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Reverse graph

� Given a directed graph G =(V, E)

� Its reverse (or transpose) graph

� GT = (V, ET)

is such that 

� If (u, v) ∈ E  then (v, u) ∈ ET
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Example
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Implementation (with adjacency matrix)

graph_t *graph_transpose (graph_t *g) {
graph_t *h;
int i, j;

h = (graph_t *) util_calloc (1, sizeof (graph_t));
h->nv = g->nv;
h->g = (vertex_t *) util_calloc (g->nv, sizeof(vertex_t));
for (i=0; i<h->nv; i++) {
h->g[i] = g->g[i];
h->g[i].rowAdj = (int *) util_calloc (h->nv, sizeof(int));
for (j=0; j<h->nv; j++) {
h->g[i].rowAdj[j] = g->g[j].rowAdj[i];

}
}

return h;
}

Transpose 
the matrix
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Implementation (with adjacency list)

graph_t *graph_transpose (graph_t *g) {
graph_t *h = NULL;
vertex_t *tmp;
edge_t *e;
int i;
h = (graph_t *) util_calloc (1, sizeof(graph_t));
h->nv = g->nv;
for (i=h->nv-1; i>=0; i--)
h->g = new_node (h->g, i);

tmp = g->g;
while (tmp != NULL) {
e = tmp->head;
while (e != NULL) {
new_edge (h, e->dst->id, tmp->id, e->weight);
e = e->next;

}
tmp = tmp->next;

}
return h;

}

Insert a new 
edge
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� Given a graph G =(V, E)

� The graph is acyclic if and only if in a DFS there
are no edges labelled backward (B)

Loop detection
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Example
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Connection in undirected graphs

� An undirected graph is said to be connected iff

� ∀vi,vj ∈ V there exists a path p such that vi →p vj

� In an undirected graph

� Connected component

� Maximal connected subgraph, that is, there is no 
superset including it which is connected

� Connected undirected graph

� Only one connected component

a

e

b c d

hf g
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Connected components

� In an undirected graph

� Each tree of the DFS forest is a connected 
component

� Connected component can be represented as an 
array that stores an integer identifying each 
connected component

� Node identifiers serve as indexes of the array
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Example
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Solution

B C

G

F

D

E

A H I

J K

L M

1/14

2/3 4/5

T
T

T
9/10

8/11

7/12

6/13

T

B

T T

B

15/18

19/26

16/17

20/21

22/25 23/24

T

T

T

T

B

A

B C
F

D

E

G

H

I

J

K L

M

A B C D E F G H I J K L M

0 0 0 0 0 0 0 1 1 2 2 2 2



12Algorithms and Programming – Camurati & Quer

Bridges

� Given an undirected and connected graph, find 
out whether the property of being connected is 
lost because

� An edge is removed

� Bridge

� Edge whose removal disconnects the graph
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Example

Bridges
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Bridges

� An edge (v,w)

� Labelled Back (B) cannot be a bridge

� Nodes v and w are also connected by a path in the 
DFS tree

� Labelled Tree (T) is a bridge if and only if there
are no edges labelled Back that connect a 
descendant of w to an ancestor of v in the DFS 
tree
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Example
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Articulation points

� Given an undirected and connected graph, find 
out whether the property of being connected is 
lost because

� A node is removed

� Articulation point

� Node whose removal disconnects the graph

� Removing the vertex entails the removal of 
insisting (incoming and outgoing) edges as well
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Example

Articulation points
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Articulation points

� Given an undirected graph G, given the DFS tree
Gp

� The root of Gp is an articulation point if and only if
it has at least two children

� Leaves cannot be articulation points

� Any internal node v is an articulation point of G if
and only if v has at least one child s such that
there is no edge labelled B from s or from one of 
its descendants to a proper ancestor of v
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Example
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Example
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� Topological sort (reverse)

� Reordering the nodes according to a horizontal
line, so that if the (u, v) edge exists, node u 
appears to the left (right) of node v and all edges
go from left (right) to right (left)

� Algorithm

� Perform a DFS computing end-processing times

� Order vertices with descending end-processing 
times

� Alternative algorithm

� Perform a DFS and when assigning end-processing 
times insert the vertex into a LIFO list

Directed Acyclic Graph (DAG)
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Example
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Solution
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Topological Sort

� Topological sort

� With a DAG represented by an adjacency matrix, it
is enough to invert references to rows and 
columns

� Reverse topological sort

I F H G E A D B C 

C B D A E G H F I 
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void graph_dag (graph_t *g){
int i, *post, loop=0, timer=0;
post = (int *)util_malloc(g->nv*sizeof(int));
for (i=0; i<g->nv; i++) {
if (g->g[i].color == WHITE) {
timer = graph_dag_r (g, i, post, timer, &loop);

}
}
if (loop != 0) {
fprintf (stdout, "Loop detected!\n");

} else {
fprintf (stdout, "Topological sort (direct):");
for (i=g->nv-1; i>=0; i--) {
fprintf(stdout, " %d", post[i]);

}
fprintf (stdout, "\n");

}
free (post);

}  

Implementation (with adjacency matrix)
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int graph_dag_r(graph_t *g, int i, int *post, int t,
int *loop) {

int j;
g->g[i].color = GREY;
for (j=0; j<g->nv; j++) {
if (g->g[i].rowAdj[j] != 0) {
if (g->g[j].color == GREY) {

*loop = 1;
}
if (g->g[j].color == WHITE) {

t = graph_dag_r(g, j, post, t, loop);
}

}
}
g->g[i].color = BLACK;
post[t++] = i;
return t;

}  

Implementation (with adjacency matrix)
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Connection in directed graphs

� A directed graph is said to be strongly connected iff

� ∀vi,vj ∈ V there exists two paths p, p’ such that
vi →p vj and  vj →p’ vi

� In a directed graph

� Strongly connected component

� Maximal strongly connected subgraph

� Strongly connected directed graph

� Only one strongly

� connected

� component

a

e

b

f

c

g

d

h
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Strongly Connected Component (SCC)

� Kosaraju’s algorithm (’80s)

� Reverse the graph

� Execute DFS on the reverse graph, computing 
discovery and end-processing times

� Execute DFS on the original graph according to 
decresasing end-processing times

� The trees of this last DFS are the strongly 
connected components
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A B

E F

C D

G H
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GT
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Reverse 
the graph

and 
perform

DFS on GT
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Solution

A B

E F

C D

G H

G

GT
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13/14
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4/5 1/2
Perform DFS on 
G by decreasing
end-processing 
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Considerations

� SCCs are equivalence classes with respect to the 
mutual reachability property

� We can “extract” a reduced graph G’ considering 
1 node as representing each equivalence class

� The reduced graph G’ is a DAG

SCC1
SCC2

SCC3SCC4
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g = graph_load (argv[1]);

sccs = graph_scc (g);

fprintf (stdout, "Number of SCCs: %d\n", sccs);
for (j=0; j<sccs; j++) {

fprintf (stdout, "SCC%d:", j);
for (i=0; i<g->nv; i++) {

if (g->g[i].scc == j) {
fprintf (stdout, " %d", i);

}
}
fprintf (stdout, "\n");

}

graph_dispose (g);

Implementation (with adjacency matrix)
Client

(code extract)
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int graph_scc (graph_t *g) {
graph_t *h;
int i, id=0, timer=0;
int *post, *tmp;

h = graph_transpose (g);
post = (int *) util_malloc (g->nv*sizeof(int));
for (i=0; i<g->nv; i++) {

if (h->g[i].color == WHITE) {
timer = graph_scc_r (h, i, post, id, timer);

}
}
graph_dispose (h);

Implementation (with adjacency matrix)
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id = timer = 0;
tmp = (int *) util_malloc (g->nv * sizeof(int));
for (i=g->nv-1; i>=0; i--) {

if (g->g[post[i]].color == WHITE) {
timer=graph_scc_r(g, post[i], tmp, id, timer);
id++;

}
}

free (post);
free (tmp);

return id;
}

Implementation (with adjacency matrix)
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int graph_scc_r(
graph_t *g, int i, int *post, int id, int t

) {
int j;
g->g[i].color = GREY;
g->g[i].scc = id;
for (j=0; j<g->nv; j++) {

if (g->g[i].rowAdj[j]!=0 &&
g->g[j].color==WHITE) {

t = graph_scc_r (g, j, post, id, t);
}

}
g->g[i].color = BLACK;
post[t++] = i;

return t;
}

Implementation (with adjacency matrix)
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Exercise

� Given the previous DAG find the topological order
of all vertices
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Solution

2/7

3/6

10/13

9/148/15

11/12

17/18

1/16

4/5

F D G B E I H A C 

…

…
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� Given the previous DAG find the topological order
of all vertices

Exercise
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Solution

1/242/15

11/12 10/13

22/23

3/14 16/21

4/9

17/20 18/19

5/8

6/7

F G B E J K H I LA D C 

…

…
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� Given the previous graph, find its SCC

Exercise
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Solution

� SCCs

� {I}, {H}, {G}, {A, B, C, D, E, F, J}

SCC2

SCC4

SCC1

SCC3
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Exercise

� Given the previous graph find articulation points
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Solution

� Articulation points

� G and K
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� Given the previous graph, transform it into an 
undirected graph and find articulation points, 
bridges, and connected components

Exercise
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Solution

� Articulation points

� None

� Bridges

� None

� Connected Components

� One with all vertices, {A, B, C, D, E, F, G, H, I, J}


