#inclede <iidiibh>
#include <slving h>
#include <clypa.h>

d#define MAXPAROLA 30
#define MANKIGA 80

it mainfint erge. cher *ergy(])
(

Graph Representations
Paolo Camurati and Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

Algorithms and Programming - Camurati & Quer 2

Why graph?

% They are used in
» Many practical applications
» Hundreds of algorithms
% They represent an interesting abstraction usable
in various domains
» Connections
» Cycles
» Shortest paths
> Etc.

s Active research area in Computer Science and
Discrete Mathematics

Algorithms and Programming - Camurati & Quer 3

Representations of graphs

% Representation of graphs G = (V, E)
» Adjacency matrix
> Adjacency list

%+ Both of them can be applied

to
> Directed graphs @

» Undirected graphs

» Weighted
graphs

Algorithms and Programming - Camurati & Quen !

Adjacency matrix

% Given a graph

> G = (V, E)
% Its adjacency matrix is

» A matrix M of |V| x |[V| elements
(1 ifedge(i,j) OE
M[i, j] =<

_ 0 ifedge (i, j)OE
“* For
» Undirected graphs the matrix M is symmetric

» Weighted graphs the matrix M stores the edges’
weight

;/’/'

Algorithms and Programming - Camurati & Que _ 5

Example: Undirected graph

A B C D E In the general case we need a

A 0 1 0 0 1 way (i.e., a symbol table) to
map vertex identifiers to matrix
B 1 0 1 1 1 (row and column) indices
c 01 0 1 O
D 0 1 1 0 1
E 1 1 0 1 O
(s
Symmetric

;/’/'

Algorithms and Programming - Camurati & Que _ 3

Example: Directed graph

In the general case we need a
way (i.e., a symbol table) to
map vertex identifiers to matrix
(row and column) indices

m O O ® >

H O O O O »
R O O o —~ &
OO O~ = O N
O oo~ oD
O - O O O m

<
@

Algorithms and Programming - Camurati & Quer 7

Example: Weighted Directed graph

In the general case we need a
way (i.e., a symbol table) to
map vertex identifiers to matrix
(row and column) indices

m O 6O W >

Uuu © © © O P
O O OO0 w m
O O N U1 o N
©O O o A O D
O~ OO O m

Integer values,
real values, etc.

"/

Algorithms and Programming - Camurati & Que U

Graph library (with adjacency matrix)

% Possible implementations
» Static 2D matrix

= Either the graph size has to be known at compilation
time
= Or the program incurs into a memory loss
» Dynamic 2D matrix
= Array of pointers to arrays, i.e., vertex array of
structures with dynamic array of vertices

= Use a struct when it is necessary to store
edge/vertex attributes

Algorithms and Programming - Camurati & Quer 9

Graph library (with adjacency matrix)

“ Input file format If it is not present - directed graph

(nVErtex dir/undirected —)

vertex, vertex, weight
vertex, vertex, weight
vertex, vertex, weight

N Unweighted graphs have all
weights set equal to 1
o Examp|e or the field does not appear

12 1 99
5
@

{ If 0 = undirected graph }

ONDNE
~N B w
= o b

Algorithms and Programming - Camurati & Quer 10

Graph library (with adjacency matrix)

4 . 0 Enumeration types (or enum) is\
#def i ne MAX_LI'NE 100 a user defined data type mainly
used to assign names to
. constants easy to read and
enum { WHI TE, GREY, BLACK}; gy B e

\\ WHITE=0, GREY=1, BLACK=2 Y,

t ypedef struct graph_s graph t;
t ypedef struct vertex s vertex t;

struct graph_s { s N
vertex t *g: st_ruct_v?rtex_s {
int nv; ! nz ! dl'
: I nt col or;
J / 1 int dist;
~int disc_tine;
i nt endp_ti ne;
Graph Wrapper Structure declaration i nt pred;
with several extra int scc:
attributes int *rowAdj ;

Algorithms and Programming - Camurati & Quen 11

Graph library (with adjacency matrix)

//araph_t *graph_l oad (char *filenane) { \\\
graph_t *g; Function util_fopen,
char |ine[MAX LI NE]; util_calloc, etc.
int i, j, weight, dir; belong to the ADT
FILE *fp; utility library

g = (graph_t *) util _calloc (1, sizeof(graph_t));

fp = util _fopen (filenane, "r");

fgets (line, MAX LINE, fp);

i f (sscanf(line, "%%", &g->nv, &dir) !'= 2) {
sscanf(line, "%l", &g->nv);
dir = 1;

}

g->g = (vertex_ t *)
\ util _calloc (g->nv, sizeof(vertex t)); J

Algorithms and Programming - Camurati & Quen 12

Graph library (with adjacency matrix)

//,7for (i=0; i<g->nv; i++) { *\\

->g[i].id =i;

->g[i].color = VWH TE;

->g[i].dist = I NT_MAX;

->g[i].pred = g[i].scc = -1;

->g[i].disc_tinme = g[i].endp_tine = -1,

->g[i].rowAdj = (int *)util_calloc(g->nv, sizeof(int));

QG

}
while (fgets(line, MAX LINE, fp) !'= NULL) {
i f (sscanf(line, "%W%%l", & , &, &wight) !'= 3) {
sscanf(line, "%W%l", &, &);
wei ght = 1;
}
g->g[i].rowAdj[j] = weight;
if (dir == 0) g->g[j].rowAdj[i] = weight;
}
fclose(fp);
return g;

< /

e

AlgOf‘lTth o Prog amn

Graph I|brary (with ad]acency matrlx)

Algorithms and Programming - Camurati & Quer 14

Graph library (with adjacency matrix)

correspondence between identifiers

It is often necessary to store the \1
and indices of each graph node to

access the adjacency matrix A)
int graph_find (graph_t *g, int id){
int i;
for (i=0; i<g->nv; i++) {
if (g->g[i].id == id) { Given the node identifier we get
return i- its matrix index and vice-versa
} |
}
return -1; L 1 2 = -
} idABC idXYZ idFOO idBAR
st T~ j
an?_l |mplemenlt'alt|on It is possible to use any
(linear cost) ! type of symbol table

(e.g., hash-tables)

- prET .
B v, o =
o : e
" >
e
(

'.‘A!__gar'_iThms and Programming

Graph library (with adjacency matrix)

[Free the graph]

Algorithms and Programming - Camurati & Quer 16

s Space complexity
» Quadratic in the number of vertices |V|
= 5(n) = o(|V[?)
» It is advantageous

= For dense graphs, for which |E| is close to |V|?

= When we need to be able to tell quickly if there is a
connecting edge between two vertices

» No extra costs for storing the weights in a
weighted graph
% Efficient access to graph topology }

Boolean versus
Integers or Reals

Algorithms and Programming - Camurati & Quer 74

Adjacency list

% Given a graph
> G=(V,E)
% Its adjacency list is formed by
» A main list representing vertices

> A secondary list of vertices or edges for each
element of the main list

% The list of lists may have different implementations
> An array of lists
> A true list of lists
> A BSTs of BSTs
» An hash-table of hash-tables

Algorithms and Programming - Camurati & Quer 18

Example: Undirected graph

Bl a

EE I!EI
E= E: a ﬁefﬁcemt we need a way to

m O O @™ >
l91elele]9]

. : B : E a avoid linear searches (pointers or
efficient symbol tables)

Array of lists

"/

Algorithms and Programming - Camurati & Que U 19

Example: Directed graph

iz

To be efficeint we need a way to
avoid linear searches (pointers or
L efficient symbol tables)

m O O @™ >
elolelelg]
A

(O JlOJl O]

o

| O |

Array of list

Algorithms and Programming - Camurati & Quen 20

Example: Weighted directed graph

A [ot—fBfe]

8 [of—{crslet-pre

C [ot—fe/ze

D s E/1 a To be efficeint we need a way to
- Lol T et bl o) J

Array of list

Algorithms and Programming - Camurati & Quer 21

Graph library (with adjacency matrix)

/ . \ Enumeration types (or enum) is\
#define MAX_LINE 100 a user defined data type mainly
used to assign names to
enum { WHI TE, GREY, BL ACK} : < constants n*?:i?é atic|)1 read and

\\ WHITE=0, GREY=1, BLACK=2 Y,

t ypedef struct graph_s graph_t;
t ypedef struct vertex s vertex t;
t ypedef struct edge s edge t;

/* graph wrapper */
struct graph_s {
vertex t *g;
I nt nv;

U
‘ Graph Wrappla

Algorithms and Programming - Camurati & Quer 22

Graph library (with adjacency list)

Main list of vertices and }

@t ruct edge_s { L seconday lists of edges
t / Nodes of the J ! °

i nt wei ght;
vertex t *dst; edge list

edge t *next;
}i Each edge points to the
destination vertex

struct vertex_s {
I nt id;

|
i nt col or; | Nodes of the

I nt di st; - vertex list

i nt disc_tine; J

i nt endp_tine; Each vertex has

int scc: L several attributes
vertex_t *pred,

edge_t *head:; _J\ Secondary list: Edge list]
vertex t *next; -

NE | Mainlist: Vertexlist | y

Algorithms and Programming - Camurati & Quen 23

Graph library (with adjacency list)

//araph_t *graph | oad (char *filenane) { «\\

graph_t *g;

char |ine[MAX LI NE];

int i, j, weight, dir;

FILE *fp;

g = (graph_t *) util _calloc (1, sizeof(graph_t));

fp = util _fopen(filename, "r");

fgets(line, MAX LINE, fp);

i f (sscanf(line, "%% ", &g->nv, &dir) !'= 2) {
sscanf(line, "%l", &g->nv);

dir = 1;
}
[* create initial structure for vertices */
for (i=g->nv-1; i>=0; i--) {

g->g = new_node (g->g, i); Creates main list
} of vertices

AU /

Algorithms and Programming - Camurati & Quer 24

Graph library (with adjacency list)

/* | oad edges */
while (fgets(line, MAX LINE, fp) !'= NULL) {

i f (sscanf(line,"%%l%l", & , & , &wei ght) !'= 3) {
sscanf(line, "%W%", &, &);

wei ght = 1;
} Load edges in
new_edge (g, i, j, weight); secondary lists
i f (dir == 0) {
new _edge (g, j, i, weight);
}
}
fclose(fp);
return g;
}

'.‘A!__gar‘_iThms and Progral

Add a new vertex
node into main list

Algorithms and Programming - Camurati & Quer 26

Graph library (with adjacency list)

/ 1 Add a new edge node
gnto secondary list

static void new edge (
graph_ t *g, int i, int j, int weight) {
vertex t *src, *dst;
edge t *e;

src
dst

= graph_find (g, i1);

= graph_find (g, j);

e = (edge_t *) util _malloc (sizeof (edge t));
e- >dst = dst;

e- >wei ght = wei ght;

e->next = src->head,

src->head = e;

return;

Graph library (W|th adJacency Ilst)

Algorithms and Programming - Camurati & Quer 28

Graph library (with adjacency list)

It is often necessary to avoid linear
searches (use pointers or efficient

symbol tables)
N I

vertex_t *graph_find (graph_t *g, int id) {
vertex_ t *v,

vV = g->0;
while (v I'= NULL) ({ Given the node identifier we get
if (v->id ==id) { its matrix index and vice-versa
return v;
}
vV = v->next; 0 1 2 3 4
} idABC idXYZ idFOO idBAR
return NULL: st ‘

—

\ type of symbol table
L (e.g., hash-tables)

It is possible to use any J

Graph library (W|th adJacency Ilst)

Free list of lists

Algorithms and Programming - Camurati & Quer 30

Pro’s and con’s

% Total amount of elements in the lists
» Undirected graphs: 2+ |E]|
» Directed graphs: |E]

%+ Space complexity
> S(n) = O(max(|V], [E[)) = O(|V+E[)

> It is advantageous for sparse graphs for which |E|
is much less than |V|?2

% Verifying the existence of edge (u, v) requires
scanning the adjacency list of u

%+ Extra memory is needed to represent weights in
weighted graphs

