
Graphs

Minimum Spanning Trees
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2Algorithms and Programming – Camurati & Quer

Problem definition

 Example

 Given an electronic circuit, designers often need to
make the pins of several components elettrically
equivalent by wiring them togheter

 To interconnect n pins we can use n-1 connections

 Of all such arrangements the one that uses the
least amount of wire is usually the most
desiderable

 Such a problem can be mapped as a Minimum
Spanning Tree problem

3Algorithms and Programming – Camurati & Quer

 Given a graph G=(V,E)

 Connected

 Undirected

 Weighted

 With a positive real-value weight function w: ER

 A Minimum-weight Spanning Tree (MST) G’ is a
graph such that

 G'=(V, T) with T⊆E

 G‘ is acyclic

 G‘ minimizes

 w(T)=Σ(u,v)∈T w(u,v)

Minimum Spanning Trees

4Algorithms and Programming – Camurati & Quer

Example

7

1

0

2

6

4

3

5

0.29

0.51

0.31

0.32

0.60

0.18 0.34

0.40

0.46
0.51

0.25
0.21

7

1

0

2

6

4

3

5

0.29

0.51

0.31

0.32

0.60

0.18 0.34

0.40

0.46
0.51

0.25

0.21

G = (V, E) G’ = (V, T) with T ⊆ E

5Algorithms and Programming – Camurati & Quer

 MST properties

 As G’ is acyclic and cover all vertices

 G’ is a tree

 The MST is generally not unique

 It is unique only iff all weights are distinct

 A MST may be represented as

 An adjacency matrix or list

 A list of edges plus weights

 A list of parents plus weights

Properties

A

B

C

DE

3

2
1

2

1

3

A

B

C

DE

3

2
1

2

1

3

6Algorithms and Programming – Camurati & Quer

Representation

 Adjacency list

 Array of lists of list of lists

0

1

2

3

4

2 0.29 7 0.31

5

6

7

7 0.21

0 0.29

3 0.18

7 0.25

4 0.34 5 0.18

3 0.34 7 0.46

0 0.31 1 0.21 4 0.46 6 0.25
7

1

0

2

6

4

3

5

0.29

0.51

0.31

0.32

0.60

0.18 0.34

0.40

0.46
0.51

0.25
0.21

7Algorithms and Programming – Camurati & Quer

Representation

 List of edges (and weights)

 Static or dynamic array

edge weight

0-2 0.29

4-3 0.34

5-3 0.18

7-4 0.46

7-0 0.31

7-6 0.25

7-1 0.21

Specifically used for the
Kruskal’s algorithm

7

1

0

2

6

4

3

5

0.29

0.51

0.31

0.32

0.60

0.18 0.34

0.40

0.46
0.51

0.25
0.21

8Algorithms and Programming – Camurati & Quer

Representation

parent weight

0 0 0

1 7 0.21

2 0 0.29

3 4 0.34

4 7 0.46

5 3 0.18

6 7 0.25

7 0 0.31

Specifically used for the Prim’s algorithm

 List of parents (and weights)

 Static or dynamic array

7

1

0

2

6

4

3

5

0.29

0.51

0.31

0.32

0.60

0.18 0.34

0.40

0.46
0.51

0.25
0.21

9Algorithms and Programming – Camurati & Quer

 We will analyze two greedy algorithms

 Greedy algorithms do not generally guarantee
globally optimal soluzions

 Fortunately, for the MST problem they do

 Both algorithms

 Kruskal’s algorithm

 Prim’s algorithm

are based on a generic method

 The generic method grows a spanning tree by
adding one edge at a time

Algorithms

10Algorithms and Programming – Camurati & Quer

generic_MST (G, w)
A = φ
while A is not a MST do

find a safe edge (u,v) for A
A = A ∪ (u, v)

return A

Generic algorithm

A is a subset of the
MST (initially empty)

While A is not a MST

IFF edge (u,v) is safe, adding
(u,v) to a subset A of the MST let

A as a subset of the MST

Add a safe edge
(u,v) to A

Pseudo-code

11Algorithms and Programming – Camurati & Quer

Generic algorithm

 Given a set A

 Set of edges, i.e., a sub-set of a MST

 Initially empty

 While A is not a MST

 Find a safe edge

 Add this edge to A

 Invariant

 The edge (u,v) is safe if and only if added to a
sub-set of the MST it produces another sub-set of
the MST

12Algorithms and Programming – Camurati & Quer

Definitions

 G=(V,E) connected, undirected, and weighted

 Cut

 A partition of V into S and V-S such that

 V = S ∪ (V-S) && S ∩ (V-S) = ∅
 Crossing edge

 An edge (u,v) ∈ E crosses the cut if and only if

 u∈S && v∈(V-S) or vice-versa

 A cut respecting a set of edges

 A cut respect a set A of edges if no edge of A
crosses the cut

 A light edge

 An edge if a light edge if its weight is minimum
among the edges crossing the cut

13Algorithms and Programming – Camurati & Quer

Example

EB

D

FC H

G

A I

4 9

4 1411

2

2

6

8

7

7

1

8

10

A cut

Edge (B,E) crosses the cut
The cut respects

(A,B), (G,I)

Edge (E,G) is a light edge

14Algorithms and Programming – Camurati & Quer

Safe Edges: Theorem

 Let G=(V,E) be a connected, undirected, and
weighted graph

 Let

 A be a subset of E including a MST

 Initially A is empty

 (S, V-S) be any cut of G that respects A

 (u, v) be a light edge crossing the cut (S, V-S)

 Then

 Edge (u,v) is safe for A

15Algorithms and Programming – Camurati & Quer

Prim’s Algorithm

 Known as DJP algorithm, Jarnik’s algorithm, Prim-
Jarnik algorithm, Prim-Dijkstra algorithm

 Developed in 1930 by Vojtech Jarnik

 Rediscovered in 1957 by Robert Prim

 Rediscovered in 1959 by Edsger Dijkstra

 Based on the generic algorithm

 Use the theorem to select the safe edge

16Algorithms and Programming – Camurati & Quer

mst_Prim (G, w, source)
for each v ∈ V

v.key = ∞
v.pred = NULL

source.key = 0
Q = V
while Q ≠ φ

u = extract_min (Q)
for each v ∈ adjacency list of u

if v ∈ Q and w(u,v)<v.key
v.pred = u
v.key = w(u,v)

Pseudo-code

Source = starting vertex

v.key is the minimum weight of any edge
connecting v to a vertex in the tree

v.pred is the vertex parent

Pseudo-code

Extract the vertex from Q
and insert it in the MST

Update the key and pred
fields of all adjacency nodes

17Algorithms and Programming – Camurati & Quer

mst_Prim (G, w, source)
for each v ∈ V

v.key = ∞
v.pred = NULL

source.key = 0
Q = V
while Q ≠ φ

u = extract_min (Q)
for each v ∈ adjacency list of u

if v ∈ Q and w(u,v)<v.key
v.pred = u
v.key = w(u,v)

Pseudo-code

Pseudo-code

Select all edges crossing the cut
Among those, select the edge with

minimun weight and add it to A

Adjust S and the set of edges
crossing the cut depending on the

selected edge

End when all
vertices belong to

the same tree

18Algorithms and Programming – Camurati & Quer

Example

EB

D

FC H

G

A I

4 9

4 1411

2

2

6

8

7

7

1

8

10

19Algorithms and Programming – Camurati & Quer

Solution

EB

D

FC H

G

A I

4 9

4 1411

2

2

6

8

7

7

1

8

10

(1)

(3)(2)

(4)

(5) (6)

(7)

(8)

AB 4

BE 8

DE 2

EH 4

FH 2

CF 1

EG 7

GI 9

37

(1)

(5)

(3)

20Algorithms and Programming – Camurati & Quer

Implementation

typedef struct graph_s graph_t;
typedef struct vertex_s vertex_t;
typedef struct edge_s edge_t;

struct graph_s {
vertex_t *g;
int nv;

};

Graph ADT

struct edge_s {
int weight;
int dst;
edge_t *next;

};

struct vertex_s {
int id;
int color;
int dist;
int disc_time;
int endp_time;
int pred;
int scc;
edge_t *head;

};

Array of vertex of lists
of edges

21Algorithms and Programming – Camurati & Quer

int mst_prim (graph_t *g) {
int i, j, min, weight=0;
int *fringe;
edge_t *e;

fringe = (int *) util_malloc (g->nv * sizeof(int));
for (i=0; i<g->nv; i++) {
fringe[i] = i;

}

Implementation

g = graph_load (argv[1]);

weight = mst_prim (g);
fprintf (stdout, "Total tree weight: %d\n", weight);

graph_dispose(g);

Client
(code extract)

Prim’s
algorithm

22Algorithms and Programming – Camurati & Quer

fprintf (stdout, "List of edges making an MST:\n");
min = 0;
g->g[min].dist = 0;

while (min != -1) {
i = min;
g->g[i].pred = fringe[i];
weight += g->g[i].dist;
if (g->g[i].dist != 0) {
printf("Edge %d-%d (w=%d)\n",
fringe[i], i, g->g[i].dist);

}
min = -1;
e = g->g[i].head;

Implementation

Consider vertex 0
as a starting one

23Algorithms and Programming – Camurati & Quer

while (e != NULL) {
j = e->dst;
if (g->g[j].pred == -1) {

if (e->weight < g->g[j].dist) {
g->g[j].dist = e->weight;
fringe[j] = i;

}
}
e = e->next;

}
for (j=0; j<g->nv; j++) {
if (g->g[j].pred == -1) {

if (min==-1 || g->g[j].dist<g->g[min].dist) {
min = j;

}
}

}
}
free(fringe);
return weight;

}

Implementation

24Algorithms and Programming – Camurati & Quer

Complexity

mst_Prim (G, w, source)
for each v ∈ V

v.key = ∞
v.pred = NULL

source.key = 0
Q = V
while Q ≠ φ

u = extract_min (Q)
for each v ∈ adjacency list of u

if v ∈ Q and w(u,v)<v.key
v.pred = u
v.key = w(u,v)

O(|V|)

Executed |V| times

O(lg |V|) O(|V| log|V|)

O(lg |V|) O(|E| log|V|)

Executed |E|
times altogether

Overall running time complexity
T(n) = O(|V| ∙ log|V|+|E| ∙ lg |V|)

Decrease key log|V|

25Algorithms and Programming – Camurati & Quer

Complexity

 In general

 T(n) = O(|V| ∙ lg |V| + |E| ∙ lg |V|)

that is

 T(n) = O(|E| ∙ lg |V|)

 Using an efficient data structure the running time
can be improved

 With a Fibonacci-Heap decrease key is no longer of
cost O(|V|) but becomes of cost O(1)

 T(n) = O(|E| + |V| ∙ lg |V|)

26Algorithms and Programming – Camurati & Quer

 Given the following graph apply Prim’s greedy
algorithm starting from vertex A

Exercise

27Algorithms and Programming – Camurati & Quer

 Given the following graph apply Prim’s greedy
algorithm starting from vertex A

Exercise

28Algorithms and Programming – Camurati & Quer

Safe Edges: Corollary

 Let G=(V,E) be a connected, undirected, and
weighted graph

 Let

 A be a subset of E including a MST

 Initially A is empty

 C is a tree in the forest GA= (V, A)

 (u,v) is a light edge connecting C to another
component of GA

 Then

 Edge (u,v) is safe for A

29Algorithms and Programming – Camurati & Quer

Kruskal’s Algorithm

 Algorithm proposed by Joseph Kruskal in 1956

 Based on the generic algorithm

 Use the corollary to select the safe edge

 Forest of tree, initially single vertices

 Sort edges into nondecreasing order by weigth w

 Iteration

 Select a safe edge, i.e., an edge with minimum
weight connecting two trees and generating one
single tree (Union-Find)

 End

 All vertices belong to the same tree

30Algorithms and Programming – Camurati & Quer

mst_Kruskal (G, w)
A = φ
for each vertex v ∈ V

make_set (v)
sort E into non-decreasing order by weight w
for each edge (u,v)∈E
if find (u) ≠ find (v)

A = A ∪ (u,v)
union (u,v)

return A

Pseudo-code

taken in nondecreasing
order by weight

Pseudo-code

A is initially the empty set

For each v create a
set

Find representative of u and v

Union set

31Algorithms and Programming – Camurati & Quer

Example

EB

D

FC H

G

A I

4 9

4 1411

2

2

6

8

7

7

1

8

10

32Algorithms and Programming – Camurati & Quer

Solution

EB

D

FC H

G

A I

4 9

4 1411

2

2

6

8

7

7

1

8

10

(1) (2)

(6)(7)

(8)(4)

(5)

(3)

CF 1

FH 2

DE 2

AB 4

EH 4

EG 7

BE 8

GI 9

37

… …

33Algorithms and Programming – Camurati & Quer

Implementation

struct graph_s {
vertex_t *g;
int nv;

};
struct edge_s {
int weight;
int dst;

};
struct vertex_s {
int id;
int ne;
int color;
int dist;
int scc;
int disc_time;
int endp_time;
int pred;
edge_t *edges;

};

Graph ADT

typedef struct {
int src, dst, weight;

} link;

ADT to store edges and
order them in ascending

order by weight

Array of vertex of
array of edges

34Algorithms and Programming – Camurati & Quer

int mst_kruskal (graph_t *g) {
int i, j, k, weight, ne, nl;
link *edges;

for (nl=i=0; i<g->nv; i++) {
nl += g->g[i].ne;

}
nl /= 2;
edges = (link *)util_calloc(nl, sizeof(link));
nl = 0;

Implementation

Count the total
number of edges

g = graph_load (argv[1]);

weight = mst_kruskal (g);
fprintf (stdout, "Total tree weight: %d\n", weight);

graph_dispose(g);

Client
(code extract)

Kruskal’s
algorithm

35Algorithms and Programming – Camurati & Quer

for (i=0; i<g->nv; i++) {
for (j=0; j<g->g[i].ne; j++) {
if (i < g->g[i].edges[j].dst) {

k = nl - 1;
while (k>=0 &&

edges[k].weight>g->g[i].edges[j].weight) {
edges[k+1] = edges[k];
k--;

}
edges[k+1].src = i;
edges[k+1].dst = g->g[i].edges[j].dst;
edges[k+1].weight = g->g[i].edges[j].weight;
nl++;

}
}

}

Implementation

Create array of link elements
AND

Order elements by weight

36Algorithms and Programming – Camurati & Quer

/* build the tree */
fprintf(stdout, "List of edges making an MST:\n");
for (i=0; i<g->nv; i++) {
g->g[i].pred = i;

}
weight = ne = 0;
for (k=0; k<nl && ne<g->nv-1; k++) {
i = union_find_find (g, edges[k].src);
j = union_find_find (g, edges[k].dst);

union_find_union (g, edges, i, j, k, &weight, &ne);
}

free(edges);

return weight;
}

Implementation

Create the tree

37Algorithms and Programming – Camurati & Quer

static int union_find_find (graph_t *g, int k) {
int i = k;
while (i != g->g[i].pred) {
i = g->g[i].pred;

}
return i;

}
static void union_find_union (graph_t *g, link *edges,
int i, int j, int k, int *weight, int *ne

) {
if (i != j) {

fprintf (stdout, "Edge %d-%d (w=%d)\n",
edges[k].src, edges[k].dst, edges[k].weight);

g->g[j].pred = i;
*weight += edges[k].weight;
*ne = *ne + 1;

}
return;

}

Implementation
Union-Find Algorithms

Find

Union

38Algorithms and Programming – Camurati & Quer

mst_Kruskal (G, w)
A = φ
for each vertex v ∈ V

make_set (v)
sort E into non-decreasing order by weight w
for each edge (u,v)∈E
if find (u) ≠ find (v)

A = A ∪ (u,v)
union (u,v)

return A

Complexity

Union and find takes O(lg |E|)
 O(E log |E|)

O(1)

Executed V times

O(1) O(|V|)

O(|E| lg |E|)

Executed E times

Overall running time complexity
T(n) = O(|E| ∙ lg |E|)

39Algorithms and Programming – Camurati & Quer

Complexity

 In general

 T(n) = (|E| ∙ lg |E|)

 Asintotically, for dense graph, Prim is more
efficient than Kruskal

 Prim

 T(n) = (|E| + |V|∙ lg |V|)

 Kruskal

 T(n) = (|E| ∙ lg |E|)
For dense graph

E =
� · (� − 1)

2
then

|E| > |V|

40Algorithms and Programming – Camurati & Quer

 Given the following graph apply Kruskal’s greedy
algorithm

Exercise

41Algorithms and Programming – Camurati & Quer

Exercise

 Given the following graph apply Kruskal’s greedy
algorithm

