programming – Camurati & Quer

Example

EB

D

FC H

G

A I

4 9

4 1411

2

2

6

8

7

7

1

8

10

32Algorithms and Programming – Camurati & Quer

Solution

EB

D

FC H

G

A I

4 9

4 1411

2

2

6

8

7

7

1

8

10

(1) (2)

(6)(7)

(8)(4)

(5)

(3)

CF 1

FH 2

DE 2

AB 4

EH 4

EG 7

BE 8

GI 9

37

… …

33Algorithms and Programming – Camurati & Quer

Implementation

struct graph_s {
vertex_t *g;
int nv;

};
struct edge_s {
int weight;
int dst;

};
struct vertex_s {
int id;
int ne;
int color;
int dist;
int scc;
int disc_time;
int endp_time;
int pred;
edge_t *edges;

};

Graph ADT

typedef struct {
int src, dst, weight;

} link;

ADT to store edges and
order them in ascending

order by weight

Array of vertex of
array of edges

34Algorithms and Programming – Camurati & Quer

int mst_kruskal (graph_t *g) {
int i, j, k, weight, ne, nl;
link *edges;

for (nl=i=0; i<g->nv; i++) {
nl += g->g[i].ne;

}
nl /= 2;
edges = (link *)util_calloc(nl, sizeof(link));
nl = 0;

Implementation

Count the total
number of edges

g = graph_load (argv[1]);

weight = mst_kruskal (g);
fprintf (stdout, "Total tree weight: %d\n", weight);

graph_dispose(g);

Client
(code extract)

Kruskal’s
algorithm

35Algorithms and Programming – Camurati & Quer

for (i=0; i<g->nv; i++) {
for (j=0; j<g->g[i].ne; j++) {
if (i < g->g[i].edges[j].dst) {

k = nl - 1;
while (k>=0 &&

edges[k].weight>g->g[i].edges[j].weight) {
edges[k+1] = edges[k];
k--;

}
edges[k+1].src = i;
edges[k+1].dst = g->g[i].edges[j].dst;
edges[k+1].weight = g->g[i].edges[j].weight;
nl++;

}
}

}

Implementation

Create array of link elements
AND

Order elements by weight

36Algorithms and Programming – Camurati & Quer

/* build the tree */
fprintf(stdout, "List of edges making an MST:\n");
for (i=0; i<g->nv; i++) {
g->g[i].pred = i;

}
weight = ne = 0;
for (k=0; k<nl && ne<g->nv-1; k++) {
i = union_find_find (g, edges[k].src);
j = union_find_find (g, edges[k].dst);

union_find_union (g, edges, i, j, k, &weight, &ne);
}

free(edges);

return weight;
}

Implementation

Create the tree

37Algorithms and Programming – Camurati & Quer

static int union_find_find (graph_t *g, int k) {
int i = k;
while (i != g->g[i].pred) {
i = g->g[i].pred;

}
return i;

}
static void union_find_union (graph_t *g, link *edges,
int i, int j, int k, int *weight, int *ne

) {
if (i != j) {

fprintf (stdout, "Edge %d-%d (w=%d)\n",
edges[k].src, edges[k].dst, edges[k].weight);

g->g[j].pred = i;
*weight += edges[k].weight;
*ne = *ne + 1;

}
return;

}

Implementation
Union-Find Algorithms

Find

Union

38Algorithms and Programming – Camurati & Quer

mst_Kruskal (G, w)
A = φ
for each vertex v ∈ V

make_set (v)
sort E into non-decreasing order by weight w
for each edge (u,v)∈E
if find (u) ≠ find (v)

A = A ∪ (u,v)
union (u,v)

return A

Complexity

Union and find takes O(lg |E|)
 O(E log |E|)

O(1)

Executed V times

O(1)  O(|V|)

O(|E| lg |E|)

Executed E times

Overall running time complexity
T(n) = O(|E| ∙ lg |E|)

39Algorithms and Programming – Camurati & Quer

Complexity

 In general

 T(n) = (|E| ∙ lg |E|)

 Asintotically, for dense graph, Prim is more
efficient than Kruskal

 Prim

 T(n) = (|E| + |V|∙ lg |V|)

 Kruskal

 T(n) = (|E| ∙ lg |E|)
For dense graph

E =
� · (� − 1)

2
then

|E| > |V|

40Algorithms and Programming – Camurati & Quer

 Given the following graph apply Kruskal’s greedy
algorithm

Exercise

41Algorithms and Programming – Camurati & Quer

Exercise

 Given the following graph apply Kruskal’s greedy
algorithm

