
Graph

Applications of Graph-Search Algorithms
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2Algorithms and Programming – Camurati & Quer

Reverse graph

� Given a directed graph G =(V, E)

� Its reverse (or transpose) graph

� GT = (V, ET)

is such that

� If (u, v) ∈ E then (v, u) ∈ ET

3Algorithms and Programming – Camurati & Quer

Example

A B C D E

A 0 1 0 0 0

B 0 0 1 1 0

C 0 0 1 0 0

D 0 0 0 0 1

E 1 1 0 0 0

E

A

D

B

C

A B C D E

A 0 0 0 0 1

B 1 0 0 0 1

C 0 1 1 0 0

D 0 1 0 0 0

E 0 0 0 1 0

E

A

D

B

C

G GT

4Algorithms and Programming – Camurati & Quer

Implementation (with adjacency matrix)

graph_t *graph_transpose (graph_t *g) {
graph_t *h;
int i, j;

h = (graph_t *) util_calloc (1, sizeof (graph_t));
h->nv = g->nv;
h->g = (vertex_t *) util_calloc (g->nv, sizeof(vertex_t));
for (i=0; i<h->nv; i++) {
h->g[i] = g->g[i];
h->g[i].rowAdj = (int *) util_calloc (h->nv, sizeof(int));
for (j=0; j<h->nv; j++) {
h->g[i].rowAdj[j] = g->g[j].rowAdj[i];

}
}

return h;
}

Transpose
the matrix

5Algorithms and Programming – Camurati & Quer

Implementation (with adjacency list)

graph_t *graph_transpose (graph_t *g) {
graph_t *h = NULL;
vertex_t *tmp;
edge_t *e;
int i;
h = (graph_t *) util_calloc (1, sizeof(graph_t));
h->nv = g->nv;
for (i=h->nv-1; i>=0; i--)
h->g = new_node (h->g, i);

tmp = g->g;
while (tmp != NULL) {
e = tmp->head;
while (e != NULL) {
new_edge (h, e->dst->id, tmp->id, e->weight);
e = e->next;

}
tmp = tmp->next;

}
return h;

}

Insert a new
edge

6Algorithms and Programming – Camurati & Quer

� Given a graph G =(V, E)

� The graph is acyclic if and only if in a DFS there
are no edges labelled backward (B)

Loop detection

7Algorithms and Programming – Camurati & Quer

Example

G

D

H A

C

B

5/6 4/7 1/10 11/16

3/8 2/9 14/15 12/13

F

T

T B TB

T

C T

F
C B

T

EF

A

E

F

H

G

B

C

D

T

B

B

C

C

F

B

F

T

T

T

G

D

H A

C

B

EF

T

T

8Algorithms and Programming – Camurati & Quer

Connection in undirected graphs

� An undirected graph is said to be connected iff

� ∀vi,vj ∈ V there exists a path p such that vi →p vj

� In an undirected graph

� Connected component

� Maximal connected subgraph, that is, there is no
superset including it which is connected

� Connected undirected graph

� Only one connected component

a

e

b c d

hf g

9Algorithms and Programming – Camurati & Quer

Connected components

� In an undirected graph

� Each tree of the DFS forest is a connected
component

� Connected component can be represented as an
array that stores an integer identifying each
connected component

� Node identifiers serve as indexes of the array

10Algorithms and Programming – Camurati & Quer

Example

B C

G

F

D

E

A H I

J K

L M

T

A B C D E F G H I J K L M

Connected
Component Ids

11Algorithms and Programming – Camurati & Quer

Solution

B C

G

F

D

E

A H I

J K

L M

1/14

2/3 4/5

T
T

T
9/10

8/11

7/12

6/13

T

B

T T

B

15/18

19/26

16/17

20/21

22/25 23/24

T

T

T

T

B

A

B C
F

D

E

G

H

I

J

K L

M

A B C D E F G H I J K L M

0 0 0 0 0 0 0 1 1 2 2 2 2

12Algorithms and Programming – Camurati & Quer

Bridges

� Given an undirected and connected graph, find
out whether the property of being connected is
lost because

� An edge is removed

� Bridge

� Edge whose removal disconnects the graph

13Algorithms and Programming – Camurati & Quer

Example

Bridges

14Algorithms and Programming – Camurati & Quer

Bridges

� An edge (v,w)

� Labelled Back (B) cannot be a bridge

� Nodes v and w are also connected by a path in the
DFS tree

� Labelled Tree (T) is a bridge if and only if there
are no edges labelled Back that connect a
descendant of w to an ancestor of v in the DFS
tree

15Algorithms and Programming – Camurati & Quer

Example

IG

A KH

L

J

C

D

B

F

E

M

A

B

C

D E

F

M

G

HB
B

T

T

TT

T

T

T

T

I

T

K

T

J

T

L

T
B

B

1/26 16/23

18/21

15/24

17/22

3/12

6/11

2/13

19/20

8/97/10

4/5

14/25

B

B

B

B

All other
edges are
tree edges

16Algorithms and Programming – Camurati & Quer

Articulation points

� Given an undirected and connected graph, find
out whether the property of being connected is
lost because

� A node is removed

� Articulation point

� Node whose removal disconnects the graph

� Removing the vertex entails the removal of
insisting (incoming and outgoing) edges as well

17Algorithms and Programming – Camurati & Quer

Example

Articulation points

18Algorithms and Programming – Camurati & Quer

Articulation points

� Given an undirected graph G, given the DFS tree
Gp

� The root of Gp is an articulation point if and only if
it has at least two children

� Leaves cannot be articulation points

� Any internal node v is an articulation point of G if
and only if v has at least one child s such that
there is no edge labelled B from s or from one of
its descendants to a proper ancestor of v

19Algorithms and Programming – Camurati & Quer

Example

IG

A KH

L

J

C

D

B

F

E

M

A

B

C

D E

F

M

G

H
B

B

T

T

TT

T

T

T

T

I

T

K

T

J

T

L

T
B

B

1/26 16/23

18/21

15/24

17/22

3/12

6/11

2/13

19/20

8/97/10

4/5

14/25

B

B

B

B

All other
edges are
tree edges

20Algorithms and Programming – Camurati & Quer

Example

CB

A HG

L

I

E

D

F

L

J

M

1/26 4/11

6/9

3/12

5/10

16/23

17/22

14/25

7/8

19/2018/21

15/24

2/13

B

B

B

B

All other
edges are
tree edges

Same example
different ids and order

in the DFS visit

A

B

C

G

H

I

K

F

D

E

J

L

M

B

B

B

B

T

T

T

T

T

T

T

T

T

T

T

T

21Algorithms and Programming – Camurati & Quer

� Topological sort (reverse)

� Reordering the nodes according to a horizontal
line, so that if the (u, v) edge exists, node u
appears to the left (right) of node v and all edges
go from left (right) to right (left)

� Algorithm

� Perform a DFS computing end-processing times

� Order vertices with descending end-processing
times

� Alternative algorithm

� Perform a DFS and when assigning end-processing
times insert the vertex into a LIFO list

Directed Acyclic Graph (DAG)

22Algorithms and Programming – Camurati & Quer

Example

F

A

H

D

C

G

I

E

B

23Algorithms and Programming – Camurati & Quer

Solution

I F H G E A D B C

F

A

H

D

C

G

I

E

B

1/8

2/5

3/4

6/7
9/10

11/16

12/13
14/15

3/417/18 11/16 14/15 12/13 9/10 1/8 6/7 2/5

17/18

LIFO list

24Algorithms and Programming – Camurati & Quer

Topological Sort

� Topological sort

� With a DAG represented by an adjacency matrix, it
is enough to invert references to rows and
columns

� Reverse topological sort

I F H G E A D B C

C B D A E G H F I

25Algorithms and Programming – Camurati & Quer

void graph_dag (graph_t *g){
int i, *post, loop=0, timer=0;
post = (int *)util_malloc(g->nv*sizeof(int));
for (i=0; i<g->nv; i++) {
if (g->g[i].color == WHITE) {
timer = graph_dag_r (g, i, post, timer, &loop);

}
}
if (loop != 0) {
fprintf (stdout, "Loop detected!\n");

} else {
fprintf (stdout, "Topological sort (direct):");
for (i=g->nv-1; i>=0; i--) {
fprintf(stdout, " %d", post[i]);

}
fprintf (stdout, "\n");

}
free (post);

}

Implementation (with adjacency matrix)

26Algorithms and Programming – Camurati & Quer

int graph_dag_r(graph_t *g, int i, int *post, int t,
int *loop) {

int j;
g->g[i].color = GREY;
for (j=0; j<g->nv; j++) {
if (g->g[i].rowAdj[j] != 0) {
if (g->g[j].color == GREY) {

*loop = 1;
}
if (g->g[j].color == WHITE) {

t = graph_dag_r(g, j, post, t, loop);
}

}
}
g->g[i].color = BLACK;
post[t++] = i;
return t;

}

Implementation (with adjacency matrix)

27Algorithms and Programming – Camurati & Quer

Connection in directed graphs

� A directed graph is said to be strongly connected iff

� ∀vi,vj ∈ V there exists two paths p, p’ such that
vi →p vj and vj →p’ vi

� In a directed graph

� Strongly connected component

� Maximal strongly connected subgraph

� Strongly connected directed graph

� Only one strongly

� connected

� component

a

e

b

f

c

g

d

h

28Algorithms and Programming – Camurati & Quer

Strongly Connected Component (SCC)

� Kosaraju’s algorithm (’80s)

� Reverse the graph

� Execute DFS on the reverse graph, computing
discovery and end-processing times

� Execute DFS on the original graph according to
decresasing end-processing times

� The trees of this last DFS are the strongly
connected components

29Algorithms and Programming – Camurati & Quer

A B

E F

C D

G H

G

Example

30Algorithms and Programming – Camurati & Quer

A B

E F

C D

G H

G

A B

E F

C D

G H

GT

1/6

2/5

3/4

11/14

8/97/10

12/13 15/16

Solution

Reverse
the graph

and
perform

DFS on GT

31Algorithms and Programming – Camurati & Quer

Solution

A B

E F

C D

G H

G

GT

12/15

11/16

13/14

3/6

8/97/10

4/5 1/2
Perform DFS on
G by decreasing
end-processing

times

A B

E F

C D

G H

1/6

2/5

3/4

11/14

8/97/10

12/13 15/16

32Algorithms and Programming – Camurati & Quer

Considerations

� SCCs are equivalence classes with respect to the
mutual reachability property

� We can “extract” a reduced graph G’ considering
1 node as representing each equivalence class

� The reduced graph G’ is a DAG

SCC1
SCC2

SCC3SCC4

33Algorithms and Programming – Camurati & Quer

g = graph_load (argv[1]);

sccs = graph_scc (g);

fprintf (stdout, "Number of SCCs: %d\n", sccs);
for (j=0; j<sccs; j++) {

fprintf (stdout, "SCC%d:", j);
for (i=0; i<g->nv; i++) {

if (g->g[i].scc == j) {
fprintf (stdout, " %d", i);

}
}
fprintf (stdout, "\n");

}

graph_dispose (g);

Implementation (with adjacency matrix)
Client

(code extract)

34Algorithms and Programming – Camurati & Quer

int graph_scc (graph_t *g) {
graph_t *h;
int i, id=0, timer=0;
int *post, *tmp;

h = graph_transpose (g);
post = (int *) util_malloc (g->nv*sizeof(int));
for (i=0; i<g->nv; i++) {

if (h->g[i].color == WHITE) {
timer = graph_scc_r (h, i, post, id, timer);

}
}
graph_dispose (h);

Implementation (with adjacency matrix)

35Algorithms and Programming – Camurati & Quer

id = timer = 0;
tmp = (int *) util_malloc (g->nv * sizeof(int));
for (i=g->nv-1; i>=0; i--) {

if (g->g[post[i]].color == WHITE) {
timer=graph_scc_r(g, post[i], tmp, id, timer);
id++;

}
}

free (post);
free (tmp);

return id;
}

Implementation (with adjacency matrix)

36Algorithms and Programming – Camurati & Quer

int graph_scc_r(
graph_t *g, int i, int *post, int id, int t

) {
int j;
g->g[i].color = GREY;
g->g[i].scc = id;
for (j=0; j<g->nv; j++) {

if (g->g[i].rowAdj[j]!=0 &&
g->g[j].color==WHITE) {

t = graph_scc_r (g, j, post, id, t);
}

}
g->g[i].color = BLACK;
post[t++] = i;

return t;
}

Implementation (with adjacency matrix)

37Algorithms and Programming – Camurati & Quer

Exercise

� Given the previous DAG find the topological order
of all vertices

38Algorithms and Programming – Camurati & Quer

Solution

2/7

3/6

10/13

9/148/15

11/12

17/18

1/16

4/5

F D G B E I H A C

…

…

39Algorithms and Programming – Camurati & Quer

� Given the previous DAG find the topological order
of all vertices

Exercise

40Algorithms and Programming – Camurati & Quer

Solution

1/242/15

11/12 10/13

22/23

3/14 16/21

4/9

17/20 18/19

5/8

6/7

F G B E J K H I LA D C

…

…

41Algorithms and Programming – Camurati & Quer

� Given the previous graph, find its SCC

Exercise

42Algorithms and Programming – Camurati & Quer

Solution

� SCCs

� {I}, {H}, {G}, {A, B, C, D, E, F, J}

SCC2

SCC4

SCC1

SCC3

43Algorithms and Programming – Camurati & Quer

Exercise

� Given the previous graph find articulation points

44Algorithms and Programming – Camurati & Quer

Solution

� Articulation points

� G and K

45Algorithms and Programming – Camurati & Quer

� Given the previous graph, transform it into an
undirected graph and find articulation points,
bridges, and connected components

Exercise

46Algorithms and Programming – Camurati & Quer

Solution

� Articulation points

� None

� Bridges

� None

� Connected Components

� One with all vertices, {A, B, C, D, E, F, G, H, I, J}

