
Greedy Algorithms

Greedy Algorithms
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2Algorithms and Programming – Camurati & Quer

Optimization Algorithms

 Algorithms for optimization problems typically go
through a sequence of steps, with a set of
choices at each step

S: solutions

V: valid solutions

M: best solutions

s

s
s

3Algorithms and Programming – Camurati & Quer

Greedy Algorithms

 For many optimization problems, using brute-
force recursion or dynamic programming to
determine the best choices is overkill

 Sometimes simpler, more efficient algorithms will
solve the problem efficiently

 A greedy algorithm always makes the choice
that looks best at the moment

4Algorithms and Programming – Camurati & Quer

Greedy Algorithms

 It makes a locally optimal choice in the hope that
this choice will lead to a globally optimal solution

 Optimal solution

 Best possible solution

 Locally optimal solution

 Best possible solution within a contiguous domain

x

f(x)

Optimal solution

Local optimal
solutions

5Algorithms and Programming – Camurati & Quer

Greedy Algorithms

 Greedy algorithms do not always yield optimal
solutions, but for many problems they do

 The greedy method is quite powerful and works
well for a wide range of problems

x

f(x)

Optimal solution

Local optimal
solutions

6Algorithms and Programming – Camurati & Quer

Greedy Algorithms

 At each step

 To find globally optimal solutions locally optimal
solutions are selected

 Decisions taken at each step are never
reconsidered (no backtrack)

 Decisions are considered locally optimal based on
an appetibility/cost function

 Advantages

 Very simple algorithm

 Limited processing time

 Disadvantages

 Global solution is not necessarily optimal

7Algorithms and Programming – Camurati & Quer

Greedy Algorithms

 Appetibility values known a priori and never
changed thereafter

 Start: empty solution

 Sort choices according to decreasing appetibility
values

 Execute choices in descending appetibility order,
adding, if possible, the result to the partial
solution.

 Modifyiable appetibility values

 As before, but appetibility values are stored in a
priority queue

8Algorithms and Programming – Camurati & Quer

Greedy Algorithms

 In this unit we will analyse two algorithms

 The activity-selection problem

 The Huffman codes generation

9Algorithms and Programming – Camurati & Quer

Activity Selection Problem

 Input

 Set of n activities with start time and end time [s, f)

 Output

 Set with the maximum number of compatible
activities

 Compatibility

 [si, fi) and [sj, fj) do not overlap

 That is si ≥ fj or sj ≥ fi

 Greedy approach

 Sort the activities by increasing end time

10Algorithms and Programming – Camurati & Quer

k sk fk 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

An example

1 1 4

2 3 5

3 0 6

4 5 7

5 3 9

6 5 9

7 6 10

8 8 11

9 8 12

10 2 14

11 12 16

Initial activity (sorted) Selected activity

11Algorithms and Programming – Camurati & Quer

Algorithm

/* structure declaration */
typedef struct activity {

char name[MAX];
int start, stop;
int selected;

} activity_t;
...
int cmp(const void *p1, const void *p2);

...

acts = load(argv[1], &n);
qsort((void *)acts, n, sizeof(activity_t), cmp);
choose(acts, n);
display(acts, n);
... C Standard Library

Compare Function

12Algorithms and Programming – Camurati & Quer

Algorithm

int cmp(const void *p1, const void *p2) {
activity_t *a1 = (activity_t *)p1;
activity_t *a2 = (activity_t *)p2;
return a1->stop - a2->stop;

}
void choose(activity_t *acts, int n) {

int i, stop;

acts[0].selected = 1;
stop = acts[0].stop;
for (i=1; i<n; i++) {

if (acts[i].start >= stop) {
acts[i].selected = 1;
stop = acts[i].stop;

}
}

}

13Algorithms and Programming – Camurati & Quer

Huffman Codes

 Huffman in 1950 invented a greedy
algorithm that construct an optimal
prefix code

 Codeword

 String of bits associated to a symbol s ∈ S

 Fixed length

 Variable length

 Encoding

 From symbol to codeword

 Decoding

 From codeword to symbol

14Algorithms and Programming – Camurati & Quer

 Fixed-length codes

 Codewords with n = log2 (card(S)) bits

 Pro: easy to decode

 Use: symbol occurring with the same frequency

 Variable-length codes

 Con: difficult to decode

 Pro: memory savings

 Use: symbols occurringwith different frequencies

 Example

 Morse alphabet (with pauses between words)

Huffman Codes

15Algorithms and Programming – Camurati & Quer

The Morse Code

16Algorithms and Programming – Camurati & Quer

Example

a b c d e f

Frequency 45 13 12 16 9 5

Fixed-length 000 001 010 011 100 101

Variable-length 0 101 100 111 1101 1100

 Give a file with 100.000 characters

 Fixed-length code

 3 · 100.000 = 300.000 bits

 Variable-length code

 (45 · 1 + 13 · 3 + 12 · 3 + · 3 + 9 · 4 + 5 · 4) ·
1.000 = 224.000 bits

17Algorithms and Programming – Camurati & Quer

Prefix code

 Prefix-(free) code

 No valid codeword is a prefix of another valid
codeword

 Encoding

 Juxtapposition of strings

 Decoding

 Path on a binary tree

18Algorithms and Programming – Camurati & Quer

Example

 Symbols to codes correspondence (tree)

 a=0, b=101, c=100, d=111, e=1101, f=1100

d

a

f e

c b

0 1

0

0 0

0

1

11

1

19Algorithms and Programming – Camurati & Quer

Example: Encoding

 From symbols to code (encoding)

 abfaac 0101110000100

d

a

f e

c b

0 1

0

0 0

0

1

11

1

20Algorithms and Programming – Camurati & Quer

Example: Decoding

 From code to symbols (decoding)

 0101110000100 abfaac

d

a

f e

c b

0 1

0

0 0

0

1

11

1

21Algorithms and Programming – Camurati & Quer

Building the tree

 Data structure

 Priority queue

 Initially

 Symbol = leaf

 Intermediate step

 Extract the 2 symbols (or aggregates) with
minimum frequency

 Build the binary tree (aggregate of symbols)

 Node = symbol or aggregate

 Frequency = sum of frequencies

 Insert into priority queue

 Termination

 Empty queue

22Algorithms and Programming – Camurati & Quer

Example: Step 1

f:5 e:9 c:12

0 1

b:13 d:16 a:45

f:5 e:9

14

c:12 b:13 d:16 a:45
0 1

f:5 e:9

14

Extract

Build the tree of
the aggregate

Insert back into
the priority queue

Priory Queue (fully sorted)

23Algorithms and Programming – Camurati & Quer

Example: Step 2

c:12 b:13 d:16 a:45
0 1

f:5 e:9

14

0 1

c:12 b:13

25

d:16
0 1

f:5 e:9

14
0 1

c:12 b:13

25 a:45

Extract

Build the tree of
the aggregate

Insert back into
the priority queue

24Algorithms and Programming – Camurati & Quer

Example: Step 3

d:16
0 1

f:5 e:9

14

0 1
30

d:16
0 1

f:5 e:9

14
0 1

c:12 b:13

25 a:45

0 1

c:12 b:13

25 a:45

d:16
0 1

f:5 e:9

14

0 1
30

Extract

Build the tree of
the aggregate Insert back into

the priority queue

25Algorithms and Programming – Camurati & Quer

Example: Step 4

0 1

c:12 b:13

25 a:45

d:16
0 1

f:5 e:9

14

0 1
30

0 1

c:12 b:13

25

d:16
0 1

f:5 e:9

14

0 1
30

0 1
55

a:45

0 1

c:12 b:13

25

d:16
0 1

f:5 e:9

14

0 1
30

0 1
55

Extract

Build the tree of
the aggregate

Insert back into
the priority queue

26Algorithms and Programming – Camurati & Quer

Example: Step 5

a:45

0 1

c:12 b:13

25

d:16
0 1

f:5 e:9

14

0 1
30

0 1
55

a:45

0 1

c:12 b:13

25

d:16
0 1

f:5 e:9

14

0 1
30

0 1
55

0 1
100

Extract

Build the tree of
the aggregate

27Algorithms and Programming – Camurati & Quer

Algorithm

PQ *pq;

pq = PQUEUEinit(maxN, ITEMcompare);

for (i=0; i<maxN; i++) {
printf("Enter letter: ");
scanf("%s", &letter);
printf("Enter frequency: ");
scanf("%d", &freq);

tmp = ITEMnew(letter, freq);

PQUEUEinsert(pq, tmp);
}

Init Heap /
Code

28Algorithms and Programming – Camurati & Quer

Algorithm

while (PQUEUEsize(pq) > 1) {
l = PQUEUEextract(pq); r = PQUEUEextract(pq);
tmp = ITEMnew('!', l->freq + r->freq);
tmp->left = l; tmp->right = r;
PQUEUEinsert(pq, tmp);

}

root = PQUEUEextract(pq);

display(root, code, 0);

Generate
code

Visit tree

29Algorithms and Programming – Camurati & Quer

Complexity

 Heap implemented as a binary tree

 Extract and insert operations in priority queues

 T(n) = O(n log n)

