
Greedy Algorithms

Greedy Algorithms
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2Algorithms and Programming – Camurati & Quer

Optimization Algorithms

 Algorithms for optimization problems typically go
through a sequence of steps, with a set of
choices at each step

S: solutions

V: valid solutions

M: best solutions

s

s
s

3Algorithms and Programming – Camurati & Quer

Greedy Algorithms

 For many optimization problems, using brute-
force recursion or dynamic programming to
determine the best choices is overkill

 Sometimes simpler, more efficient algorithms will
solve the problem efficiently

 A greedy algorithm always makes the choice
that looks best at the moment

4Algorithms and Programming – Camurati & Quer

Greedy Algorithms

 It makes a locally optimal choice in the hope that
this choice will lead to a globally optimal solution

 Optimal solution

 Best possible solution

 Locally optimal solution

 Best possible solution within a contiguous domain

x

f(x)

Optimal solution

Local optimal
solutions

5Algorithms and Programming – Camurati & Quer

Greedy Algorithms

 Greedy algorithms do not always yield optimal
solutions, but for many problems they do

 The greedy method is quite powerful and works
well for a wide range of problems

x

f(x)

Optimal solution

Local optimal
solutions

6Algorithms and Programming – Camurati & Quer

Greedy Algorithms

 At each step

 To find globally optimal solutions locally optimal
solutions are selected

 Decisions taken at each step are never
reconsidered (no backtrack)

 Decisions are considered locally optimal based on
an appetibility/cost function

 Advantages

 Very simple algorithm

 Limited processing time

 Disadvantages

 Global solution is not necessarily optimal

7Algorithms and Programming – Camurati & Quer

Greedy Algorithms

 Appetibility values known a priori and never
changed thereafter

 Start: empty solution

 Sort choices according to decreasing appetibility
values

 Execute choices in descending appetibility order,
adding, if possible, the result to the partial
solution.

 Modifyiable appetibility values

 As before, but appetibility values are stored in a
priority queue

8Algorithms and Programming – Camurati & Quer

Greedy Algorithms

 In this unit we will analyse two algorithms

 The activity-selection problem

 The Huffman codes generation

9Algorithms and Programming – Camurati & Quer

Activity Selection Problem

 Input

 Set of n activities with start time and end time [s, f)

 Output

 Set with the maximum number of compatible
activities

 Compatibility

 [si, fi) and [sj, fj) do not overlap

 That is si ≥ fj or sj ≥ fi

 Greedy approach

 Sort the activities by increasing end time

10Algorithms and Programming – Camurati & Quer

k sk fk 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

An example

1 1 4

2 3 5

3 0 6

4 5 7

5 3 9

6 5 9

7 6 10

8 8 11

9 8 12

10 2 14

11 12 16

Initial activity (sorted) Selected activity

11Algorithms and Programming – Camurati & Quer

Algorithm

/* structure declaration */
typedef struct activity {

char name[MAX];
int start, stop;
int selected;

} activity_t;
...
int cmp(const void *p1, const void *p2);

...

acts = load(argv[1], &n);
qsort((void *)acts, n, sizeof(activity_t), cmp);
choose(acts, n);
display(acts, n);
... C Standard Library

Compare Function

12Algorithms and Programming – Camurati & Quer

Algorithm

int cmp(const void *p1, const void *p2) {
activity_t *a1 = (activity_t *)p1;
activity_t *a2 = (activity_t *)p2;
return a1->stop - a2->stop;

}
void choose(activity_t *acts, int n) {

int i, stop;

acts[0].selected = 1;
stop = acts[0].stop;
for (i=1; i<n; i++) {

if (acts[i].start >= stop) {
acts[i].selected = 1;
stop = acts[i].stop;

}
}

}

13Algorithms and Programming – Camurati & Quer

Huffman Codes

 Huffman in 1950 invented a greedy
algorithm that construct an optimal
prefix code

 Codeword

 String of bits associated to a symbol s ∈ S

 Fixed length

 Variable length

 Encoding

 From symbol to codeword

 Decoding

 From codeword to symbol

14Algorithms and Programming – Camurati & Quer

 Fixed-length codes

 Codewords with n = log2 (card(S)) bits

 Pro: easy to decode

 Use: symbol occurring with the same frequency

 Variable-length codes

 Con: difficult to decode

 Pro: memory savings

 Use: symbols occurringwith different frequencies

 Example

 Morse alphabet (with pauses between words)

Huffman Codes

15Algorithms and Programming – Camurati & Quer

The Morse Code

16Algorithms and Programming – Camurati & Quer

Example

a b c d e f

Frequency 45 13 12 16 9 5

Fixed-length 000 001 010 011 100 101

Variable-length 0 101 100 111 1101 1100

 Give a file with 100.000 characters

 Fixed-length code

 3 · 100.000 = 300.000 bits

 Variable-length code

 (45 · 1 + 13 · 3 + 12 · 3 + · 3 + 9 · 4 + 5 · 4) ·
1.000 = 224.000 bits

17Algorithms and Programming – Camurati & Quer

Prefix code

 Prefix-(free) code

 No valid codeword is a prefix of another valid
codeword

 Encoding

 Juxtapposition of strings

 Decoding

 Path on a binary tree

18Algorithms and Programming – Camurati & Quer

Example

 Symbols to codes correspondence (tree)

 a=0, b=101, c=100, d=111, e=1101, f=1100

d

a

f e

c b

0 1

0

0 0

0

1

11

1

19Algorithms and Programming – Camurati & Quer

Example: Encoding

 From symbols to code (encoding)

 abfaac  0101110000100

d

a

f e

c b

0 1

0

0 0

0

1

11

1

20Algorithms and Programming – Camurati & Quer

Example: Decoding

 From code to symbols (decoding)

 0101110000100  abfaac

d

a

f e

c b

0 1

0

0 0

0

1

11

1

21Algorithms and Programming – Camurati & Quer

Building the tree

 Data structure

 Priority queue

 Initially

 Symbol = leaf

 Intermediate step

 Extract the 2 symbols (or aggregates) with
minimum frequency

 Build the binary tree (aggregate of symbols)

 Node = symbol or aggregate

 Frequency = sum of frequencies

 Insert into priority queue

 Termination

 Empty queue

22Algorithms and Programming – Camurati & Quer

Example: Step 1

f:5 e:9 c:12

0 1

b:13 d:16 a:45

f:5 e:9

14

c:12 b:13 d:16 a:45
0 1

f:5 e:9

14

Extract

Build the tree of
the aggregate

Insert back into
the priority queue

Priory Queue (fully sorted)

23Algorithms and Programming – Camurati & Quer

Example: Step 2

c:12 b:13 d:16 a:45
0 1

f:5 e:9

14

0 1

c:12 b:13

25

d:16
0 1

f:5 e:9

14
0 1

c:12 b:13

25 a:45

Extract

Build the tree of
the aggregate

Insert back into
the priority queue

24Algorithms and Programming – Camurati & Quer

Example: Step 3

d:16
0 1

f:5 e:9

14

0 1
30

d:16
0 1

f:5 e:9

14
0 1

c:12 b:13

25 a:45

0 1

c:12 b:13

25 a:45

d:16
0 1

f:5 e:9

14

0 1
30

Extract

Build the tree of
the aggregate Insert back into

the priority queue

25Algorithms and Programming – Camurati & Quer

Example: Step 4

0 1

c:12 b:13

25 a:45

d:16
0 1

f:5 e:9

14

0 1
30

0 1

c:12 b:13

25

d:16
0 1

f:5 e:9

14

0 1
30

0 1
55

a:45

0 1

c:12 b:13

25

d:16
0 1

f:5 e:9

14

0 1
30

0 1
55

Extract

Build the tree of
the aggregate

Insert back into
the priority queue

26Algorithms and Programming – Camurati & Quer

Example: Step 5

a:45

0 1

c:12 b:13

25

d:16
0 1

f:5 e:9

14

0 1
30

0 1
55

a:45

0 1

c:12 b:13

25

d:16
0 1

f:5 e:9

14

0 1
30

0 1
55

0 1
100

Extract

Build the tree of
the aggregate

27Algorithms and Programming – Camurati & Quer

Algorithm

PQ *pq;

pq = PQUEUEinit(maxN, ITEMcompare);

for (i=0; i<maxN; i++) {
printf("Enter letter: ");
scanf("%s", &letter);
printf("Enter frequency: ");
scanf("%d", &freq);

tmp = ITEMnew(letter, freq);

PQUEUEinsert(pq, tmp);
}

Init Heap /
Code

28Algorithms and Programming – Camurati & Quer

Algorithm

while (PQUEUEsize(pq) > 1) {
l = PQUEUEextract(pq); r = PQUEUEextract(pq);
tmp = ITEMnew('!', l->freq + r->freq);
tmp->left = l; tmp->right = r;
PQUEUEinsert(pq, tmp);

}

root = PQUEUEextract(pq);

display(root, code, 0);

Generate
code

Visit tree

29Algorithms and Programming – Camurati & Quer

Complexity

 Heap implemented as a binary tree

 Extract and insert operations in priority queues

 T(n) = O(n log n)

