
Heaps

Priority Queues
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2Algorithms and Programming – Camurati & Quer

Priority Queues

 Heaps have many applications beyond heap-sort

 A priority queue is a data structure to store
elements including a priority field such that all
main operations are based on such a field

 Priority queues have several applications

 Job scheduling

 Etc.

3Algorithms and Programming – Camurati & Quer

Priority Queues

 It is possible to implement

 Min-priority queues

 Max-priority queues

 Main operations

 Insert, extract maximum, read maximum, change
priority

 Possible alternative data structure
implementations

 Unordered array/list

 Ordered array/list

4Algorithms and Programming – Camurati & Quer

Example

20 15 10 12 11 5 4 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14

pq->A

pq->heapsize = 13

0

a z ba d m g e x

8 5 7 2 0

y pp w k b

a 20

z 15

d 12 m 11

ba 10

g 5 e 4

x 9 y 8 pp 5 w 7 k 2 b 0

PQ
(Priority Queue)

Array
representation

Array (maximum)
maxN = 15

#define LEFT(i) (2*i+1)
#define RIGHT(i) (2*i+2)
#define PARENT(i) ((int)(i-1)/2)

Heap PQ

5Algorithms and Programming – Camurati & Quer

Function pq_insert

 Add a leaf to the tree

 It grows level-by-level from left to right satisfying
the structural property

 From current node up (initially the newest leaf)
up to the root

 Compare the parent’s key with the new node’s
key, moving the parent’s data from the parent to
the child when the key to insert is larger

 Otherwise insert the data into the current node

 Complexity

 T(n) = O(lg n)

6Algorithms and Programming – Camurati & Quer

Example

15
0

12
1

9
3

11
4

10
2

5
5

4
6

1
7

8
8

5
9

7
10

2
11

0
12

Only (integer) keys are
shown, not data items

Array index, i.e., node
with key 1 is stored in

pq->A[0]

 Call function

 pq_insert (pq, ((item) 75))

7Algorithms and Programming – Camurati & Quer

Solution

75
0

12
1

9
3

11
4

15
2

5
5

10
6

1
7

8
8

5
9

7
10

2
11

0
12

Only (integer) keys are
shown, not data items

Array index, i.e., node
with key 1 is stored in

pq->A[0]

 Call function

 pq_insert (pq, (item) 75))

4
13

8Algorithms and Programming – Camurati & Quer

Implementation

void pq_insert (PQ pq, Item item) {
int i;

i = pq->heapsize++;
while((i>=1) &&

(item_less(pq->A[PARENT(i)], item)))
pq->A[i] = pq->A[PARENT(i)];
i = PARENT (i);

}
pq->A[i] = item;

return;
}

Increase the heap size

Function
item_less

compares keys

Move node down

Move up toward
the root

Insert new
element in its

final destination

9Algorithms and Programming – Camurati & Quer

Function pq_extract_max

 Modify the head, by extracting the largest value,
stored into the root

 Swap root with the last leaf (the rightmost onto
the last level)

 Reduce by 1 the heap size

 Restore the heap property by applying heapify

 Complexity

 T(n) = O(lg n)

10Algorithms and Programming – Camurati & Quer

Example

15
0

12
1

9
3

11
4

10
2

5
5

4
6

1
7

8
8

5
9

7
10

2
11

0
12

Only (integer) keys are
shown, not data items

Array index, i.e., node
with key 1 is stored in

pq->A[0]

 Call function

 pq_extract_max (pq)

11Algorithms and Programming – Camurati & Quer

Solution

12
0

11
1

9
3

7
4

10
2

5
5

4
6

1
7

8
8

5
9

0
10

2
11

Only (integer) keys are
shown, not data items

Array index, i.e., node
with key 1 is stored in

pq->A[0]

 Call function

 pq_extract_max (pq)

12Algorithms and Programming – Camurati & Quer

Implementation

Item pq_extract_max(PQ pq) {
Item item;

swap (pq, 0, pq->heapsize-1);
item = pq->A[pq->heapsize-1];
pq->heapsize--;
heapify (pq, 0);

return item;
}

Extract max and move
last element into the

root node

Reduce heap size

Heapify from root

13Algorithms and Programming – Camurati & Quer

Function pq_change

 Modify the key of an element in a given
position given its index

 Can be implemented as two separate operations

 Decrease key

 When a key is decreased, we may need to move it
downward

 To move a key downward, we can adopt the same
process analyze in heapify

● Heapify keeps moving the key from the parent to the
child with the largest key until the key is inserted into
the current node

14Algorithms and Programming – Camurati & Quer

Function pq_change

 Increase key

 When a key is increased, we may need to move it
upward

 To move a key upward, we can adopt the same
process analyze in pq_insert

● We move the key up into the parent until the key is
inserted into the current node

 Complexity

 Dependent on the tree height

 T(n) = O(lg n)

15Algorithms and Programming – Camurati & Quer

Example: Decrease key

15
0

12
1

9
3

11
4

10
2

5
5

4
6

1
7

8
8

5
9

7
10

2
11

0
12

Only (integer) keys are
shown, not data itemsArray index, i.e., node

with key 1 is stored in
pq->A[0]

 Call function

 pq_change (pq, 1, ((item) 3))

16Algorithms and Programming – Camurati & Quer

Solution

15
0

11
1

9
3

7
4

10
2

5
5

4
6

1
7

8
8

5
9

3
10

2
11

0
12

Only (integer) keys are
shown, not data itemsArray index, i.e., node

with key 1 is stored in
pq->A[0]

 Call function

 pq_change (pq, 1, ((item) 3))

17Algorithms and Programming – Camurati & Quer

Example: Increase key

15
0

12
1

9
3

11
4

10
2

5
5

4
6

1
7

8
8

5
9

7
10

2
11

0
12

Only (integer) keys are
shown, not data itemsArray index, i.e., node

with key 1 is stored in
pq->A[0]

 Call function

 pq_change (pq, 5, ((item) 32))

18Algorithms and Programming – Camurati & Quer

Solution

32
0

12
1

9
3

11
4

15
2

10
5

4
6

1
7

8
8

5
9

7
10

2
11

0
12

Only (integer) keys are
shown, not data itemsArray index, i.e., node

with key 1 is stored in
pq->A[0]

 Call function

 pq_change (pq, 5, ((item) 32))

19Algorithms and Programming – Camurati & Quer

Implementation

void pq_change (PQ pq, int i, Item item) {
if (item_less (item, pq->A[i]) {

decrease_key (pq, i);
} else {

increase_key (pq, i, item);
}

}
void decrease_key (PQ pq, int i) {

pq->A[i] = item;
heapify (pq, i);

}
void increase_key (PQ pq, int i) {

while((i>=1) &&
(item_less(pq->A[PARENT(i)], item))) {

pq->A[i] = pq->A[PARENT(i)];
i = PARENT(i);

}
pq->A[i] = item;

}

20Algorithms and Programming – Camurati & Quer

Exercise

 Insert the following values into an initially empty
max-priority queue

 11 31 77 34 65 1 76 48 55 24 9 98 90 5 13 88

Notice that this is not an
application of heapsort

but of pq_insert

21Algorithms and Programming – Camurati & Quer

Exercise

 Insert the following values into an initially empty
min-priority queue

 11 31 77 34 65 1 76 48 55 24 9 98 90 5 13 88

Notice that this is not an
application of heapsort

but of pq_insert

