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ADT Heap

 A heap is a binary tree with 

 A structural property

 Almost complete and almost balanced

● All levels are complete, possibly except the last one, 
filled from left to right

 A functional property (max heap)

 For each node different from the root we have that
the key of the node is less than the key of the 
parent node

● key[parent(node)] ≥ key(node)

 Consequence

 The maximum key is in the root

We have both max
and min heaps
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Example

a 20

z 15

d 12 m 11

ba 10

g 5 e 4

x 9 y 8 pp 5 w 7 k 2 b 0

KeyDataFor each node, the 
node’s key is less

than the parent’s key

Complete tree but
last level, completed

from left to right

We concentrate on 
max heap in this

presentation
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ADT Heap

 A heap can be stored in an array of Items

 The heap’s wrapper can be defined as

struct heap_s {
Item *A;
int heapsize;

} heap_t;
Heapsize specifiy the 
humber of elements
stored in the heap

heap->A

The array A of maxN
Items store the items
(keys and data fields)
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ADT Heap

 The root of the heap is stored in

 heap->A[0]

 Given a node i, we define

 LEFT(i)= 2·i+1

 RIGHT(i) = 2·i+2

 PARENT(i)=(i-1)/2 

 Thus given a node heap->A[i]

 Its left child is heap->A[LEFT(i)]

 Its right child is heap->A[RIGHT(i)]

 Its parent is heap->A[PARENT(i)]
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Example

20 15 10 12 11 5 4 9

1   2   3   4   5   6   7    8   9  10 11  12 13  14   

heap->A

heap->heapsize = 13

0

a z ba d m g e x

8 5 7 2 0

y pp w k b

a 20

z 15

d 12 m 11

ba 10

g 5 e 4

x 9 y 8 pp 5 w 7 k 2 b 0

Heap

Array
representation

Array (maximum) 
maxN = 15

#define LEFT(i)   (2*i+1)
#define RIGHT(i) (2*i+2)
#define PARENT(i) ((int)(i-1)/2) 
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Heap sort

 Focusing of the task of sorting, the heap sort
ordering algorithm, is implemented through 3 
functions

 heapify (heap, i)

 heapbuild (heap)

 heapsort (heap)

 These functions call each other to elegantly
build-up the final ordering
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Function heapify

 Premises

 Given a node i

 Its sub-trees LEFT(i) and RIGHT(i) are already
heaps

 Outcome

 Turn into a heap the entire tree rooted at i, i.e.,
node i, with sub-trees LEFT(i) and RIGHT(i)
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Function heapify

 Process

 Compare A[i], LEFT(i) and RIGHT(i)

 Assign to A[i] the maximum among A[i], LEFT(i) and
RIGHT(i)

 If there has been a swap between A[i] and LEFT(i)

 Recursively apply heapify on the subtree whose root is
LEFT(i)

 If there has been a swap between A[i] and RIGHT(i)

 Recursively apply heapify on the subtree whose root is
RIGHT(i)

 Complexity

 T(n) = O(lg n)
Height of the node

log n for the entire tree
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Example
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Only (integer) keys are 
shown, not data items

 Call function

 heapify (A, 0)

Array index, i.e., node
with key 1 is stored in 

heap->A[0]
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Solution

 Call function

 heapify (A, 0)
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Only (integer) keys are 
shown, not data items

Array index, i.e., node
with key 1 is stored in 

heap->A[0]
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Implementation

void heapify (heap_t heap, int i) {
int l, r, largest;
l = LEFT(i);
r = RIGHT(i);
if ((l<heap->heapsize) &&

(item_greater (heap->A[l], heap->A[i])))
largest = l;

else
largest = i;

if ((r<heap->heapsize)&&
(item_greater (heap->A[r], heap->A[largest])))

largest = r;
if (largest != i) {

swap (heap, i, largest);
heapify (heap, largest);

}
return;

}

Function
item_greater
compares keys
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Function heapbuild

 Premises

 Given a binary tree complete but at the last level
and stored into array heap->A

 Outcome

 Turn array heap->A into a heap
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Function heapbuild

 Process

 Leaves are heaps

 Apply the heapify function

 Starting from the parent node of the last pair of 
leaves

 Move backward on the array until the root is
manipulated

 Complexity

 T(n)= O(n)

N calls to heapify should imply O(n·log).
This bound is correct but not tight.

A tighter bound can be proven by a more 
accurate count of the height of the subtrees

and the number of calls to heapify.
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Exercise
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 Call function

 heapbuild (A)
Only (integer) keys are 
shown, not data items

Array index, i.e., node
with key 1 is stored in 

heap->A[0]



16Algorithms and Programming – Camurati & Quer

Solution
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 Call function

 heapbuild (A)
Only (integer) keys are 
shown, not data items

Array index, i.e., node
with key 1 is stored in 

heap->A[0]
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Implementation

void heapbuild (heap_t heap) {
int i;

for (i=(heap->heapsize)/2-1; i >= 0; i--) {
heapify (heap, i);

}

return;
}

Start from the last 
node of the last 

complete tree leve

Move backward till the 
root

Call heapify on 
each node
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Function heapsort

 Premises

 Given a binary tree complete but at the last level
and stored into array heap->A

 Outcome

 Turn array heap->A into a completely sorted array
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Function heapsort

 Process

 Turns the array into a heap using heapbuild

 Swaps first and last elements

 Decreases heap size by 1

 Reinforces the heap property using heapify

 Repeats until the heap is empty and the array
ordered

 Complexity

 T(n)= O (n · lg n)

 In place

 Not stable

A single call to buildheap  O(n)

+
n calls to heapify, each one  O(log n)

=
implies an overall cost  O(n·logn)
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Exercise
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 Call function

 heapsort (A)

Only (integer) keys are 
shown, not data items

Array index, i.e., node
with key 1 is stored in 

heap->A[0]
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Solution
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 Call function

 heapsort (A)

Only (integer) keys are 
shown, not data items

Array index, i.e., node
with key 1 is stored in 

heap->A[0]
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Implementation

void heapsort (heap_t heap) {
int i, tmp;

heapbuild (heap);

tmp = heap->heapsize;
for (i=heap->heapsize-1; i>0; i--) {

swap (heap, 0, i);
heap->heapsize--;
heapify (heap,0);

}
heap->heapsize = tmp;

return;
}

Initial heap buld.
Forces max value into

the root

For heapsize-1 times

Move max value into
rigthmost element

Heapify again forcing 
new max into root
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Exercise

 Is the following sequence a max heap?

 23  17  14  6  13  10  1  5  7  12
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Exercise

 Sort the following sequence in ascending order
using heap-sort

 12 14 43 10 80 100 61 32 89 78 44 57 11 68 85 56
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Exercise

 Sort the following sequence in descending order
using heap-sort

 41 58 65 36 12 69 13 14 23 10 60 100 78 44 17 21


