Applications of Graph-Search Algorithms
Paolo Camurati and Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

-
Algorithms and Programming - Camurati & Que B 2

Reverse graph

%+ Given a directed graph G =(V, E)
> Its reverse (or transpose) graph
= GT = (V, ET)
is such that
= If (u,v) OE then (v, u) OET

"/ -

Algorithms and Programming - Camurati & Quer

C D E

C D E

GT

Algorithms and Programming - Camurati & Quer 4

Implementation (with adjacency matrix)

4 N

graph_t *graph_transpose (graph_t *g) {
graph_t *h;
int 1, j;

h = (graph_t *) util _calloc (1, sizeof (graph_t));
h->nv = g->nv;
h->g = (vertex_t *) util _calloc (g->nv, sizeof(vertex t));
for (i=0; i<h->nv; i++) {
h->g[i] = g->g[i];
h->g[i].rowAd] = (int *) util_calloc (h->nv, sizeof(int));
for (j=0; j<h->nv; |++) {
} h->g[i].rowAdj[j] = g->g[j].rowAdj[i];

}

return h;

Transpose
the matrix

Algorithms and Programming - Camurati & Quer 5

Implementation (with adjacency list)

//araph_t *graph_transpose (graph_t *g) { \\\
graph_t *h = NULL;

vertex_t *tnp;

edge t *e;

int i;

h = (graph_t *) util _calloc (1, sizeof(graph_t));

h->nv = g->nv;

for (i=h->nv-1; i>=0; i--)
h->g = new_node (h->g, i);
tnp = g->0;

while (tnmp !'= NULL) {
e = tnp->head;

while (e !'= NULL) {

new edge (h, e->dst->id, tnp->id, e->weight);

e = e->next;

}

tnp = tnp->next;
} Insert a new
return h: edge

-
Algorithms and Programming - Camurati & Que B 6

Loop detection

% Given a graph G =(V, E)
» The graph is acyclic if and only if in a DFS there
are no edges labelled backward (B)

Algorithms and Programming - Camurati & Quer 7

1/10 11/16

C
3/8 2/9 14/15 12/13

Algorithms and Programming - Camurati & Quer 8

Connection in undirected graphs

< An undirected graph is said to be connected iff
» 0v,v; OV there exists a path p such thatv;, -, v,

< In an undirected graph

> Connected component

= Maximal connected subgraph, that is, there is no
superset including it which is connected

» Connected undirected graph
= Only one connected component

"/ -

Algorithms and Programming - Camurati & Que Ui 9

Connected components

% In an undirected graph

> Each tree of the DFS forest is a connected
component

» Connected component can be represented as an
array that stores an integer identifying each
connected component

= Node identifiers serve as indexes of the array

o

Algorithms and Programming - Camurati & Que i . 10

Example

Connected
Component Ids

A B C D E F G H I J K L M

Algorithms and Programming - Camurati & Quer 11

1/14 9/10 15/18 16/17
T T
A T @ ®_®
3
() (& - 1926 2021
Bl /3 4/5 1)
T e T T B
F E L 0
T
6/13 B 8/11 22/25 23/24

Algorithms and Programming - Camurati & Quer 12

Bridges

% Given an undirected and connected graph, find
out whether the property of being connected is
lost because

» An edge is removed
% Bridge
» Edge whose removal disconnects the graph

-
Algorithms and Programming - Camurati & Que B 13

Example

Bridges

;/’/'

Algorithms and Programming - Camurati & Que ; 14

Bridges

“* An edge (v,w)
> Labelled Back (B) cannot be a bridge

= Nodes v and w are also connected by a path in the
DFS tree

> Labelled Tree (T) is a bridge if and only if there
are no edges labelled Back that connect a
descendant of w to an ancestor of v in the DFS
tree

Algorithms and Programming - Camurati & Quer 15

16/23 17/22

19/20
4/5 Q G 6/11
° Q ‘
B
i O E—m
3/12 7/10 8/9
All other
edges are

tree edges

Algorithms and Programming - Camurati & Quer 16

Articulation points

% Given an undirected and connected graph, find
out whether the property of being connected is
lost because

» A node is removed
% Articulation point
» Node whose removal disconnects the graph

» Removing the vertex entails the removal of
insisting (incoming and outgoing) edges as well

-
Algorithms and Programming - Camurati & Que B I

Example

Articulation points .

Algorithms and Programming - Camurati & Quer 18

Articulation points

%+ Given an undirected graph G, given the DFS tree
G,
» The root of G, is an articulation point if and only if
it has at least two children

» Leaves cannot be articulation points

> Any internal node v is an articulation point of G if
and only if v has at least one child s such that
there is no edge labelled B from s or from one of
its descendants to a proper ancestor of v

"/

Algorithms and Programming - Camurati & Que o 19

Example

1/26 16/23

2/13

3/12 7/10 8/9

All other
edges are
tree edges

Algorithms and Programming - Camurati & Quer 20
{ Same example

different ids and order
in the DFS visit

4/11 5/10

16/23 18/21 19/20

All other
edges are
tree edges

Algorithms and Programming - Camurati & Quer 21

Directed Acyclic Graph (DAG)

%+ Topological sort (reverse)

» Reordering the nodes according to a horizontal
line, so that if the (u, v) edge exists, node u
appears to the left (right) of node v and all edges
go from left (right) to right (left)

% Algorithm
» Perform a DFS computing end-processing times

» Order vertices with descending end-processing
times

% Alternative algorithm

» Perform a DFS and when assigning end-processing
times insert the vertex into a LIFO list

B

Algorithms and Programming - Camurati & Quen 22

Example

Algorithms and Programming - Camurati &Qi 2 i 23

‘ LIFO list \

OO0~

17/18 11/16 14/15 12/13 9/10 1/8 6/7 2/5 3/4

Algorithms and Programming - Camurati & Quer AL

Topological Sort

%+ Topological sort

» With a DAG represented by an adjacency matrix, it
is enough to invert references to rows and
columns

OROHERVO®

%+ Reverse topological sort

QORGP0

Algorithms and Programming - Camurati & Quen 25

Implementation (with adjacency matrix)

//;bid graph_dag (graph_t *g){ i\\
int i, *post, |oop=0, tiner=0;
post = (int *)util_malloc(g->nv*sizeof (int));
for (i=0; i<g->nv; i++) {

iIf (g->g[i].color == WVH TE) {

timer = graph_dag r (g, i, post, timer, & oop);

}
}
if (loop !'=0) {

fprintf (stdout, "Loop detected!\n");

} else {
fprintf (stdout, "Topological sort (direct):");
for (i=g->nv-1; i>=0; i--) {
fprintf(stdout, " %", post[i]);
}
fprintf (stdout, "\n");
}

free (post);

\ >

'.‘A!__gar‘_ifhms and Programi

Implementation (with adjacency matrix)

Algorithms and Programming - Camurati & Quer 2

Connection in directed graphs

< A directed graph is said to be strongly connected iff
» 0v,,v; OV there exists two paths p, p’ such that
Vi -, V;oand v -V
% In a directed graph
» Strongly connected component
= Maximal strongly connected subgraph

» Strongly connected directed graph

= Only one strongly
connected

Component

pl

Algorithms and Programming - Camurati & Quer 28

Strongly Connected Component (SCC)

%+ Kosaraju’s algorithm ('80s)
» Reverse the graph

» Execute DFS on the reverse graph, computing
discovery and end-processing times

» Execute DFS on the original graph according to
decresasing end-processing times

» The trees of this last DFS are the strongly
connected components

Example

"/

Algorithms and Programming - Camurati & Qu: Ui 30

G

[pevarca)

Reverse
the graph
and
perform

%

GT

2/5 11/14 12/13 15/16

Perform DFS on
G by decreasing

o))
=
1]
v)
Q
O
o)
|
a

o
c
()

0
(0]
=

=i

GT

-
Algorithms and Programming - Camurati & Que B 32

Considerations

%+ SCCs are equivalence classes with respect to the
mutual reachability property

%+ We can “extract” a reduced graph G’ considering
1 node as representing each equivalence class

» The reduced graph G’ is a DAG

Algorithms and Programming - Camurati & Quer 33

Implementation (with adjacency matrix)

(code extract) | \
g = graph_load (argv[1]);

sccs = graph_scc (g);

fprintf (stdout, "Nunber of SCCs: %\n", sccs);
for (j=0; j<sccs; j++) {
fprintf (stdout, "SCC%:", j);
for (i=0; i<g->nv; i++) {
It (g->g[i].scc ==]) {
fprintf (stdout, " %", i);
}

}
fprintf (stdout, "\n");

}
gr aph_di spose (Q);

'.‘A!__gar‘_ifhms and Programi

Implementation (with adjacency matrix)

Implementation (with adjacency matrix)

'.‘A!__gar‘_ifhms and Programi

Implementation (with adjacency matrix)

Algorithms and Programming - Camurati & Quer 37

% Given the previous DAG find the topological order
of all vertices

Algorithms and Programming - Camurati & Quer 38

PEEEDE®DO

Algorithms and Programming - Camurati & Quer

% Given the previous DAG find the topological order
of all vertices

Algorithms and Programming - Camurati & Quer 40

2/15 1/24 22/23

18/19

TOOOPOLOO®®DD®

Algorithms and Programming - Camurati & Quer 41

%+ Given the previous graph, find its SCC

Algorithms and Programming - Camurati & Quer 42

% SCCs
» {1}, {H}, {G}, {A,B,C, D, E F J}

Algorithms and Programming - Camurati & Quer 43

% Given the previous graph find articulation points

R
/ & V&
— 4

Algorithms and Programming - Camurati & Q ‘ii-'-ak o -

Solution

% Articulation points
» Gand K

Algorithms and Programming - Camurati & Quen 45

%+ Given the previous graph, transform it into an
undirected graph and find articulation points,
bridges, and connected components

&

Algorithms and Programming - Camurati & Qu Ui 46

% Articulation points
» None
% Bridges
» None
%+ Connected Components
» One with all vertices, {A, B, C,D, E, F, G, H, I,]}

