#inchude <idiib.h>
Hinclude <shring h>
#include <clypa.h>

#define MAXPAROLA 30
#define MANKIGA 80

it mainfint erge. cher *ergy(])
(

Graph Searches
Paolo Camurati and Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

Algorithms and Programming - Camurati & Quer 2

Search Algorithms

% Searching a graph means systematically following
the edgtes of the graph so as to visit the vertices
of the graph

» A graph-searching algorithm can discover much
about the structure of a graph
» Many algorithms

= Begin by searching their input graph to obtain
structural information
= Are derived from basic searching algorithms

Algorithms and Programming - Camurati & Quer 3

Search Algorithms

% Given a graph
» G=(V, E)
“* A visit
» Starts from a given node
> Follows the edges according to a known strategy

> Lists the nodes found, possibly adding additional
information for each vertex or edge

» Stops when the entire graph (or the desired part)
has been reached

Algorithms and Programming - Camurati & Quen !

Search Algorithms

% The two most used algorithms to visit a graph
are

» Breadth-First Search (BFS)

= Tt visits the graph following its onion-ring shape, i.e.,
it visits all nodes at a given distance from the source
node at the same time before moving the a higher
distance

» Depth-First Search (DFS)

= It recursively goes in-depth along a given path
starting from the source node, before moving to
another path

Algorithms and Programming - Camurati & Quer 5

Breadth-first search

% Processing the graph in breadth-first means

» Expanding in parallel the whole border (frontier)
between already discovered nodes and not yet
discovered nodes

% It starts from a given (source) node s

> It identifies all nodes reachable from the source
node s

> It visits them
> It moves onto nodes at a higher distance
» It goes on till it has visited all nodes

Algorithms and Programming - Camurati & Quer 6

Breadth-first search

++» Breadth-first search

» Computes the minimum distance (the shortest
path) from s to all the nodes reachable from s

» Uses a FIFO queue to store nodes while visiting
them

» Generates a BFS tree in which all visited (i.e.,
reached) nodes are finally inserted
= For each visited node maintain the parent (or
predecessor)

e Using an array of predecessors (one elment for each
vertex)

e Using a backward reference for each vertex (the pred
field)

Algorithms and Programming - Camurati & Quer 7

Breadth-first search

% During the visit, breadth-first
> Generates discovery times for all visited nodes
= This is the time indicating the first time the node is
encountered during the visit
» Colors nodes depending on their visiting status
= White nodes
e Are nodes not yet discovered

= Gray nodes

e Are nodes discovered but whose manipulation is not
yet complete

= Black nodes
e Discovered and completed

Algorithms and Programming - Camurati & Quer 8

Pseudo-code

BFS (G s) [Init all vertices]
for each vertex v OV

v.color = WH TE
v.dtinme = o

v.pred = NULL Init source vertex
queue_init (Q and FIFO queue
s.col or = GRAY

s.dtinme = 0

S [l ed = NULL /
queue_elnqueue (Q 's) —~ Extract next vertex
whil e (!queue_enpty (Q)

= GUEIE GEEUEIE (6 from the queue

for each v O Adj (u) —1 - J

if (v.color == WH TE) For each adjacent
v. col or GRAY vertex

u.dtime + 1

While the queue is
not empty

v.dtinme

v.pred =

queue_enqueue (Q v)
u. col or = BLACK

\ /

5

A Queue
®
00
B C E e ~
0 1 2 3 4 5 6 / while (!queue_enmpty (Q)
-1 -1 -1 -1 -1 -1 -1 -1 u = queue_dequeue (Q

for each v O Adj (u)
if (v.color == WH TE)
v. col or GRAY
v.dtinme u.dtinme + 1
v.pred = u
queue_enqueue (Q V)
u. col or = BLACK

;/’/'

Algorithms and Programming - Camurati & Quer 2o 10

A B D Queue
(E) F H
2 1 2 3
B C D E G H st
0 1 2 3 4 5 6 7 (B)
BIERIEERERERERE (2

BFS tree G @

The shortest path from B
toHis B, F, G, H, with @ m
length = 3

Algorithms and Programming - Camurati & Quer 11

Implementation (with adjacency list)

Client
(code extract) | ~

g = graph_load(argv[1]);

Vertex init: OvOV, set

rintf("Initial vertex? ");: color as WHITE
Ecanf ((0", &);) discovery time as INT_MAX
src = graph_find(g, i); predecessor as NULL

graph_attribute_init (g); _ :
graph_bfs (g, src); Print BFS info

n = g->g;
printf ("List of vertices:\n");
while (n !'= NULL) {
iIf (n->color '= WH TE) {
printf("%d: % (%l)\n",

n->id, n->dist, n->pred ? n->pred->id : -1);
}
n = n->next;
} Note: Unconnected
components

\ gr aph_di spose(Q); remain unvisited /

'.A_I__gbr'_i‘rhms and Prog_iim - Camurati ¢ uer

Implementation (with adjacency list)

Function queue_* belong
to the queue library

Algorithms and Programming - Camurati & Quen

13

Implementation (with adjacency list)

/ while (!queue_enpty_n(qgp)) {

queue_get (gp, (void **)&n);
e = n->head;
while (e !'= NULL) {
d = e->dst;
i f (d->color == WHI TE) {
d->col or = GREY;
d->di st = n->dist + 1;
d->pred = n;
queue_put (gp, (void *)d);
}
e = e->next;
}
n- >col or = BLACK;
}
gqueue_di spose (gp, NULL);

p .

Z\ If the queue is not empty
i

<[\

Extract vertex on head
and visit its adjacency list

I
~

And more specifically all
adjancent white nodes

¥
|

Nodes on the
frontier are grey

Nodes managed
are back

ﬁ

/

Algorithms and Programming - Camurati & Quer

14

Complexity

-

BFS (G s)
for each vertex v 0V
v.color = WH TE
v.dtine = o

v.pred = NULL
queue_init (Q

s.col or = GRAY
s.dtime =0
s.pred = NULL Z

gueue_enqueue (Q s)

while (!queue_enpty (Q)
u = queue_dequeue (Q
for each v O Adj (u)

N\

if (v.color == WH TE)
v.col or = GRAY
v.dtime = u.dtime + 1

v.pred = u

gueue_enqueue (Q V)

For each vertex O(1)
For all vertices O(|V])

|

The cost to enqueue and)
dequeue a vertex is O(1)
Each vertex is inserted and
extract from the queue
For all vertices O(|V|)

AN

v

\

The procedure scans all adjacency lists x
The sum of the length of all lists is ©(|E|)
The cost to manage them is O(|E|)
Notice that the cost is O(|E|) not ©(|E|)
because we visit only the connected
component including the starting vertex not

the entire graph /

u. col or BLACK

K J

Algorithms and Programming - Camurati & Quer

15

-

BFS (G s)
for each vertex v 0V
v.color = WH TE
v.dtine = o

v.pred = NULL
queue_init (Q

s.col or = GRAY
s.dtime =0 ~
s.pred = NULL

gueue_enqueue (Q s)

while (!queue_enpty (Q)
u = queue_dequeue (Q
for each v O Adj (u)

if (v.color == WH TE)
v.col or = GRAY
v.dtime = u.dtime + 1

v.pred = u
gueue_enqueue (Q V)

\KG

lobally the cost is given by

Init and queue = O(|V|)
Adjacency lists > O(|E|)

Thus > T(n) = O(|V|+|E])

/

u. col or BLACK

\ /

Algorithms and Programming - Camurati & Quer 16

% Given the following graph visit it Breadth-First
starting from vertex E

» Report the resulting BFS tree

Algorithms and Programming - Camurati & Quer 74

% Given the following graph visit it Breadth-First
starting from vertex A

» Report the resulting BFS tree

Algorithms and Programming - Camurati & Quer 18

Depth-first search

%+ Given a connected (or unconnected) graph,
starting from a source node s
» It expands the last discovered node that has still
undiscovered adjacent nodes
= It searches deeper in the graph whenever possible
> It visits all the nodes of the graph
= No matter they are reachable from s or not

= It restart (from an unreached nodes) if not all
nodes have been reached

(even if BFS can be

DFS differs from BFS
modified at will)

;/’/'

Algorithms and Programming - Camurati & Que ; 19

Depth-first search

%+ During the visit graph nodes are conceptually
classified as

» White
= Not yet discovered nodes

» Gray
= Already discovered, but not yet completed

> Black
= Discovered and completed

Algorithms and Programming - Camurati & Quer 20

Depth-first search

% It labels each node with two timestamps and a
flag
» Timestamps are discrete times with time that
evolves according to a counter time
> Its discovery time
= The first time the node is encountered in the visit
during the recursive descent, in pre-order visit
» Its endprocessing or finishing or completion or quit
time
= The end of node processing, when the procedure
exit from recursion, in post-order visit
» The flag defines the node’s parent in the depth-
first visit

Algorithms and Programming - Camurati & Quer 21

Depth-first search

% It labels each edge with an attribute, describing
the edge a
> T(ree), B(ackward), F(orward), C(ross)
= For directed graphs
> T(ree), B(ackward)

= For undirected graphs
e Forward edges become Backward edges
e Cross edges become Tree edges

% It generates a forest of DFS trees

5

Algorithms and Programming - Camurati & Qu

22

Pseudo-code

/DFS (Q

for each vertex v 0V
v. col or VH TE
v.dtine v.endtine
v.pred = NULL

time 0

00

— .

[Init all vertices]

For eacfh possibile
source vertex call
recursive function

Set node attributes 1

for each vertex v OO0V
if (v.color = WH TE)
DFSr (G v)
DFS r (G u)
time++
u.dtine = tine
u. col or GRAY
for each v O Adj (u)
if (v.color VH TE)
v.pred = u
DFSr (G v)
BLACK

|

—

Recur]

u. col or
ti me++

Ve

Set node attributes }

\ u.endtine = tinme

J

P

Algorithms and Programming - Camurati & Qu:

23

DFSr (G u)
time++
u.dtine = tine
u.col or = GRAY

for each v O Adj (u)
if (v.color ==
v.pred = u
DFSr (G Vv)
u.col or = BLACK
time++
u.endtinme = tine

WHI TE)

&

Algorithms and Programming - Camurati & Qu U 24

1/8 2/7 9/12

3/6 10/11

A B D E

0 1 3 4 5
1 2 4 3 10
8 7 12 5 6 11

DFS tree

"/

Algorithms and Programming - Camurati & Que U 25

Edge labelling in directed graphs

%+ Given a directed graph and an edge (u, v)
> A tree (T) edge is an edge of the DFS forest
= The edge (u,v) isa T edge if
e Vertex v is discovered by exploring edge (u,v)
e Vertex v is WHITE when reached with edge (u, v)

Algorithms and Programming - Camurati & Quer 26

Edge labelling in directed graphs

%+ Given a directed graph and an edge (u, v)
> A back (B) edge is an edge connecting a vertex u
to an ancestor v in a depth-first tree
= As (u, v) is reaching an ancestor
e When visited, v.endp_time is not defined

e At the end of the visit, it will be
0 v.endp_time > u.endp_time

= The edge (u,v) is a B edge if the vertex v is GRAY
when reached with edge (u, v)

= Self-loop (which may occur in directed
graphs) are B edges

v.endp_tinme = -1

u.endp_tine = 3

Algorithms and Programming - Camurati & Quer 2

Edge labelling in directed graphs

%+ Given a directed graph and an edge (u, v)
> A forward (F) edge is a nontree edge connecting a
vertex u to a descendant v in a depth-first tree

= The edge (u, v) is a F edge if the vertex v is BLACK
and it has a higher discovery time than u

e v.disc_time > u.disc_time

u.disc tine = 3

v.disc_tinme =7

Algorithms and Programming - Camurati & Quer 28

Edge labelling in directed graphs

%+ Given a directed graph and an edge (u, v)
> A cross (C) edge is one of the other edges

= A cross edge can go between vertices in the same
depth-first tree, as long as one vertex is not an
ancestor of the other, or they can go between
vertices in different depth-first trees

= The edge (u,v) is a C edge if the vertex v

is BLACK and it has a u.disc time = 8
lower discovery time than u
e v.disc_time < u.disc_time T
T C

v.disc_tinme = 2

Algorithms and Programming - Camurati & Quen 29

Edge labelling in undirected graphs

%+ For undirected graphs, since (u, v) and (v, u) are
really the same edge, we may have some
ambiguity in how edges are classified

% In every undirected graph, every edge is either a
tree (T) or a back (B) edge

% The definitions may be derived from the previous
ones

Algorithms and Programming - Camurati & Quer 30

Edge labelling in undirected graphs

> Tree edges are defined as before
= Towards a WHITE vertex

» Backward edges are defined as before
= Towards a GRAY vertex

Algorithms and Programming - Camurati & Quer 31

Edge labelling in undirected graphs

> As each edge can be traversed both ways

= Forward edges do not exist, as they are traversed
"before" from v to u when they are just Backward
edges and

e v.disc_time > u.disc_time

= Cross edges do not exist, as they are traversed
"before" from v to u when they are just Tree edges
and

e v.disc_time < u.disc_time

Algorithms and Programming - Camurati & Quer B2

Implementation (with adjacency list)

Client (extract)

Vertex init: OvV, set
color as WHITE
discovery and finisching times as INT_MAX

predecessor as NULL

«)
g = graph_| oad (argv[l]);féi///////

printf ("Initial vertex? ");
scanf ("od", &);

src = graph_find (g, i);

| - DFS)
graph _attribute init (g); (recursive function) |
graph_dfs (g, src);

gr aph_di spose (Q);
L /

Algorithms and Programming - Camurati & Quen 33

Implementation (with adjacency list)

//Vbid graph_dfs (graph t *g, vertex_ t *n) { i\\
i nt currTi me=0;
vertex t *tnp, *tnp2;

printf("List of edges:\n");
currTime = graph_dfs r (g, n, currTine),;
for (tnp=g->g; tnp!=NULL; tnp=tnp->next) {
i f (tnp->color == WH TE) {
currTime = graph_dfs r (g, tnp, currTine);
}
}

printf("List of vertices:\n");
for (tnp=g->g; tnp!=NULL; tnp=tnp->next) {
t mp2 = t np->pred;
printf("%d: %d/%d (%l)\n",
tnmp->id, tnp->disc tinme, tnp->endp_tine,
(tnmp2! =NULL) ? tnp->pred->id : -1);

G o

Algorithms and Programming - Camurati & Quen 34

Implementation (with adjacency list)

edge t *e;
vertex t *t;

n->col or = GREY;
e = n->head;
while (e !'= NULL) {

t = e->dst;
swtch (tnp->color) {

} else {

}

N

n->di sc_tinme = ++currTinme;

case VHHTE: printf("%l -> % : T\n", n->id, t->id);
br eak;

case GREY : printf("%l -> %l : B\n", n->id, t->id);
br eak;

case BLACK

If (n->disc_tinme <t->disc_tine) {
printf("% -> % :

printf("% -> % :

//fnt graph_dfs r(graph_t *g, vertex_t *n, int currTinme) { ‘\\

F\n", n->disc_tine, t->disc_tine);

Qn", n->id, t->id);

/

'.‘A!__gar‘_iThms and Programt

Implementation (with adjacency list)

Algorithms and Programming - Camurati & Quer

36

/DFS (G
for each vertex v 0V
v.color = WH TE
v.dtine = v.endtine = «
v.pred = NULL
time =0

—

for each vertex v OV
if (v.color = WH TE)

K

~

For each vertex O(1)
For all vertices O(|V])

-

DFS r is called once for

each vertex v > O(|V|)
J

J

— .

DFS r (G V)

DFS r (G u)
time++
u.dtime time
u.colro GRAY

The procedure scans all adjacency lists
Sum of the length of all lists > O(|E|)
Cost to manage them = O(|E|)

for each v O Adj (u)
if (v.color
v.pred = u
DFS r (G V)
BLACK

WH TE)

u. col or
ti me++

Globally the cost is given by
T(n) = ©(|V[+[E])

\ u.endtine = tinme

1

Algorithms and Programming - Camurati & Quer 37

% Given the following graph visit it Depth-First
> Label all edges
» Report the resulting DFS tree

Algorithms and Programming - Camurati & Quer 38

% Given the following graph visit it Depth-First
> Label all edges
» Report the resulting DFS tree

