
Graph

Graph Searches
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2Algorithms and Programming – Camurati & Quer

Search Algorithms

 Searching a graph means systematically following
the edgtes of the graph so as to visit the vertices
of the graph

 A graph-searching algorithm can discover much
about the structure of a graph

 Many algorithms

 Begin by searching their input graph to obtain
structural information

 Are derived from basic searching algorithms

3Algorithms and Programming – Camurati & Quer

Search Algorithms

 Given a graph

 G=(V, E)

 A visit

 Starts from a given node

 Follows the edges according to a known strategy

 Lists the nodes found, possibly adding additional
information for each vertex or edge

 Stops when the entire graph (or the desired part)
has been reached

4Algorithms and Programming – Camurati & Quer

Search Algorithms

 The two most used algorithms to visit a graph
are

 Breadth-First Search (BFS)

 It visits the graph following its onion-ring shape, i.e.,
it visits all nodes at a given distance from the source
node at the same time before moving the a higher
distance

 Depth-First Search (DFS)

 It recursively goes in-depth along a given path
starting from the source node, before moving to
another path

5Algorithms and Programming – Camurati & Quer

Breadth-first search

 Processing the graph in breadth-first means

 Expanding in parallel the whole border (frontier)
between already discovered nodes and not yet
discovered nodes

 It starts from a given (source) node s

 It identifies all nodes reachable from the source
node s

 It visits them

 It moves onto nodes at a higher distance

 It goes on till it has visited all nodes

6Algorithms and Programming – Camurati & Quer

Breadth-first search

 Breadth-first search

 Computes the minimum distance (the shortest
path) from s to all the nodes reachable from s

 Uses a FIFO queue to store nodes while visiting
them

 Generates a BFS tree in which all visited (i.e.,
reached) nodes are finally inserted

 For each visited node maintain the parent (or
predecessor)

● Using an array of predecessors (one elment for each
vertex)

● Using a backward reference for each vertex (the pred
field)

7Algorithms and Programming – Camurati & Quer

Breadth-first search

 During the visit, breadth-first

 Generates discovery times for all visited nodes

 This is the time indicating the first time the node is
encountered during the visit

 Colors nodes depending on their visiting status

 White nodes

● Are nodes not yet discovered

 Gray nodes

● Are nodes discovered but whose manipulation is not
yet complete

 Black nodes

● Discovered and completed

8Algorithms and Programming – Camurati & Quer

BFS (G, s)
for each vertex v ∈ V
v.color = WHITE
v.dtime = ∞
v.pred = NULL

queue_init (Q)
s.color = GRAY
s.dtime = 0
s.pred = NULL
queue_enqueue (Q, s)
while (!queue_empty (Q))

u = queue_dequeue (Q)
for each v ∈ Adj(u)
if (v.color == WHITE)
v.color = GRAY
v.dtime = u.dtime + 1
v.pred = u
queue_enqueue (Q, v)

u.color = BLACK

Init all vertices

Pseudo-code

Init source vertex
and FIFO queue

While the queue is
not empty

Extract next vertex
from the queue

For each adjacent
vertex

9Algorithms and Programming – Camurati & Quer

Example

A B C D E F G H

0 1 2 3 4 5 6 7

-1 -1 -1 -1 -1 -1 -1 -1

E

A

F G

B C

H

D

∞

∞

∞

∞

∞

∞∞

Queue
0

...
while (!queue_empty (Q))
u = queue_dequeue (Q)
for each v ∈ Adj(u)
if (v.color == WHITE)

v.color = GRAY
v.dtime = u.dtime + 1
v.pred = u
queue_enqueue (Q, v)

u.color = BLACK

10Algorithms and Programming – Camurati & Quer

Solution

E

A

F G

B C

H

D

0

2

1 3

2

2

31

D

st

H

C G

F

B

A

E
BFS tree

The shortest path from B
to H is B, F, G, H, with

length = 3

Queue

A B C D E F G H

0 1 2 3 4 5 6 7

1 0 2 3 2 1 2 3

11Algorithms and Programming – Camurati & Quer

g = graph_load(argv[1]);
printf("Initial vertex? ");
scanf("%d", &i);
src = graph_find(g, i);

graph_attribute_init (g);
graph_bfs (g, src);

n = g->g;
printf ("List of vertices:\n");
while (n != NULL) {
if (n->color != WHITE) {
printf("%2d: %d (%d)\n",
n->id, n->dist, n->pred ? n->pred->id : -1);

}
n = n->next;

}

graph_dispose(g);

Print BFS info

Implementation (with adjacency list)
Client

(code extract)
Vertex init: ∀v∈V, set

color as WHITE
discovery time as INT_MAX

predecessor as NULL

Note: Unconnected
components

remain unvisited

12Algorithms and Programming – Camurati & Quer

void graph_bfs (graph_t *g, vertex_t *n) {
queue_t *qp;
vertex_t *d;
edge_t *e;

qp = queue_init (g->nv);
n->color = GREY;
n->dist = 0;
n->pred = NULL;
queue_put (qp, (void *)n);

Function queue_* belong
to the queue library

Implementation (with adjacency list)

13Algorithms and Programming – Camurati & Quer

while (!queue_empty_m(qp)) {
queue_get(qp, (void **)&n);
e = n->head;
while (e != NULL) {

d = e->dst;
if (d->color == WHITE) {
d->color = GREY;
d->dist = n->dist + 1;
d->pred = n;
queue_put (qp, (void *)d);

}
e = e->next;

}
n->color = BLACK;

}
queue_dispose (qp, NULL);

}

If the queue is not empty

Extract vertex on head
and visit its adjacency list

And more specifically all
adjancent white nodes

Nodes on the
frontier are grey

Nodes managed
are back

Implementation (with adjacency list)

14Algorithms and Programming – Camurati & Quer

BFS (G, s)
for each vertex v ∈ V
v.color = WHITE
v.dtime = ∞
v.pred = NULL

queue_init (Q)
s.color = GRAY
s.dtime = 0
s.pred = NULL
queue_enqueue (Q, s)
while (!queue_empty (Q))

u = queue_dequeue (Q)
for each v ∈ Adj(u)
if (v.color == WHITE)
v.color = GRAY
v.dtime = u.dtime + 1
v.pred = u
queue_enqueue (Q, v)

u.color = BLACK

For each vertex O(1)
For all vertices O(|V|)

Complexity

The procedure scans all adjacency lists
The sum of the length of all lists is Θ(|E|)

The cost to manage them is O(|E|)
Notice that the cost is O(|E|) not Θ(|E|)

because we visit only the connected
component including the starting vertex not

the entire graph

The cost to enqueue and
dequeue a vertex is O(1)

Each vertex is inserted and
extract from the queue
For all vertices O(|V|)

15Algorithms and Programming – Camurati & Quer

Complexity

BFS (G, s)
for each vertex v ∈ V
v.color = WHITE
v.dtime = ∞
v.pred = NULL

queue_init (Q)
s.color = GRAY
s.dtime = 0
s.pred = NULL
queue_enqueue (Q, s)
while (!queue_empty (Q))

u = queue_dequeue (Q)
for each v ∈ Adj(u)
if (v.color == WHITE)
v.color = GRAY
v.dtime = u.dtime + 1
v.pred = u
queue_enqueue (Q, v)

u.color = BLACK

Globally the cost is given by

Init and queue  O(|V|)
Adjacency lists  O(|E|)

Thus  T(n) = O(|V|+|E|)

16Algorithms and Programming – Camurati & Quer

 Given the following graph visit it Breadth-First
starting from vertex E

 Report the resulting BFS tree

Exercise

17Algorithms and Programming – Camurati & Quer

Exercise

 Given the following graph visit it Breadth-First
starting from vertex A

 Report the resulting BFS tree

18Algorithms and Programming – Camurati & Quer

Depth-first search

 Given a connected (or unconnected) graph,
starting from a source node s

 It expands the last discovered node that has still
undiscovered adjacent nodes

 It searches deeper in the graph whenever possible

 It visits all the nodes of the graph

 No matter they are reachable from s or not

 It restart (from an unreached nodes) if not all
nodes have been reached

DFS differs from BFS
(even if BFS can be

modified at will)

19Algorithms and Programming – Camurati & Quer

Depth-first search

 During the visit graph nodes are conceptually
classified as

 White

 Not yet discovered nodes

 Gray

 Already discovered, but not yet completed

 Black

 Discovered and completed

20Algorithms and Programming – Camurati & Quer

Depth-first search

 It labels each node with two timestamps and a
flag

 Timestamps are discrete times with time that
evolves according to a counter time

 Its discovery time

 The first time the node is encountered in the visit
during the recursive descent, in pre-order visit

 Its endprocessing or finishing or completion or quit
time

 The end of node processing, when the procedure
exit from recursion, in post-order visit

 The flag defines the node’s parent in the depth-
first visit

21Algorithms and Programming – Camurati & Quer

Depth-first search

 It labels each edge with an attribute, describing
the edge a

 T(ree), B(ackward), F(orward), C(ross)

 For directed graphs

 T(ree), B(ackward)

 For undirected graphs

● Forward edges become Backward edges

● Cross edges become Tree edges

 It generates a forest of DFS trees

22Algorithms and Programming – Camurati & Quer

DFS (G)
for each vertex v ∈ V
v.color = WHITE
v.dtime = v.endtime = ∞
v.pred = NULL

time = 0
for each vertex v ∈ V
if (v.color = WHITE)
DFS_r (G, v)

DFS_r (G, u)
time++
u.dtime = time
u.color = GRAY
for each v ∈ Adj(u)

if (v.color == WHITE)
v.pred = u
DFS_r (G, v)

u.color = BLACK
time++
u.endtime = time

Init all vertices

Pseudo-code

For eacfh possibile
source vertex call
recursive function

Set node attributes

Recur

Set node attributes

23Algorithms and Programming – Camurati & Quer

Example

D

A

E F

B C

A B C D E F

0 1 2 3 4 5

-1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1

∞/∞ ∞/∞

∞/∞

∞/∞

∞/∞∞/∞

DFS_r (G, u)
time++
u.dtime = time
u.color = GRAY
for each v ∈ Adj(u)

if (v.color == WHITE)
v.pred = u
DFS_r (G, v)

u.color = BLACK
time++
u.endtime = time

24Algorithms and Programming – Camurati & Quer

Solution

D

A

E F

B C

2/7

4/5

1/8

10/11

9/12

3/6

B

E

F

C

D

A

T

B

C

T

B

F

T

T

DFS tree

A B C D E F

0 1 2 3 4 5

1 2 9 4 3 10

8 7 12 5 6 11

25Algorithms and Programming – Camurati & Quer

 Given a directed graph and an edge (u, v)

 A tree (T) edge is an edge of the DFS forest
 The edge (u,v) is a T edge if

● Vertex v is discovered by exploring edge (u,v)

● Vertex v is WHITE when reached with edge (u, v)

Edge labelling in directed graphs

U

V

T

26Algorithms and Programming – Camurati & Quer

 Given a directed graph and an edge (u, v)

 A back (B) edge is an edge connecting a vertex u
to an ancestor v in a depth-first tree
 As (u, v) is reaching an ancestor

● When visited, v.endp_time is not defined

● At the end of the visit, it will be
o v.endp_time > u.endp_time

 The edge (u,v) is a B edge if the vertex v is GRAY
when reached with edge (u, v)

 Self-loop (which may occur in directed

graphs) are B edges

u

Edge labelling in directed graphs

v

T

T

B

v.endp_time = -1

u.endp_time = 3

27Algorithms and Programming – Camurati & Quer

v

Edge labelling in directed graphs

 Given a directed graph and an edge (u, v)

 A forward (F) edge is a nontree edge connecting a
vertex u to a descendant v in a depth-first tree
 The edge (u, v) is a F edge if the vertex v is BLACK

and it has a higher discovery time than u
● v.disc_time > u.disc_time

u

T

T F

v.disc_time = 7

u.disc_time = 3

28Algorithms and Programming – Camurati & Quer

Edge labelling in directed graphs

 Given a directed graph and an edge (u, v)

 A cross (C) edge is one of the other edges
 A cross edge can go between vertices in the same

depth-first tree, as long as one vertex is not an
ancestor of the other, or they can go between
vertices in different depth-first trees

 The edge (u,v) is a C edge if the vertex v

is BLACK and it has a

lower discovery time than u
● v.disc_time < u.disc_time

v

T

T
C

v.disc_time = 2

u.disc_time = 8

u

29Algorithms and Programming – Camurati & Quer

 For undirected graphs, since (u, v) and (v, u) are
really the same edge, we may have some
ambiguity in how edges are classified

 In every undirected graph, every edge is either a
tree (T) or a back (B) edge

 The definitions may be derived from the previous
ones

Edge labelling in undirected graphs

30Algorithms and Programming – Camurati & Quer

 Tree edges are defined as before

 Towards a WHITE vertex

 Backward edges are defined as before

 Towards a GRAY vertex

Edge labelling in undirected graphs

D

A

E F

B C2/7

4/5

1/8

10/11

9/12

3/6

D

A

E F

B C2/7

4/5

1/8

10/11

9/12

3/6

st

B

E

F

C

D

A

T

B

C
T

B

F

T

T

31Algorithms and Programming – Camurati & Quer

Edge labelling in undirected graphs

 As each edge can be traversed both ways

 Forward edges do not exist, as they are traversed
"before" from v to u when they are just Backward
edges and

● v.disc_time > u.disc_time

 Cross edges do not exist, as they are traversed
"before" from v to u when they are just Tree edges
and

● v.disc_time < u.disc_time

D

A

E F

B C2/7

4/5

1/8

10/11

9/12

3/6

st

B

E

F

C

D

A

T

B

C
T

B

F

T

T

D

A

E F

B C2/7

4/5

1/8

10/11

9/12

3/6

32Algorithms and Programming – Camurati & Quer

g = graph_load (argv[1]);

printf ("Initial vertex? ");
scanf ("%d", &i);

src = graph_find (g, i);

graph_attribute_init (g);
graph_dfs (g, src);

graph_dispose (g);

DFS
(recursive function)

Client (extract)

Implementation (with adjacency list)

Vertex init: ∀v∈V, set
color as WHITE

discovery and finisching times as INT_MAX
predecessor as NULL

33Algorithms and Programming – Camurati & Quer

void graph_dfs (graph_t *g, vertex_t *n) {
int currTime=0;
vertex_t *tmp, *tmp2;

printf("List of edges:\n");
currTime = graph_dfs_r (g, n, currTime);
for (tmp=g->g; tmp!=NULL; tmp=tmp->next) {
if (tmp->color == WHITE) {
currTime = graph_dfs_r (g, tmp, currTime);

}
}

printf("List of vertices:\n");
for (tmp=g->g; tmp!=NULL; tmp=tmp->next) {
tmp2 = tmp->pred;
printf("%2d: %2d/%2d (%d)\n",
tmp->id, tmp->disc_time, tmp->endp_time,
(tmp2!=NULL) ? tmp->pred->id : -1);

}
}

Implementation (with adjacency list)

34Algorithms and Programming – Camurati & Quer

int graph_dfs_r(graph_t *g, vertex_t *n, int currTime) {
edge_t *e;
vertex_t *t;

n->color = GREY;
n->disc_time = ++currTime;
e = n->head;
while (e != NULL) {
t = e->dst;
switch (tmp->color) {
case WHITE: printf("%d -> %d : T\n", n->id, t->id);

break;
case GREY : printf("%d -> %d : B\n", n->id, t->id);

break;
case BLACK:
if (n->disc_time < t->disc_time) {
printf("%d -> %d : F\n",n->disc_time,t->disc_time);

} else {
printf("%d -> %d : C\n", n->id, t->id);
}

}

Implementation (with adjacency list)

35Algorithms and Programming – Camurati & Quer

if (tmp->color == WHITE) {
tmp->pred = n;
currTime = graph_dfs_r (g, tmp, currTime);

}
e = e->next;

}
n->color = BLACK;
n->endp_time = ++currTime;

return currTime;
}

Implementation (with adjacency list)

36Algorithms and Programming – Camurati & Quer

DFS (G)
for each vertex v ∈ V
v.color = WHITE
v.dtime = v.endtime = ∞
v.pred = NULL

time = 0
for each vertex v ∈ V
if (v.color = WHITE)
DFS_r (G, v)

DFS_r (G, u)
time++
u.dtime = time
u.colro = GRAY
for each v ∈ Adj(u)

if (v.color == WHITE)
v.pred = u
DFS_r (G, v)

u.color = BLACK
time++
u.endtime = time

DFS_r is called once for
each vertex v  Θ(|V|)

Complexity

For each vertex O(1)
For all vertices O(|V|)

The procedure scans all adjacency lists
Sum of the length of all lists  Θ(|E|)

Cost to manage them  Θ(|E|)

Globally the cost is given by
T(n) = Θ(|V|+|E|)

37Algorithms and Programming – Camurati & Quer

 Given the following graph visit it Depth-First

 Label all edges

 Report the resulting DFS tree

Exercise

38Algorithms and Programming – Camurati & Quer

Exercise

 Given the following graph visit it Depth-First

 Label all edges

 Report the resulting DFS tree

