

Graphs

Minimum Spanning Trees

Paolo Camurati and Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

Problem definition

- Example
$>$ Given an electronic circuit, designers often need to make the pins of several components elettrically equivalent by wiring them togheter
$>$ To interconnect n pins we can use n - 1 connections
$>$ Of all such arrangements the one that uses the least amount of wire is usually the most desiderable
* Such a problem can be mapped as a Minimum Spanning Tree problem

Minimum Spanning Trees

* Given a graph G=(V,E)
> Connected
> Undirected
> Weighted
- With a positive real-value weight function w: $\mathrm{E} \rightarrow \mathrm{R}$

A Minimum-weight Spanning Tree (MST) G^{\prime} is a graph such that
$>\mathrm{G}^{\prime}=(\mathrm{V}, \mathrm{T})$ with $\mathrm{T} \subseteq \mathrm{E}$
$>\mathrm{G}^{\prime}$ is acyclic
> G^{\prime} minimizes

- $w(T)=\Sigma_{(u, v) \in T} w(u, v)$

Example

Properties

* MST properties
$>$ As G^{\prime} is acyclic and cover all vertices
- G^{\prime} is a tree
> The MST is generally not unique
- It is unique only iff all weights are distinct

> A MST may be represented as
- An adjacency matrix or list
- A list of edges plus weights
- A list of parents plus weights

* Adjacency list
$>$ Array of lists of list of lists

* List of edges (and weights)
> Static or dynamic array

* List of parents (and weights)
$>$ Static or dynamic array

Algorithms

* We will analyze two greedy algorithms
> Greedy algorithms do not generally guarantee globally optimal soluzions
> Fortunately, for the MST problem they do
* Both algorithms
> Kruskal's algorithm
> Prim's algorithm
are based on a generic method
* The generic method grows a spanning tree by adding one edge at a time

Generic algorithm

Pseudo-code
generic_MST (G, w)
$\mathbf{A}=\phi$
while A is not a MST do
find a safe edge (u, v) for A
$A=A \cup(u, v)$
return A

Generic algorithm

* Given a set A
> Set of edges, i.e., a sub-set of a MST
$>$ Initially empty
While A is not a MST
$>$ Find a safe edge
$>$ Add this edge to A
* Invariant
> The edge (u, v) is safe if and only if added to a sub-set of the MST it produces another sub-set of the MST

Definitions

* $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ connected, undirected, and weighted
> Cut
- A partition of V into S and V -S such that
- $\mathrm{V}=\mathrm{S} \cup(\mathrm{V}-\mathrm{S}) \& \& \mathrm{~S} \cap(\mathrm{~V}-\mathrm{S})=\varnothing$
$>$ Crossing edge
- An edge $(u, v) \in E$ crosses the cut if and only if
- $u \in S \& \& v \in(V-S)$ or vice-versa
$>A$ cut respecting a set of edges
- A cut respect a set A of edges if no edge of A crosses the cut
$>$ A light edge
- An edge if a light edge if its weight is minimum among the edges crossing the cut

Example

Safe Edges: Theorem

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a connected, undirected, and weighted graph

* Let
$>$ A be a subset of E including a MST
- Initially A is empty
$>(\mathrm{S}, \mathrm{V}-\mathrm{S})$ be any cut of G that respects A
$>(u, v)$ be a light edge crossing the cut (S, V-S)
* Then
\rightarrow Edge (u, v) is safe for A

Prim's Algorithm

* Known as DJP algorithm, Jarnik's algorithm, PrimJarnik algorithm, Prim-Dijkstra algorithm
> Developed in 1930 by Vojtech Jarnik
> Rediscovered in 1957 by Robert Prim
> Rediscovered in 1959 by Edsger Dijkstra
* Based on the generic algorithm
* Use the theorem to select the safe edge

Pseudo-code

```
Pseudo-code
```

```
mst_Prim (G, w, source)
```

 for each \(v \in V\)
 v.key \(=\infty\)
 v.pred \(=\) NULL
 source.key \(=0\)
 \(\mathrm{Q}=\mathrm{V}\)
 while \(\mathbf{Q} \neq \phi\)
 Source \(=\) starting vertex
 v.key is the minimum weight of any edge connecting v to a vertex in the tree

u = extract_min (Q)
for each $v \in a d j a c e n c y$ list of u
if $v \in Q$ and $w(u, v)<v . k e y$
v.pred $=u$
$\mathrm{v} . \mathrm{key}=\mathrm{w}(\mathrm{u}, \mathrm{v})$

Update the key and pred fields of all adjacency nodes

Pseudo-code

```
Pseudo-code
```


Example

Implementation

```
typedef struct graph_s graph_t;
typedef struct vertex_s vertex_t;
typedef struct edge_s edge_t;
struct graph_s {
        vertex_t *g;
        int nv;
    };
```


Graph ADT

Array of vertex of lists of edges

```
struct edge_s {
    int weight;
    int dst;
    edge_t *next;
};
struct vertex_s {
    int id;
    int color;
    int dist;
    int disc_time;
    int endp_time;
    int pred;
    int scc;
    edge_t *head;
};
```


Client

Implementation

 (code extract)```
g = graph_load (argv[1]);
weight = mst_prim (g);
fprintf (stdout, "Total tree weight: %d\n", weight);
graph_dispose(g);
```

Prim's
algorithm
int mst_prim (graph_t *g) \{
int $i, j, \min$, weight $=0$;
int *fringe;
edge_t *e;
fringe $=$ (int *) util_malloc (g->nv * sizeof(int));
for (i=0; i<g->nv; i++) $\{$
fringe[i] = i;
\}

## Implementation

```
fprintf (stdout, "List of edges making an MST:\n");
min = 0;
g->g[min].dist = 0;
while (min != -1) {
```

Consider vertex 0
as a starting one

```
 i = min;
 g->g[i].pred = fringe[i];
 weight += g->g[i].dist;
 if (g->g[i].dist != 0) {
 printf("Edge %d-%d (w=%d)\n",
 fringe[i], i, g->g[i].dist);
 }
 min = -1;
 e = g->g[i].head;
```


## Implementation

```
 while (e != NULL) {
 j = e->dst;
 if (g->g[j].pred == -1) {
 if (e->weight < g->g[j].dist) {
 g->g[j].dist = e->weight;
 fringe[j] = i;
 }
 }
 e = e->next;
 }
 for (j=0; j<g->nv; j++) {
 if (g->g[j].pred == -1) {
 if (min==-1 || g->g[j].dist<g->g[min].dist) {
 min = j;
 }
 }
 }
 }
 free(fringe);
 return weight;
```

\}

## Complexity



## Complexity

- In general

$$
>\mathrm{T}(\mathrm{n})=\mathrm{O}(|\mathrm{~V}| \cdot \lg |\mathrm{V}|+|E| \cdot \lg |\mathrm{V}|)
$$

that is
$>\mathrm{T}(\mathrm{n})=\mathrm{O}(|\mathrm{E}| \cdot \lg |\mathrm{V}|)$

* Using an efficient data structure the running time can be improved
$>$ With a Fibonacci-Heap decrease key is no longer of cost $\mathrm{O}(|\mathrm{V}|)$ but becomes of cost $\mathrm{O}(1)$
- $\mathrm{T}(\mathrm{n})=\mathrm{O}(|\mathrm{E}|+|\mathrm{V}| \cdot|\mathrm{g}| \mathrm{V} \mid)$
* Given the following graph apply Prim's greedy algorithm starting from vertex $A$

* Given the following graph apply Prim's greedy algorithm starting from vertex $A$



## Safe Edges: Corollary

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a connected, undirected, and weighted graph

* Let
$>A$ be a subset of $E$ including a MST
- Initially A is empty
$>C$ is a tree in the forest $G_{A}=(V, A)$
$>(\mathrm{u}, \mathrm{v})$ is a light edge connecting C to another component of $\mathrm{G}_{\mathrm{A}}$


## Then

$\rightarrow$ Edge ( $u, v$ ) is safe for $A$

## Kruskal's Algorithm

* Algorithm proposed by Joseph Kruskal in 1956
* Based on the generic algorithm

Use the corollary to select the safe edge
> Forest of tree, initially single vertices
$>$ Sort edges into nondecreasing order by weigth w
> Iteration

- Select a safe edge, i.e., an edge with minimum weight connecting two trees and generating one single tree (Union-Find)
$>$ End
- All vertices belong to the same tree


## Pseudo-code

Pseudo-code


## Example




## Implementation



## Client

## Implementation

 (code extract)```
g = graph_load (argv[1]);
weight = mst_kruskal (g);
fprintf (stdout, "Total tree weight: %d\n", weight);
graph_dispose(g);
```

Kruskal's
algorithm
int mst_kruskal (graph_t *g) \{
int i, j, k, weight, ne, $n l$;
link *edges;
for (nl=i=0; i<g->nv; i++) \{
Count the total
number of edges
nl += g->g[i].ne;
\}
nl /= 2;
edges $=(\operatorname{link} *)$ util_calloc(nl, sizeof(link));
nl $=0$;

Implementation

```
for (i=0; i<g->nv; i++) {
                                    Order elements by weight
    for (j=0; j<g->g[i].ne; j++) {
```



```
            if (i < g->g[i].edges[j].dst) {
            k = nl - 1;
            while (k>=0 &&
                    edges[k].weight>g->g[i].edges[j].weight) {
                    edges[k+1] = edges[k];
                        k--;
            }
            edges[k+1].src = i;
            edges[k+1].dst = g->g[i].edges[j].dst;
            edges[k+1].weight = g->g[i].edges[j].weight;
            nl++;
        }
    }
}
```

Create array of link elements
AND

Implementation

```
    /* build the tree */
    fprintf(stdout, "List of edges making an MST:\n");
    for (i=0; i<g->nv; i++) {
        g->g[i].pred = i;
    }
    weight = ne = 0;
    for (k=0; k<nl && ne<g->nv-1; k++) {
        i = union_find_find (g, edges[k].src);
        j = union_find_find (g, edges[k].dst);
        union_find_union (g, edges, i, j, k, &weight, &ne);
    }
    free (edges);
    return weight;
}
```


Complexity

Complexity

* In general

$$
>T(\mathrm{n})=(|E| \cdot \lg |E|)
$$

* Asintotically, for dense graph, Prim is more efficient than Kruskal
$>$ Prim
- $\mathrm{T}(\mathrm{n})=(|\mathrm{E}|+|\mathrm{V}| \cdot \lg |\mathrm{V}|)$
> Kruskal
- $T(n)=(|E| \cdot \lg |E|)$

$$
\begin{aligned}
& \text { For dense graph } \\
& E=\frac{|V| \cdot(|V|-1)}{2} \\
& \text { then } \\
& |\mathrm{E}|>|\mathrm{V}|
\end{aligned}
$$

Exercise

* Given the following graph apply Kruskal's greedy algorithm

* Given the following graph apply Kruskal's greedy algorithm

