#inclede <iidiibh>
#include <slving h>
#include <clypa.h>

d#define MAXPAROLA 30
#define MANKIGA 80

int main(int orge, char *argv(])
{

Minimum Spanning Trees
Paolo Camurati and Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

Algorithms and Programming - Camurati & Quer 2

Problem definition

%+ Example
» Given an electronic circuit, designers often need to

make the pins of several components elettrically
equivalent by wiring them togheter

» To interconnect n pins we can use n-1 connections

» Of all such arrangements the one that uses the
least amount of wire is usually the most
desiderable

% Such a problem can be mapped as a Minimum
Spanning Tree problem

Algorithms and Programming - Camurati & Quer 3

Minimum Spanning Trees

% Given a graph G=(V,E)
» Connected
» Undirected
» Weighted
= With a positive real-value weight function w: E>R
% A Minimum-weight Spanning Tree (MST) G’ is a
graph such that
> G'=(V, T) with TOE
» G'is acyclic
» G' minimizes
" W(T)=Z,vyor W(u,v)

Algorithms and Programming - Camurati & Quer !

G = (V, E) G'=(V, T)with TOE

0.29 0.29

0.51 0.51

0.60 0.60

Algorithms and Programming - Camurati & Quer 5

Properties

% MST properties
» As G’ is acyclic and cover all vertices
= G'is atree

» The MST is generally not unique
= It is unique only iff all weights are distinct

» A MST may be represented as
= An adjacency matrix or list
= A list of edges plus weights
= A list of parents plus weights

Algorithms and Programming - Camurati & Quer 6

Representation

%+ Adjacency list
> Array of lists of list of lists

0.29

(ololojojofofolo]

0.60 0.51

Algorithms and Programming - Camurati & Quer o

Representation

% List of edges (and weights)
» Static or dynamic array

edge weight

0-2 0.29
4-3 0.34
5-3 0.18
7-4 0.46 0.29
7-0 0.31
7-6 0.25
7-1 0.21

0.51

Specifically used for the
Kruskal’s algorithm

Algorithms and Programming - Camurati & Quer 8

Representation

% List of parents (and weights)
» Static or dynamic array

parent weight

0 0 0

1 7 0.21

2 0 0.29

3 4 0.34 0.29

4 7 0.46 > 0.51

5 3 0.18

6 7 0.25

7 0 0.31 0.51

0.60

[Specifically used for the Prim’s algorithm] CSJ

Algorithms and Programming - Camurati & Quer 9

Algorithms

<+ We will analyze two greedy algorithms

» Greedy algorithms do not generally guarantee
globally optimal soluzions

» Fortunately, for the MST problem they do
%+ Both algorithms
» Kruskal’s algorithm
» Prim’s algorithm
are based on a generic method

%+ The generic method grows a spanning tree by
adding one edge at a time

P

Algorithms and Programming - Camurati & Quen 10

Generic algorithm

[Pseudo-code]

%
(A is a subset of the
MST (initially empty)

4 7 J w

generic_MST (G W) (R
A= @ While A is not a MST

while Ais not a MBT do ===} g

fi Ed a safe edge (u,v) for A Add a safe edge)
A=AD0(u, v) (u,v) to A
return A

\ NS -

N\

IFF edge (u,v) is safe, adding
(u,v) to a subset A of the MST let
A as a subset of the MST

Algorithms and Programming - Camurati & Quen 11

Generic algorithm

% Given a set A
> Set of edges, i.e., a sub-set of a MST
> Initially empty
<+ While A is not a MST
> Find a safe edge
» Add this edge to A

+»» Invariant

» The edge (u,v) is safe if and only if added to a
sub-set of the MST it produces another sub-set of
the MST

Algorithms and Programming - Camurati & Quen Iz

Definitions

% G=(V,E) connected, undirected, and weighted

> Cut
= A partition of V into S and V-S such that
= V=S0O(V-S) && S n (V-S) =0
» Crossing edge
= An edge (u,v) O E crosses the cut if and only if
= udS && vO(V-S) or vice-versa

> A cut respecting a set of edges

= A cut respect a set A of edges if no edge of A
crosses the cut

> A light edge

= An edge if a light edge if its weight is minimum
among the edges crossing the cut

"/

Algorithms and Programming - Camurati & Que U 13

Example

[Edge (E,G) is a light edge

The cut respects
[Edge (B,E) crosses the cut (A,B), (GE)I) J
“t"bo’
8 o %e
B s G g G
4 o % 9
o 2 “
o *
o %
*
° 1 40” G 4 14 1. 0
. 6 %
o’ 7 e,

ammu® * ol | Ny

8 10

A cut

Algorithms and Programming - Camurati & Quer 14

Safe Edges: Theorem

% Let G=(V,E) be a connected, undirected, and
weighted graph
*» Let
> A be a subset of E including a MST
= Initially A is empty
> (S, V-S) be any cut of G that respects A
> (u, v) be a light edge crossing the cut (S, V-S)
% Then
> Edge (u,v) is safe for A

Algorithms and Programming - Camurati & Quer 15

Prim’s Algorithm

%+ Known as DJP algorithm, Jarnik’s algorithm, Prim-
Jarnik algorithm, Prim-Dijkstra algorithm

» Developed in 1930 by Vojtech Jarnik

» Rediscovered in 1957 by Robert Prim

» Rediscovered in 1959 by Edsger Dijkstra
%+ Based on the generic algorithm

% Use the theorem to select the safe edge

Algorithms and Programming - Camurati & Quer 16

Pseudo-code

[Pseudo-code }

Source = starting vertex J

/¢ \
\/

_ v.key is the minimum weight of any edge
mst _Prim (G w, source) connecting v to a vertex in the tree
for each v OV |

V.key = o ’ | 8
v.pred = NULL <[v.pred is the vertex parent

source. key = 0 |
Q=V [Extract the vertex from Q

while Q% @ and insert it in the MST

u=-extract_ mn (Q
for each v [0 adjacency list of u
i1f v O Qand w(u, Vv)<v. key
v.pred = u
v. key = wW(u, V)

J

———

Update the key and pred J

L fields of all adjacency nodes

Algorithms and Programming - Camurati & Quer 17

Pseudo-code

[Pseudo-code }

" Endwhenal |
vertices belong to
the same tree

nst Prim (G w, source)
for each v OV
V.key = o
v.pred = NULL
source. key = 0
Q=V
while Q# ¢
u=-extract_ mn (Q
for each v [0 adjacency list of u
i1f v O Qand w(u, Vv)<v. key
v.pred = u
v. key = wW(u, V)

Select all edges crossing the cut
Among those, select the edge with
minimun weight and add it to A

crossing the cut depending on the
L selected edge

Adjust S and the set of edges J

-
Algorithms and Programming - Camurati & Que B 18

Example

Py

(1)“$:: \ ’0‘ DE
NG : : FH
B) 7§ i 1 CF
(4). :: ““ "’ . . EG

- .l.lllllllllIlllllllllllllllllllllllll‘ GI

© N =~ N B~ N O BH

w
N

Algorithms and Programming - Camurati & Quer 20

Implementation

4 \[Graph ADT]

t ypedef struct graph_s graph_t;
typedef struct vertex_ s vertex_t;

t ypedef struct edge_s edge_t; /struct edge_s { h

I nt wei ght;
I nt dst;
edge_t *next;

struct graph_s {
vertex_t *g; }:
int nv; '

Iy struct vertex_s {
_ - int id;
nt col or;
//’—

[
[
int dist;
Array of vertex of lists : nt disc_tinme;
of edges i
[

nt endp_ti ne;
nt pred;

nt scc;
edge_t *head;

TR
'_A_I__gbr‘.i‘rhms and Prog_ - Camurat

S

" Client Implementation

Prim’s
algorithm

P

'.‘AI'!gE)f‘_iThms and Program

Implementation

Consider vertex 0
as a starting one

Implementation

Algorithms and Programming - Camurati & Quer 24

/rrst_Prim(G, W, source)
for each v OV /m
V.key = o

v.pred = NULL Executed |V| times]
source. key = 0

=V y
V(\glhi le Q% ¢ /[009 V) > O(IV[log| V1) |

u=-extract_mn (Q

for each v O adjacency list of u %t_EXGCUI“ZL_ed IEhI]
if v 0 Qand wu,v)<v.key imes altogether

vV.pred = u
9 v. key = w(u,v) \O(Ig IV]) > O(|E| IogIVI)]
\/L Decrease key - log|V]|]

Overall running time complexity
T(n) = O(|V] - log|V]+[E]| - Ig |V])

Complexity

Algorithms and Programming - Camurati & Quer 25

Complexity

% In general
» T(n) = O(|V] - 1g [V] + [E| - 1g |V])
that is
» T(n) = O(|E| - 1g [V])
% Using an efficient data structure the running time
can be improved

» With a Fibonacci-Heap decrease key is no longer of
cost O(|V|) but becomes of cost O(1)

= T(n) = O(|E| + [V] - 1g |VI)

Algorithms and Programming - Camurati & Quer 26

% Given the following graph apply Prim’s greedy
algorithm starting from vertex A

Algorithms and Programming - Camurati & Quer 2

% Given the following graph apply Prim’s greedy
algorithm starting from vertex A

Algorithms and Programming - Camurati & Quer 28

Safe Edges: Corollary

% Let G=(V,E) be a connected, undirected, and
weighted graph
*» Let
> A be a subset of E including a MST
= Initially A is empty
» Cis a tree in the forest G,= (V, A)

» (u,v) is a light edge connecting C to another
component of G,

% Then
» Edge (u,v) is safe for A

Algorithms and Programming - Camurati & Quer 29

Kruskal’s Algorithm

%+ Algorithm proposed by Joseph Kruskal in 1956
%+ Based on the generic algorithm

% Use the corollary to select the safe edge
> Forest of tree, initially single vertices
» Sort edges into nondecreasing order by weigth w

» Iteration

= Select a safe edge, i.e., an edge with minimum
weight connecting two trees and generating one
single tree (Union-Find)

» End
= All vertices belong to the same tree

Algorithms and Programming - Camurati & Quer 30

Pseudo-code

[Pseudo-code }

;
e A is initially the empty set ’ N\

nmst _Kruskal (G w)
A=0
for each vertex v 0OV
make set (V)
sort E into non-decreasing order by weight w

[For each v create a]
set

for each edge (u,v)OE r _)
if find (u) # find (V) taken in nondec_reasmg
A=AD(uv) L order by weight
uni on (u,v) —

return A Find representative of u and v |
Union set j
S

-
Algorithms and Programming - Camurati & Que B 31

Example

5

O© O N A DN DN B

w
N

Algorithms and Programming - Camurati & Quer 33

Implementation

/st ruct graph_s {

vertex_t *g;
I nt nv;

{ Graph ADT]

i nt wei ght; array of edges
I nt dst;
}

struct vertex_s { /
I nt id,;

b
struct edge_s { Array of vertex of J

nt ne;

nt col or;

nt dist;

nt scc;

nt disc_tine;

nt endp_tine; t ypedef struct {

nt pred; int src, dst, weight;
edge_t *edges; } link;

J / X)

ADT to store edges and
order them in ascending
order by weight

Algorithms and Programming - Camurati & Quer

Client
(code extract) |

Implementation

|

g = graph_load (argv[1]);
wei ght = st _kruskal (g);
fprintf (stdout, "Total tree weight: %\n", weight);
gr aph_di spose(9);
Kruskal’s w
algorithm |
i nt nmst_kruskal (graph_t *g) {
int i, j, k, weight, ne, nl;
| i nk *edges;
Count the total]
for (nl=i=0; i<g->nv; i++) { number of edges
nl += g->qg[i]. ne;
}
nl /= 2;
edges = (link *)util _calloc(nl, sizeof(link));
nl = 0;

Algorithms and Programming - Camurati & Quer 35

Implementation

-

/ Create array of link elements
AND

Order elements by weight

for (i=0; i<g->nv; i++) {
for (j=0; j<g->g[i].ne; j++) {
if (i < g->g[i].edges[]].dst) {
k =nl - 1;
while (k>=0 &&
edges|[k] . wei ght >g->g[i]. edges[j].wei ght) {
edges[k+1] = edges[k];
K- -,
}
edges[k+1].src = i;
edges[k+1] .dst = g->g[i].edges[j]. dst;
edges[k+1] . wei ght = g->g[i].edges[]j].weight;
nl ++;

Algorithms and Programming - Camurati & Quer 36

Implementation

//>/* build the tree */ <\\

fprintf(stdout, "List of edges making an MST:\n");

for (i=0; i<g->nv; i++) {

->gli].pred =i;
} g->ol1].p ‘ Create the treﬂ
wei ght = ne = 0;

for (k=0; k<nl && ne<g->nv-1; k++) {
I = union_find find (g, edges[k].src);
j =union_find_find (g, edges[k].dst);

union_find union (g, edges, i, j, k, &eight, &ne);
}

free(edges);

return wei ght;

Algorithms and Programming - Camurati & Quen S

Implementation

Union-Find Algorithms

/static int union find find (graph_t *g, int k) {

int i = k; :
while (i != g->g[i].pred) { Find
I = g->g[i].pred;
}
return i; J Unionj
}
static void union_find union (graph_t *g, |link *edges,
int i, int j, int k, int *weight, int *ne
) A
if (i '=7) {
fprintf (stdout, "Edge %-% (w=%)\n",
edges[k] .src, edges[k].dst, edges[k].weight);
g->g[j].pred = i;
*wei ght += edges| k] . wei ght ;
*ne = *ne + 1,
}
return;

< /

Algorithms and Programming - Camurati & Quer 38

Complexity

) , o :
nrs'ta_fr thskal (G [Executed V times]

/

for each vertex v OV []
make set (V) (1) >0V

sort E into non-decreasing order by weight w
for each edge (u,v)OE
| o(IEI Ig EI) |

if find (u) #find (v)
A=A0(uv)
uni on (u, V)
return A

(&

[Executed E times

Union and find takes O(lg |E|)
-> O(E log |E|) /

Overall running time complexity
T(n) = O(|E| - Ig |E])

"/

Algorithms and Programming - Camurati & Que U <))

Complexity

% In general
» T(n) = (|E| - 1g [E[)
% Asintotically, for dense graph, Prim is more
efficient than Kruskal

» Prim
= T(n) = (|E| + |V|- g |V])
> Kruskal
= T(n) = (|E| - Ig |E]) :ir ﬁfeﬁs(elﬁra—p?)
then2
|E| > |V|

J

Algorithms and Programming - Camurati & Quer 40

% Given the following graph apply Kruskal’s greedy
algorithm

Algorithms and Programming - Camurati & Quer 41

% Given the following graph apply Kruskal’s greedy
algorithm

