#inchude <idiib.h>
Hinclude <shring h>
#include <clypa.h>

#define MAXPAROLA 30
#define MANKIGA 80

it mainfint erge. cher *ergy(])
(

Priority Queues
Paolo Camurati and Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

Algorithms and Programming - Camurati & Quer 2

“+ Heaps have many applications beyond heap-sort

% A priority queue is a data structure to store
elements including a priority field such that all
main operations are based on such a field

%+ Priority queues have several applications
» Job scheduling
> Etc.

Algorithms and Programming - Camurati & Quer 3

% It is possible to implement
» Min-priority queues
» Max-priority queues
% Main operations
» Insert, extract maximum, read maximum, change
priority
%+ Possible alternative data structure
implementations
» Unordered array/list
» Ordered array/list

"/ -

Algorithms and Programming - Camurati & Que U 4

PO Example
(Priority Queue)

#define LEFT(i) (2*i +1)
#define RIGHT(i) (2*i +2)
#define PARENT(i) ((int)(i-1)/2)

Array
representation

/

0123456 7 8 91011 1213 14

pg->heapsize = 13 \
Array (maximum)]

[H%pé%PQJ | maxN =15

Algorithms and Programming - Camurati & Quer 5

Function pg_insert

*» Add a leaf to the tree

» It grows level-by-level from left to right satisfying
the structural property

% From current node up (initially the newest leaf)
up to the root

» Compare the parent’s key with the new node’s
key, moving the parent’s data from the parent to
the child when the key to insert is larger

> Otherwise insert the data into the current node
s+ Complexity
» T(n) = O(lg n)

"/

Algorithms and Programming - Camurati & Que U 6

Example

2 Call function

> pq_insert (pq’ ((item) 75)) Only (integer) keys are
[shown, not data items

Array index, i.e., node

with key 1 is stored in
, (15

"/

Algorithms and Programming - Camurati & Quer 7

2 Call function

> pq_insert (pq’ (item) 75)) Only (integer) keys are
[shown, not data items

Array index, i.e., node

with key 1 is stored in
, (75
ODOO®DOE
8

Function
item_less

Algorithms and Programming - Camurati & Quer

Implementation

compares keys

)

voi d pqg_insert (PQ pg,
int i;

| = pg->heapsi ze++;
while((i>=1) &&

pg->Ali] =

I = PARENT (i);
Lq->AU] =item
return;

(item.| ess(pg->A] PARENT(i)],
pPg- >A[PARENT(i)];

>

I[temitem {

/[Increase the heap size]

item)))

Move node down J

Move up toward
the root

|

)
p¥

Insert new
element in its
final destination

|

Algorithms and Programming - Camurati & Quer 9

Function pg_extract_max

% Modify the head, by extracting the largest value,
stored into the root

» Swap root with the last leaf (the rightmost onto
the last level)

» Reduce by 1 the heap size

> Restore the heap property by applying heapify
s+ Complexity

» T(n) = O(lg n)

"/

Algorithms and Programming - Camurati & Que U 10

Example

2 Call function

> pq—eXtraCt—maX (pCI) Only (integer) keys are
[shown, not data items

Array index, i.e., node

with key 1 is stored in
, (15

;/’/'

Algorithms and Programming - Camurati & Quer 2o 1

2 Call function

> pq—eXtraCt—maX (pCI) Only (integer) keys are
[shown, not data items

Array index, i.e., node

with key 1 is stored in
, (2

Implementation

Extract max and move
last element into the
root node

Reduce heap size

Heapify from root

Algorithms and Programming - Camurati & Quer 13

Function pg_change

% Modify the key of an element in a given
position given its index
% Can be implemented as two separate operations

» Decrease key

= When a key is decreased, we may need to move it
downward

= To move a key downward, we can adopt the same
process analyze in heapify

e Heapify keeps moving the key from the parent to the
child with the largest key until the key is inserted into
the current node

&

Algorithms and Programming - Camurati & Que _ 14

Function pg_change

> Increase key

= When a key is increased, we may need to move it
upward

= To move a key upward, we can adopt the same
process analyze in pqg_insert

e We move the key up into the parent until the key is
inserted into the current node

s+ Complexity
» Dependent on the tree height
> T(n) = O(lg n)

Algorithms and Programming - Camurati & Quen 15

Example: Decrease key

+»» Call function
» pg_change (pq, 1, ((item) 3))

Only (integer) keys are
[Array index, i.e., node shown, not data items

with key 1 is stored in
pg->A[0] ﬁ

"/

Algorithms and Programming - Camurati & Quer 16

+»» Call function
> pg_change (pqg, 1, ((item) 3))

Only (integer) keys are
[Array index, i.e., node shown, not data items

with key 1 is stored in
, (15

Algorithms and Programming - Camurati & Quen I

Example: Increase key

*» Call function
» pg_change (pq, 5, ((item) 32))

Only (integer) keys are
[Array index, i.e., node shown, not data items

with key 1 is stored in
pg->A[0] ﬁ

"/

Algorithms and Programming - Camurati & Quer 18

*» Call function
> pqg_change (pq, 5, ((item) 32))

Only (integer) keys are
[Array index, i.e., node shown, not data items

with key 1 is stored in
, (32

Algorithms and Programming - Camurati & Quen 19

Implementation

emiten) { \
{

/voi d pg_change (PQ pq, int i, It
if (itemless (item pg->Ali])
decrease_key (pq, i);
} else {
I ncrease_key (pq, i, item;
}

}
voi d decrease _key (PQ pg, int i) {

pg->Ali] = item
heapify (pq, i);

void increase key (PQ pq, int i) {
while((i>=1) &&
(iteml ess(pg->A PARENT(i)], item)) {
pa->Ali] = pqg->A[PARENT(i)];
I = PARENT(i);
}
pg->Ali] = item

Y /

"/ -

Algorithms and Programming - Camurati & Quer 20

% Insert the following values into an initially empty
max-priority queue

> 113177346517648 5524998905 13 88

application of heapsort

Notice that this is not an
but of pq_insert

"/ -

Algorithms and Programming - Camurati & Quer 21

% Insert the following values into an initially empty
min-priority queue
»1131773465176485524998905 13 88

application of heapsort

Notice that this is not an
but of pq_insert

