
Graphs

Graph Representations
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2Algorithms and Programming – Camurati & Quer

Why graph?

 They are used in

 Many practical applications

 Hundreds of algorithms

 They represent an interesting abstraction usable
in various domains

 Connections

 Cycles

 Shortest paths

 Etc.

 Active research area in Computer Science and
Discrete Mathematics

3Algorithms and Programming – Camurati & Quer

 Representation of graphs G = (V, E)

 Adjacency matrix

 Adjacency list

 Both of them can be applied to

 Directed graphs

 Undirected graphs

 Weighted

graphs

Representations of graphs

d

a

e

b

d

a

e

b

7

d

a

e

b
4

6
3

-2

2

7

d

a

e

b
4

6
3

-2

2

4Algorithms and Programming – Camurati & Quer

Adjacency matrix

 Given a graph

 G = (V, E)

 Its adjacency matrix is

 A matrix M of |V| x |V| elements

1 if edge (i, j) ∈ E

M[i, j] =

0 if edge (i, j) ∉ E

 For

 Undirected graphs the matrix M is symmetric

 Weighted graphs the matrix M stores the edges’
weight

5Algorithms and Programming – Camurati & Quer

Example: Undirected graph

A B C D E

A 0 1 0 0 1

B 1 0 1 1 1

C 0 1 0 1 0

D 0 1 1 0 1

E 1 1 0 1 0

E

A

D

B

CSymmetric

In the general case we need a
way (i.e., a symbol table) to

map vertex identifiers to matrix
(row and column) indices

6Algorithms and Programming – Camurati & Quer

Example: Directed graph

A B C D E

A 0 1 0 0 0

B 0 0 1 1 0

C 0 0 1 0 0

D 0 0 0 0 1

E 1 1 0 0 0

E

A

D

B

C

In the general case we need a
way (i.e., a symbol table) to

map vertex identifiers to matrix
(row and column) indices

7Algorithms and Programming – Camurati & Quer

Example: Weighted Directed graph

A B C D E

A 0 3 0 0 0

B 0 0 5 4 0

C 0 0 7 0 0

D 0 0 0 0 1

E 5 6 0 0 0 3

6 4

1
7

5

5

E

A

D

B

C

In the general case we need a
way (i.e., a symbol table) to

map vertex identifiers to matrix
(row and column) indices

Integer values,
real values, etc.

8Algorithms and Programming – Camurati & Quer

Graph library (with adjacency matrix)

 Possible implementations

 Static 2D matrix

 Either the graph size has to be known at compilation
time

 Or the program incurs into a memory loss

 Dynamic 2D matrix

 Array of pointers to arrays, i.e., vertex array of
structures with dynamic array of vertices

 Use a struct when it is necessary to store
edge/vertex attributes

9Algorithms and Programming – Camurati & Quer

 Input file format

 Example

12 1
2 3 4
2 4 5
6 7 1
...

Graph library (with adjacency matrix)

nVertex dir/undirected
vertex1 vertex2 weight
vertex1 vertex2 weight
vertex1 vertex2 weight
...

If 0  undirected graph
If it is not present  directed graph

Unweighted graphs have all
weights set equal to 1

or the field does not appear

4

1

5

4

2

6

3

7

10Algorithms and Programming – Camurati & Quer

#define MAX_LINE 100

enum {WHITE, GREY, BLACK};

typedef struct graph_s graph_t;
typedef struct vertex_s vertex_t;

struct graph_s {
vertex_t *g;
int nv;

};

Graph Wrapper

Graph library (with adjacency matrix)

Enumeration types (or enum) is
a user defined data type mainly

used to assign names to
constants easy to read and

maintain
WHITE=0, GREY=1, BLACK=2

struct vertex_s {
int id;
int color;
int dist;
int disc_time;
int endp_time;
int pred;
int scc;
int *rowAdj;

};

Structure declaration
with several extra

attributes

11Algorithms and Programming – Camurati & Quer

graph_t *graph_load (char *filename) {
graph_t *g;
char line[MAX_LINE];
int i, j, weight, dir;
FILE *fp;

g = (graph_t *) util_calloc (1, sizeof(graph_t));

fp = util_fopen (filename, "r");
fgets (line, MAX_LINE, fp);
if (sscanf(line, "%d%d", &g->nv, &dir) != 2) {

sscanf(line, "%d", &g->nv);
dir = 1;

}

g->g = (vertex_t *)
util_calloc (g->nv, sizeof(vertex_t));

Graph library (with adjacency matrix)

Function util_fopen,
util_calloc , etc.
belong to the ADT

utility library

12Algorithms and Programming – Camurati & Quer

for (i=0; i<g->nv; i++) {
g->g[i].id = i;
g->g[i].color = WHITE;
g->g[i].dist = INT_MAX;
g->g[i].pred = g[i].scc = -1;
g->g[i].disc_time = g[i].endp_time = -1;
g->g[i].rowAdj = (int *)util_calloc(g->nv, sizeof(int));

}
while (fgets(line, MAX_LINE, fp) != NULL) {
if (sscanf(line, "%d%d%d", &i, &j, &weight) != 3) {
sscanf(line, "%d%d", &i, &j);
weight = 1;

}
g->g[i].rowAdj[j] = weight;
if (dir == 0) g->g[j].rowAdj[i] = weight;

}
fclose(fp);
return g;

}

Graph library (with adjacency matrix)

13Algorithms and Programming – Camurati & Quer

void graph_attribute_init (graph_t *g) {
int i;

for (i=0; i<g->nv; i++) {
g->g[i].color = WHITE;
g->g[i].dist = INT_MAX;
g->g[i].disc_time = -1;
g->g[i].endp_time = -1;
g->g[i].pred = -1;
g->g[i].scc = -1;

}

return;
}

Graph library (with adjacency matrix)

14Algorithms and Programming – Camurati & Quer

int graph_find (graph_t *g, int id){
int i;

for (i=0; i<g->nv; i++) {
if (g->g[i].id == id) {

return i;
}

}
return -1;

}

It is often necessary to store the
correspondence between identifiers
and indices of each graph node to

access the adjacency matrix

Given the node identifier we get
its matrix index and vice-versa

0 1 2 3 4 …

idABC idXYZ idFOO idBAR …

st

Graph library (with adjacency matrix)

It is possible to use any
type of symbol table
(e.g., hash-tables)

Trivial implementation
(linear cost) !!!

15Algorithms and Programming – Camurati & Quer

void graph_dispose (graph_t *g) {
int i;

for (i=0; i<g->nv; i++) {
free(g[i].rowAdj);

}
free(g->g);
free(g);

return;
}

Free the graph

Graph library (with adjacency matrix)

16Algorithms and Programming – Camurati & Quer

Pro’s and Con’s

 Space complexity

 Quadratic in the number of vertices |V|

 S(n) = Θ(|V|2)

 It is advantageous

 For dense graphs, for which |E| is close to |V|2

 When we need to be able to tell quickly if there is a
connecting edge between two vertices

 No extra costs for storing the weights in a
weighted graph

 Efficient access to graph topology
Boolean versus

Integers or Reals

17Algorithms and Programming – Camurati & Quer

Adjacency list

 Given a graph

 G = (V, E)

 Its adjacency list is formed by

 A main list representing vertices

 A secondary list of vertices or edges for each
element of the main list

 The list of lists may have different implementations

 An array of lists

 A true list of lists

 A BSTs of BSTs

 An hash-table of hash-tables

18Algorithms and Programming – Camurati & Quer

Example: Undirected graph

A

B

C

D

E

B E

A E C D

B D

E B C

A B D

Array of lists

E

A

D

B

C

To be efficeint we need a way to
avoid linear searches (pointers or

efficient symbol tables)

19Algorithms and Programming – Camurati & Quer

Example: Directed graph

Array of list

E

A

D

B

C

A

B

C

D

E

B

C D

C

E

A B

To be efficeint we need a way to
avoid linear searches (pointers or

efficient symbol tables)

20Algorithms and Programming – Camurati & Quer

Example: Weighted directed graph

E

A

D

B

C

3

6 4

1
7

5

5
Array of list

A

B

C

D

E

B/3

C/5 D/4

C/7

E/1

A/5 B/6

To be efficeint we need a way to
avoid linear searches (pointers or

efficient symbol tables)

21Algorithms and Programming – Camurati & Quer

#define MAX_LINE 100

enum {WHITE, GREY, BLACK};

typedef struct graph_s graph_t;
typedef struct vertex_s vertex_t;
typedef struct edge_s edge_t;

/* graph wrapper */
struct graph_s {

vertex_t *g;
int nv;

};

Graph Wrapper

Graph library (with adjacency matrix)

Enumeration types (or enum) is
a user defined data type mainly

used to assign names to
constants easy to read and

maintain
WHITE=0, GREY=1, BLACK=2

22Algorithms and Programming – Camurati & Quer

struct edge_s {
int weight;
vertex_t *dst;
edge_t *next;

};

struct vertex_s {
int id;
int color;
int dist;
int disc_time;
int endp_time;
int scc;
vertex_t *pred;
edge_t *head;
vertex_t *next;

};

Nodes of the
edge list

Nodes of the
vertex list

Graph library (with adjacency list)

Main list of vertices and
seconday lists of edges

Each edge points to the
destination vertex

Each vertex has
several attributes

Secondary list: Edge list

Main list: Vertex list

23Algorithms and Programming – Camurati & Quer

graph_t *graph_load (char *filename) {
graph_t *g;
char line[MAX_LINE];
int i, j, weight, dir;
FILE *fp;
g = (graph_t *) util_calloc (1, sizeof(graph_t));
fp = util_fopen(filename, "r");
fgets(line, MAX_LINE, fp);
if (sscanf(line, "%d%d", &g->nv, &dir) != 2) {

sscanf(line, "%d", &g->nv);
dir = 1;

}
/* create initial structure for vertices */
for (i=g->nv-1; i>=0; i--) {

g->g = new_node (g->g, i);
}

Graph library (with adjacency list)

Creates main list
of vertices

24Algorithms and Programming – Camurati & Quer

/* load edges */
while (fgets(line, MAX_LINE, fp) != NULL) {

if (sscanf(line,"%d%d%d",&i,&j,&weight) != 3) {
sscanf(line, "%d%d", &i, &j);
weight = 1;

}
new_edge (g, i, j, weight);
if (dir == 0) {

new_edge (g, j, i, weight);
}

}
fclose(fp);

return g;
}

Graph library (with adjacency list)

Load edges in
secondary lists

25Algorithms and Programming – Camurati & Quer

static vertex_t *new_node (graph_t *g, int id) {
vertex_t *v;

v = (vertex_t *)util_malloc(sizeof(vertex_t));
v->id = id;
v->color = WHITE;
v->dist = INT_MAX;
v->scc = v->disc_time = n->endp_time = -1;
v->pred = NULL;
v->head = NULL;
v->next = g;
return v;

}

Graph library (with adjacency list)

Add a new vertex
node into main list

26Algorithms and Programming – Camurati & Quer

static void new_edge (
graph_t *g, int i, int j, int weight) {
vertex_t *src, *dst;
edge_t *e;

src = graph_find (g, i);
dst = graph_find (g, j);

e = (edge_t *) util_malloc (sizeof (edge_t));
e->dst = dst;
e->weight = weight;
e->next = src->head;
src->head = e;
return;

}

Graph library (with adjacency list)

Add a new edge node
into secondary list

27Algorithms and Programming – Camurati & Quer

void graph_attribute_init (graph_t *g) {
vertex_t *v;

v = g->g;
while (v!=NULL) {

v->color = WHITE;
v->dist = INT_MAX;
v->disc_time = -1;
v->endp_time = -1;
v->scc = -1;
v->pred = NULL;
v = v->next;

}

return;
}

Graph library (with adjacency list)

28Algorithms and Programming – Camurati & Quer

vertex_t *graph_find (graph_t *g, int id) {
vertex_t *v;

v = g->g;
while (v != NULL) {

if (v->id == id) {
return v;

}
v = v->next;

}

return NULL;
}

Graph library (with adjacency list)

It is often necessary to avoid linear
searches (use pointers or efficient

symbol tables)

Given the node identifier we get
its matrix index and vice-versa

0 1 2 3 4 …

idABC idXYZ idFOO idBAR …

st

It is possible to use any
type of symbol table
(e.g., hash-tables)

29Algorithms and Programming – Camurati & Quer

void graph_dispose (graph_t *g) {
vertex_t *v;
edge_t *e;

v = g->g;
while (v != NULL) {

while (v->head != NULL) {
e = v->head;
v->head = e->next;
free(e);

}
v = v->next;
free (v);

}
return;

}

Graph library (with adjacency list)

Free list of lists

30Algorithms and Programming – Camurati & Quer

Pro’s and con’s

 Total amount of elements in the lists

 Undirected graphs: 2·|E|

 Directed graphs: |E|

 Space complexity

 S(n) = O(max(|V|, |E|)) = O(|V+E|)

 It is advantageous for sparse graphs for which |E|
is much less than |V|2

 Verifying the existence of edge (u, v) requires
scanning the adjacency list of u

 Extra memory is needed to represent weights in
weighted graphs

