#include <ddiibh>
#include <slving h>
#include <clype.h>

#define MAXPAROLA 30
#define MANRGA 80

Int main(int orge, chor *orgv(l)
(
ki, Inkio, lunghesza ;-

Heap Sort

Paolo Camurati and Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

Algorithms and Programming - Camurati & Quer 2

ADT Heap

% A heap is a binary tree with

» A structural property

= Almost complete and almost balanced
e All levels are complete, possibly except the last one,

filled from left to right
We have both max
and min heaps

> A functional property (max heap)

= For each node different from the root we have that
the key of the node is less than the key of the
parent node

e key[parent(node)] = key(node)
% Conseqguence
» The maximum key is in the root

"/

Algorithms and Programming - Camurati & Que U 3

For each node, the R p
node’s key is less
than the parent’s key | / We concentr_ate on
L max heap in this

presentation

Example

Complete tree but
last level, completed
from left to right

Algorithms and Programming - Camurati & Quer 4

ADT Heap

< A heap can be stored in an array of Items
% The heap’s wrapper can be defined as

p ~ The array A of maxN
Items store the items
struct heap_s { (keys and data fields)
| tem *A; —\
I nt heapsi ze; N
heap_t;
} = N Heapsize specifiy the

N J humber of elements
stored in the heap
heap->A

Algorithms and Programming - Camurati & Quer 5

ADT Heap

% The root of the heap is stored in
> heap->A[0]
%+ Given a node i, we define
> LEFT(i)= 2-i+1
> RIGHT(i) = 2+i+2
> PARENT(i)=(i-1)/2
% Thus given a node heap->A[i]
> Its left child is heap->A[LEFT(i)]
» Its right child is heap->A[RIGHT(i)]
> Its parent is heap->A[PARENT(i)]

;/’/'

Algorithms and Programming - Camurati & Que _ 3

Example

#define LEFT(i) (2*i +1)
#define RIGHT(i) (2*i +2)
#define PARENT(i) ((int)(i-1)/2)

Array
representation

/

0123456 7 8 91011 1213 14

heap->heapsize = 13

Array (maximum)
maxN = 15

Algorithms and Programming - Camurati & Quer 7

% Focusing of the task of sorting, the heap sort
ordering algorithm, is implemented through 3
functions

> heapify (heap, i)
» heapbuild (heap)
> heapsort (heap)

% These functions call each other to elegantly
build-up the final ordering

&

Algorithms and Programming - Camurati & Que : 8

Function heapify

*** Premises
» Given a node i

» Its sub-trees LEFT(i) and RIGHT(i) are already
heaps

2 Qutcome

» Turn into a heap the entire tree rooted at i, i.e.,
node i, with sub-trees LEFT(i) and RIGHT(i)

Algorithms and Programming - Camurati & Quer 9

Function heapify

+s» Process

» Compare A[i], LEFT(i) and RIGHT(i)

= Assign to A[i] the maximum among A[i], LEFT(i) and
RIGHT(i)

> If there has been a swap between A[i] and LEFT(i)

= Recursively apply heapify on the subtree whose root is
LEFT(i)

> If there has been a swap between A[i] and RIGHT(i)

= Recursively apply heapify on the subtree whose root is
RIGHT(i)

% Complexi
: P ty Height of the node
» T(n) = O(lg n) —————_ log n for the entire tree

"/

Algorithms and Programming - Camurati & Que U 10

Example

2 Call function

> heaplfy (A’ O) Only (integer) keys are
[shown, not data items

Array index, i.e., node

with key 1 is stored in
heap->A[0] ﬁ

"/

Algorithms and Programming - Camurati & Quer 11

2 Call function

> heaplfy (A’ O) Only (integer) keys are
[shown, not data items

Array index, i.e., node

with key 1 is stored in
heap->A[0] ﬁ

Algorithms and Programming - Camurati & Quen 12

Implementation

//;oid heapi fy (heap_t heap, int i) { _\\
int I, r, largest; _ Function
| = LEFT(l) : item_greater
r = RIGHT(i); compares keys

i f ((l <heap->heapsi ze) &&
(itemgreater (heap->A[l], heap->Ali])))
| argest = |;
el se
| argest = i;
i f ((r<heap->heapsize) &&
(itemgreater (heap->Alr], heap->Allargest])))
| argest = r;
I f (largest '=1i) {
swap (heap, i, largest);
heapi fy (heap, |argest);

return;

&

Algorithms and Programming - Camurati & Que i . 13

Function heapbuild

+» Premises

» Given a binary tree complete but at the last level
and stored into array heap->A

% Outcome
> Turn array heap->A into a heap

"/

Algorithms and Programming - Camurati & Que U 14

Function heapbuild

**» Process
> Leaves are heaps

> Apply the heapify function

= Starting from the parent node of the last pair of
leaves

= Move backward on the array until the root is
manipulated

s+ Complexity
» T(n)= 0O(n)

N calls to heapify should imply O(n-log).
This bound is correct but not tight.
A tighter bound can be proven by a more
accurate count of the height of the subtrees
and the number of calls to heapify.

J

"/

Algorithms and Programming - Camurati & Quer 15

2 Call function

> heapbund (A) Only (integer) keys are
[shown, not data items

Array index, i.e., node

with key 1 is stored in
heap->A[0] ﬁ

"/

Algorithms and Programming - Camurati & Quer 16

2 Call function

> heapbund (A) Only (integer) keys are
[shown, not data items

Array index, i.e., node

with key 1 is stored in
heap->A[0] ﬁ

P

Algorithms and Programming - Camurati & Quen I

Implementation

4 Start from the last)
voi d heapbui | d (heap_t heap) { e of the lact
int i; complete tree leve
for (i=(heap->heapsize)/2-1; i >= 0; i--) {
heapi fy (heap, i);
}
e Call heapify on

Move backward till the
each node

root
}

S)

&

Algorithms and Programming - Camurati & Que i . 18

Function heapsort

+» Premises

» Given a binary tree complete but at the last level
and stored into array heap->A

% Outcome
» Turn array heap->A into a completely sorted array

Algorithms and Programming - Camurati & Quer 19

Function heapsort

**» Process
» Turns the array into a heap using heapbuild
» Swaps first and last elements
» Decreases heap size by 1
» Reinforces the heap property using heapify
> Repeats until the heap is empty and the array

ordered
< Complexity
> T(N=0(n 'lagn
() (9) A single call to buildheap - O(n) A
< In place ’

n calls to heapify, each one - O(log n
< Not stable P € ogm

implies an overall cost > O(n*logn))

Algorithms and Programming - Camurati & Quer 20

2 Call function

> heapsort (A)
0 1 2 3 4 5 6 7 8 9 10 11 12

A 4 3 5 1 17 110 | 15| 9 4 11 | 12 2 9
Array index, i.e., node (:
withykey 1 is stored in 6 il (Uintegan) L ey el
heap->A[0] shown, not data items

1 (3
) (O &) &
DO W W @

Algorithms and Programming - Camurati & Quer !

2 Call function

> heapsort (A)
0 1 2 3 4 5 6 7 8 9 10 11 12

A 1 2 3 4 4 5 9 9 10 | 11 | 12 | 15 | 17
Array index, i.e., node (:
withykey 1 is stored in 3 il (Uintegan) L ey el
heap->A[0] shown, not data items

5 (2
) (L &) ©
DO®O® @ ®E

Algorithms and Programming - Camurati & Quer 22

Implementation

4 B

voi d heapsort (heap_t heap) {

int i, tnp; Initial heap buld.
Forces max value into
heapbui | d (heap): ticlicol
_ For heapsize-1 times }
t np = heap- >heapsi ze;

for (i=heap->heapsize-1; i>0; i--) {

swap (heap, 0, i);

heap_— >heapsi ze- -; Move max value into

heapi fy (heap, 0); rigthmost element
}

heap- >heapsi ze = t np;

Heapify again forcing }
new max into root
return;

Algorithms and Programming - Cdmurafiéﬂ o 23

% Is the following sequence a max heap?
»23 17 146 13 101 5 7 12

&

Algorithms and Programming - Camurati & Qu U 24

% Sort the following sequence in ascending order
using heap-sort
» 121443 1080 100 61 3289 7844 57 11 68 85 56

&

Algorithms and Programming - Camurati & Qu Ui 25

% Sort the following sequence in descending order
using heap-sort
> 415865361269 1314 2310601007844 17 21

