
Heaps

Priority Queues
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2Algorithms and Programming – Camurati & Quer

Priority Queues

 Heaps have many applications beyond heap-sort

 A priority queue is a data structure to store
elements including a priority field such that all
main operations are based on such a field

 Priority queues have several applications

 Job scheduling

 Etc.

3Algorithms and Programming – Camurati & Quer

Priority Queues

 It is possible to implement

 Min-priority queues

 Max-priority queues

 Main operations

 Insert, extract maximum, read maximum, change
priority

 Possible alternative data structure
implementations

 Unordered array/list

 Ordered array/list

4Algorithms and Programming – Camurati & Quer

Example

20 15 10 12 11 5 4 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14

pq->A

pq->heapsize = 13

0

a z ba d m g e x

8 5 7 2 0

y pp w k b

a 20

z 15

d 12 m 11

ba 10

g 5 e 4

x 9 y 8 pp 5 w 7 k 2 b 0

PQ
(Priority Queue)

Array
representation

Array (maximum)
maxN = 15

#define LEFT(i) (2*i+1)
#define RIGHT(i) (2*i+2)
#define PARENT(i) ((int)(i-1)/2)

Heap  PQ

5Algorithms and Programming – Camurati & Quer

Function pq_insert

 Add a leaf to the tree

 It grows level-by-level from left to right satisfying
the structural property

 From current node up (initially the newest leaf)
up to the root

 Compare the parent’s key with the new node’s
key, moving the parent’s data from the parent to
the child when the key to insert is larger

 Otherwise insert the data into the current node

 Complexity

 T(n) = O(lg n)

6Algorithms and Programming – Camurati & Quer

Example

15
0

12
1

9
3

11
4

10
2

5
5

4
6

1
7

8
8

5
9

7
10

2
11

0
12

Only (integer) keys are
shown, not data items

Array index, i.e., node
with key 1 is stored in

pq->A[0]

 Call function

 pq_insert (pq, ((item) 75))

7Algorithms and Programming – Camurati & Quer

Solution

75
0

12
1

9
3

11
4

15
2

5
5

10
6

1
7

8
8

5
9

7
10

2
11

0
12

Only (integer) keys are
shown, not data items

Array index, i.e., node
with key 1 is stored in

pq->A[0]

 Call function

 pq_insert (pq, (item) 75))

4
13

8Algorithms and Programming – Camurati & Quer

Implementation

void pq_insert (PQ pq, Item item) {
int i;

i = pq->heapsize++;
while((i>=1) &&

(item_less(pq->A[PARENT(i)], item)))
pq->A[i] = pq->A[PARENT(i)];
i = PARENT (i);

}
pq->A[i] = item;

return;
}

Increase the heap size

Function
item_less

compares keys

Move node down

Move up toward
the root

Insert new
element in its

final destination

9Algorithms and Programming – Camurati & Quer

Function pq_extract_max

 Modify the head, by extracting the largest value,
stored into the root

 Swap root with the last leaf (the rightmost onto
the last level)

 Reduce by 1 the heap size

 Restore the heap property by applying heapify

 Complexity

 T(n) = O(lg n)

10Algorithms and Programming – Camurati & Quer

Example

15
0

12
1

9
3

11
4

10
2

5
5

4
6

1
7

8
8

5
9

7
10

2
11

0
12

Only (integer) keys are
shown, not data items

Array index, i.e., node
with key 1 is stored in

pq->A[0]

 Call function

 pq_extract_max (pq)

11Algorithms and Programming – Camurati & Quer

Solution

12
0

11
1

9
3

7
4

10
2

5
5

4
6

1
7

8
8

5
9

0
10

2
11

Only (integer) keys are
shown, not data items

Array index, i.e., node
with key 1 is stored in

pq->A[0]

 Call function

 pq_extract_max (pq)

12Algorithms and Programming – Camurati & Quer

Implementation

Item pq_extract_max(PQ pq) {
Item item;

swap (pq, 0, pq->heapsize-1);
item = pq->A[pq->heapsize-1];
pq->heapsize--;
heapify (pq, 0);

return item;
}

Extract max and move
last element into the

root node

Reduce heap size

Heapify from root

13Algorithms and Programming – Camurati & Quer

Function pq_change

 Modify the key of an element in a given
position given its index

 Can be implemented as two separate operations

 Decrease key

 When a key is decreased, we may need to move it
downward

 To move a key downward, we can adopt the same
process analyze in heapify

● Heapify keeps moving the key from the parent to the
child with the largest key until the key is inserted into
the current node

14Algorithms and Programming – Camurati & Quer

Function pq_change

 Increase key

 When a key is increased, we may need to move it
upward

 To move a key upward, we can adopt the same
process analyze in pq_insert

● We move the key up into the parent until the key is
inserted into the current node

 Complexity

 Dependent on the tree height

 T(n) = O(lg n)

15Algorithms and Programming – Camurati & Quer

Example: Decrease key

15
0

12
1

9
3

11
4

10
2

5
5

4
6

1
7

8
8

5
9

7
10

2
11

0
12

Only (integer) keys are
shown, not data itemsArray index, i.e., node

with key 1 is stored in
pq->A[0]

 Call function

 pq_change (pq, 1, ((item) 3))

16Algorithms and Programming – Camurati & Quer

Solution

15
0

11
1

9
3

7
4

10
2

5
5

4
6

1
7

8
8

5
9

3
10

2
11

0
12

Only (integer) keys are
shown, not data itemsArray index, i.e., node

with key 1 is stored in
pq->A[0]

 Call function

 pq_change (pq, 1, ((item) 3))

17Algorithms and Programming – Camurati & Quer

Example: Increase key

15
0

12
1

9
3

11
4

10
2

5
5

4
6

1
7

8
8

5
9

7
10

2
11

0
12

Only (integer) keys are
shown, not data itemsArray index, i.e., node

with key 1 is stored in
pq->A[0]

 Call function

 pq_change (pq, 5, ((item) 32))

18Algorithms and Programming – Camurati & Quer

Solution

32
0

12
1

9
3

11
4

15
2

10
5

4
6

1
7

8
8

5
9

7
10

2
11

0
12

Only (integer) keys are
shown, not data itemsArray index, i.e., node

with key 1 is stored in
pq->A[0]

 Call function

 pq_change (pq, 5, ((item) 32))

19Algorithms and Programming – Camurati & Quer

Implementation

void pq_change (PQ pq, int i, Item item) {
if (item_less (item, pq->A[i]) {

decrease_key (pq, i);
} else {

increase_key (pq, i, item);
}

}
void decrease_key (PQ pq, int i) {

pq->A[i] = item;
heapify (pq, i);

}
void increase_key (PQ pq, int i) {

while((i>=1) &&
(item_less(pq->A[PARENT(i)], item))) {

pq->A[i] = pq->A[PARENT(i)];
i = PARENT(i);

}
pq->A[i] = item;

}

20Algorithms and Programming – Camurati & Quer

Exercise

 Insert the following values into an initially empty
max-priority queue

 11 31 77 34 65 1 76 48 55 24 9 98 90 5 13 88

Notice that this is not an
application of heapsort

but of pq_insert

21Algorithms and Programming – Camurati & Quer

Exercise

 Insert the following values into an initially empty
min-priority queue

 11 31 77 34 65 1 76 48 55 24 9 98 90 5 13 88

Notice that this is not an
application of heapsort

but of pq_insert

