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Problem definition

 Example

 Given an electronic circuit, designers often need to 
make the pins of several components elettrically
equivalent by wiring them togheter

 To interconnect n pins we can use n-1 connections

 Of all such arrangements the one that uses the 
least amount of wire is usually the most
desiderable

 Such a problem can be mapped as a Minimum 
Spanning Tree problem
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 Given a graph G=(V,E)

 Connected

 Undirected

 Weighted

 With a positive real-value weight function w: ER

 A Minimum-weight Spanning Tree (MST) G’ is a 
graph such that

 G'=(V, T) with T⊆E

 G‘ is acyclic

 G‘ minimizes

 w(T)=Σ(u,v)∈T w(u,v)

Minimum Spanning Trees
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Example
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 MST properties

 As G’ is acyclic and cover all vertices

 G’ is a tree

 The MST is generally not unique

 It is unique only iff all weights are distinct

 A MST may be represented as

 An adjacency matrix or list

 A list of edges plus weights

 A list of parents plus weights

Properties
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Representation

 Adjacency list

 Array of lists of list of lists
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Representation

 List of edges (and weights)

 Static or dynamic array

edge weight

0-2 0.29

4-3 0.34

5-3 0.18

7-4 0.46

7-0 0.31

7-6 0.25

7-1 0.21

Specifically used for the 
Kruskal’s algorithm
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Representation

parent weight

0 0 0

1 7 0.21

2 0 0.29

3 4 0.34

4 7 0.46

5 3 0.18

6 7 0.25

7 0 0.31

Specifically used for the Prim’s algorithm

 List of parents (and weights)

 Static or dynamic array
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 We will analyze two greedy algorithms

 Greedy algorithms do not generally guarantee
globally optimal soluzions

 Fortunately, for the MST problem they do

 Both algorithms

 Kruskal’s algorithm

 Prim’s algorithm

are based on a generic method

 The generic method grows a spanning tree by 
adding one edge at a time

Algorithms
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generic_MST (G, w)
A = φ
while A is not a MST do

find a safe edge (u,v) for A
A = A ∪ (u, v) 

return A

Generic algorithm

A is a subset of the 
MST (initially empty)

While A is not a MST

IFF edge (u,v) is safe, adding
(u,v) to a subset A of the MST let

A as a subset of the MST

Add a safe edge
(u,v) to A

Pseudo-code
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Generic algorithm

 Given a set A

 Set of edges, i.e., a sub-set of a MST

 Initially empty

 While A is not a MST

 Find a safe edge

 Add this edge to A

 Invariant

 The edge (u,v) is safe if and only if added to a
sub-set of the MST it produces another sub-set of
the MST
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Definitions

 G=(V,E) connected, undirected, and weighted

 Cut

 A partition of V into S and V-S such that

 V = S ∪ (V-S) && S ∩ (V-S) = ∅
 Crossing edge

 An edge (u,v) ∈ E crosses the cut if and only if

 u∈S && v∈(V-S) or vice-versa

 A cut respecting a set of edges

 A cut respect a set A of edges if no edge of A
crosses the cut

 A light edge

 An edge if a light edge if its weight is minimum
among the edges crossing the cut
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Example
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Safe Edges: Theorem

 Let G=(V,E) be a connected, undirected, and
weighted graph

 Let

 A be a subset of E including a MST

 Initially A is empty

 (S, V-S) be any cut of G that respects A

 (u, v) be a light edge crossing the cut (S, V-S)

 Then

 Edge (u,v) is safe for A
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Prim’s Algorithm

 Known as DJP algorithm, Jarnik’s algorithm, Prim-
Jarnik algorithm, Prim-Dijkstra algorithm

 Developed in 1930 by Vojtech Jarnik

 Rediscovered in 1957 by Robert Prim

 Rediscovered in 1959 by Edsger Dijkstra

 Based on the generic algorithm

 Use the theorem to select the safe edge
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mst_Prim (G, w, source)
for each v ∈ V

v.key = ∞
v.pred = NULL

source.key = 0
Q = V
while Q ≠ φ

u = extract_min (Q)
for each v ∈ adjacency list of u

if v ∈ Q and w(u,v)<v.key
v.pred = u
v.key = w(u,v)

Pseudo-code

Source = starting vertex

v.key is the minimum weight of any edge
connecting v to a vertex in the tree

v.pred is the vertex parent

Pseudo-code

Extract the vertex from Q 
and insert it in the MST

Update the key and pred
fields of all adjacency nodes
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mst_Prim (G, w, source)
for each v ∈ V

v.key = ∞
v.pred = NULL

source.key = 0
Q = V
while Q ≠ φ

u = extract_min (Q)
for each v ∈ adjacency list of u

if v ∈ Q and w(u,v)<v.key
v.pred = u
v.key = w(u,v)

Pseudo-code

Pseudo-code

Select all edges crossing the cut
Among those, select the edge with 

minimun weight and add it to A

Adjust S and the set of edges
crossing the cut depending on the 

selected edge

End when all
vertices belong to 

the same tree
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Example
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Solution
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Implementation

typedef struct graph_s graph_t;
typedef struct vertex_s vertex_t;
typedef struct edge_s edge_t;

struct graph_s {
vertex_t *g;
int nv;

};

Graph ADT

struct edge_s {
int weight;
int dst;
edge_t *next;

};

struct vertex_s {
int id;
int color;
int dist;
int disc_time;
int endp_time;
int pred;
int scc;
edge_t *head;

};

Array of vertex of lists
of edges
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int mst_prim (graph_t *g) {
int i, j, min, weight=0;
int *fringe;
edge_t *e;

fringe = (int *) util_malloc (g->nv * sizeof(int));
for (i=0; i<g->nv; i++) {
fringe[i] = i;

}

Implementation

g = graph_load (argv[1]);

weight = mst_prim (g);
fprintf (stdout, "Total tree weight: %d\n", weight);

graph_dispose(g);

Client
(code extract)

Prim’s 
algorithm
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fprintf (stdout, "List of edges making an MST:\n");
min = 0;
g->g[min].dist = 0;

while (min != -1) {
i = min;
g->g[i].pred = fringe[i];
weight += g->g[i].dist;
if (g->g[i].dist != 0) {
printf("Edge %d-%d (w=%d)\n",
fringe[i], i, g->g[i].dist);

}
min = -1;
e = g->g[i].head;

Implementation

Consider vertex 0 
as a starting one
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while (e != NULL) {
j = e->dst;
if (g->g[j].pred == -1) {

if (e->weight < g->g[j].dist) {
g->g[j].dist = e->weight;
fringe[j] = i;

}
}
e = e->next;

}
for (j=0; j<g->nv; j++) {
if (g->g[j].pred == -1) {

if (min==-1 || g->g[j].dist<g->g[min].dist) {
min = j;

}
}

}
}
free(fringe);
return weight;

}

Implementation
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Complexity

mst_Prim (G, w, source)
for each v ∈ V

v.key = ∞
v.pred = NULL

source.key = 0
Q = V
while Q ≠ φ

u = extract_min (Q)
for each v ∈ adjacency list of u

if v ∈ Q and w(u,v)<v.key
v.pred = u
v.key = w(u,v)

O(|V|)

Executed |V| times

O(lg |V|)  O(|V| log|V|)

O(lg |V|)  O(|E| log|V|)

Executed |E| 
times altogether

Overall running time complexity
T(n) = O(|V| ∙ log|V|+|E| ∙ lg |V|)

Decrease key  log|V|
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Complexity

 In general

 T(n) = O(|V| ∙ lg |V| + |E| ∙ lg |V|)

that is

 T(n) = O(|E| ∙ lg |V|)

 Using an efficient data structure the running time 
can be improved

 With a Fibonacci-Heap decrease key is no longer of 
cost O(|V|) but becomes of cost O(1)

 T(n) = O(|E| + |V| ∙ lg |V|)
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 Given the following graph apply Prim’s greedy
algorithm starting from vertex A

Exercise
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 Given the following graph apply Prim’s greedy
algorithm starting from vertex A

Exercise
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Safe Edges: Corollary

 Let G=(V,E) be a connected, undirected, and
weighted graph

 Let

 A be a subset of E including a MST

 Initially A is empty

 C is a tree in the forest GA= (V, A)

 (u,v) is a light edge connecting C to another
component of GA

 Then

 Edge (u,v) is safe for A
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Kruskal’s Algorithm

 Algorithm proposed by Joseph Kruskal in 1956

 Based on the generic algorithm

 Use the corollary to select the safe edge

 Forest of tree, initially single vertices

 Sort edges into nondecreasing order by weigth w

 Iteration

 Select a safe edge, i.e., an edge with minimum 
weight connecting two trees and generating one
single tree (Union-Find)

 End

 All vertices belong to the same tree
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mst_Kruskal (G, w)
A = φ
for each vertex v ∈ V

make_set (v)
sort E into non-decreasing order by weight w
for each edge (u,v)∈E
if find (u) ≠ find (v)

A = A ∪ (u,v)
union (u,v)

return A

Pseudo-code

taken in nondecreasing
order by weight

Pseudo-code

A is initially the empty set

For each v create a 
set

Find representative of u and v

Union set
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Solution
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Implementation

struct graph_s {
vertex_t *g;
int nv;

};
struct edge_s {
int weight;
int dst;

};
struct vertex_s {
int id;
int ne;
int color;
int dist;
int scc;
int disc_time;
int endp_time;
int pred;
edge_t *edges;

};

Graph ADT

typedef struct {
int src, dst, weight;

} link;

ADT to store edges and 
order them in ascending

order by weight

Array of vertex of 
array of edges
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int mst_kruskal (graph_t *g) {
int i, j, k, weight, ne, nl;
link *edges;

for (nl=i=0; i<g->nv; i++) {
nl += g->g[i].ne;

}
nl /= 2;
edges = (link *)util_calloc(nl, sizeof(link));
nl = 0;

Implementation

Count the total
number of edges

g = graph_load (argv[1]);

weight = mst_kruskal (g);
fprintf (stdout, "Total tree weight: %d\n", weight);

graph_dispose(g);

Client
(code extract)

Kruskal’s
algorithm
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for (i=0; i<g->nv; i++) {
for (j=0; j<g->g[i].ne; j++) {
if (i < g->g[i].edges[j].dst) {

k = nl - 1;
while (k>=0 &&

edges[k].weight>g->g[i].edges[j].weight) {
edges[k+1] = edges[k];
k--;

}
edges[k+1].src = i;
edges[k+1].dst = g->g[i].edges[j].dst;
edges[k+1].weight = g->g[i].edges[j].weight;
nl++;

}
}

}

Implementation

Create array of link elements
AND

Order elements by weight



36Algorithms and Programming – Camurati & Quer

/* build the tree */
fprintf(stdout, "List of edges making an MST:\n");
for (i=0; i<g->nv; i++) {
g->g[i].pred = i;

}
weight = ne = 0;
for (k=0; k<nl && ne<g->nv-1; k++) {
i = union_find_find (g, edges[k].src);
j = union_find_find (g, edges[k].dst);

union_find_union (g, edges, i, j, k, &weight, &ne);
}

free(edges);

return weight;
}

Implementation

Create the tree
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static int union_find_find (graph_t *g, int k) {
int i = k;
while (i != g->g[i].pred) {
i = g->g[i].pred;

}
return i;

}
static void union_find_union (graph_t *g, link *edges,
int i, int j, int k, int *weight, int *ne

) {
if (i != j) {

fprintf (stdout, "Edge %d-%d (w=%d)\n",
edges[k].src, edges[k].dst, edges[k].weight);

g->g[j].pred = i;
*weight += edges[k].weight;
*ne = *ne + 1;

}
return;

}

Implementation
Union-Find Algorithms

Find

Union
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mst_Kruskal (G, w)
A = φ
for each vertex v ∈ V

make_set (v)
sort E into non-decreasing order by weight w
for each edge (u,v)∈E
if find (u) ≠ find (v)

A = A ∪ (u,v)
union (u,v)

return A

Complexity

Union and find takes O(lg |E|)
 O(E log |E|)

O(1)

Executed V times

O(1)  O(|V|)

O(|E| lg |E|)

Executed E times

Overall running time complexity
T(n) = O(|E| ∙ lg |E|)
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Complexity

 In general

 T(n) = (|E| ∙ lg |E|)

 Asintotically, for dense graph, Prim is more 
efficient than Kruskal

 Prim

 T(n) = (|E| + |V|∙ lg |V|)

 Kruskal

 T(n) = (|E| ∙ lg |E|)
For dense graph

E =
� · ( � − 1)

2
then

|E| > |V|
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 Given the following graph apply Kruskal’s greedy
algorithm

Exercise
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Exercise

 Given the following graph apply Kruskal’s greedy
algorithm


