
Heap

Heap Sort
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2Algorithms and Programming – Camurati & Quer

ADT Heap

 A heap is a binary tree with

 A structural property

 Almost complete and almost balanced

● All levels are complete, possibly except the last one,
filled from left to right

 A functional property (max heap)

 For each node different from the root we have that
the key of the node is less than the key of the
parent node

● key[parent(node)] ≥ key(node)

 Consequence

 The maximum key is in the root

We have both max
and min heaps

3Algorithms and Programming – Camurati & Quer

Example

a 20

z 15

d 12 m 11

ba 10

g 5 e 4

x 9 y 8 pp 5 w 7 k 2 b 0

KeyDataFor each node, the
node’s key is less

than the parent’s key

Complete tree but
last level, completed

from left to right

We concentrate on
max heap in this

presentation

4Algorithms and Programming – Camurati & Quer

ADT Heap

 A heap can be stored in an array of Items

 The heap’s wrapper can be defined as

struct heap_s {
Item *A;
int heapsize;

} heap_t;
Heapsize specifiy the
humber of elements
stored in the heap

heap->A

The array A of maxN
Items store the items
(keys and data fields)

5Algorithms and Programming – Camurati & Quer

ADT Heap

 The root of the heap is stored in

 heap->A[0]

 Given a node i, we define

 LEFT(i)= 2·i+1

 RIGHT(i) = 2·i+2

 PARENT(i)=(i-1)/2

 Thus given a node heap->A[i]

 Its left child is heap->A[LEFT(i)]

 Its right child is heap->A[RIGHT(i)]

 Its parent is heap->A[PARENT(i)]

6Algorithms and Programming – Camurati & Quer

Example

20 15 10 12 11 5 4 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14

heap->A

heap->heapsize = 13

0

a z ba d m g e x

8 5 7 2 0

y pp w k b

a 20

z 15

d 12 m 11

ba 10

g 5 e 4

x 9 y 8 pp 5 w 7 k 2 b 0

Heap

Array
representation

Array (maximum)
maxN = 15

#define LEFT(i) (2*i+1)
#define RIGHT(i) (2*i+2)
#define PARENT(i) ((int)(i-1)/2)

7Algorithms and Programming – Camurati & Quer

Heap sort

 Focusing of the task of sorting, the heap sort
ordering algorithm, is implemented through 3
functions

 heapify (heap, i)

 heapbuild (heap)

 heapsort (heap)

 These functions call each other to elegantly
build-up the final ordering

8Algorithms and Programming – Camurati & Quer

Function heapify

 Premises

 Given a node i

 Its sub-trees LEFT(i) and RIGHT(i) are already
heaps

 Outcome

 Turn into a heap the entire tree rooted at i, i.e.,
node i, with sub-trees LEFT(i) and RIGHT(i)

9Algorithms and Programming – Camurati & Quer

Function heapify

 Process

 Compare A[i], LEFT(i) and RIGHT(i)

 Assign to A[i] the maximum among A[i], LEFT(i) and
RIGHT(i)

 If there has been a swap between A[i] and LEFT(i)

 Recursively apply heapify on the subtree whose root is
LEFT(i)

 If there has been a swap between A[i] and RIGHT(i)

 Recursively apply heapify on the subtree whose root is
RIGHT(i)

 Complexity

 T(n) = O(lg n)
Height of the node

log n for the entire tree

10Algorithms and Programming – Camurati & Quer

Example

1
0

15
1

12
3

11
4

10
2

5
5

4
6

9
7

8
8

5
9

7
10

2
11

0
12

Only (integer) keys are
shown, not data items

 Call function

 heapify (A, 0)

Array index, i.e., node
with key 1 is stored in

heap->A[0]

11Algorithms and Programming – Camurati & Quer

Solution

 Call function

 heapify (A, 0)

15
0

13
1

4
3

12
4

10
2

4
5

5
6

9
7

1
8

11
9

7
10

2
11

0
12

Only (integer) keys are
shown, not data items

Array index, i.e., node
with key 1 is stored in

heap->A[0]

12Algorithms and Programming – Camurati & Quer

Implementation

void heapify (heap_t heap, int i) {
int l, r, largest;
l = LEFT(i);
r = RIGHT(i);
if ((l<heap->heapsize) &&

(item_greater (heap->A[l], heap->A[i])))
largest = l;

else
largest = i;

if ((r<heap->heapsize)&&
(item_greater (heap->A[r], heap->A[largest])))

largest = r;
if (largest != i) {

swap (heap, i, largest);
heapify (heap, largest);

}
return;

}

Function
item_greater
compares keys

13Algorithms and Programming – Camurati & Quer

Function heapbuild

 Premises

 Given a binary tree complete but at the last level
and stored into array heap->A

 Outcome

 Turn array heap->A into a heap

14Algorithms and Programming – Camurati & Quer

Function heapbuild

 Process

 Leaves are heaps

 Apply the heapify function

 Starting from the parent node of the last pair of
leaves

 Move backward on the array until the root is
manipulated

 Complexity

 T(n)= O(n)

N calls to heapify should imply O(n·log).
This bound is correct but not tight.

A tighter bound can be proven by a more
accurate count of the height of the subtrees

and the number of calls to heapify.

15Algorithms and Programming – Camurati & Quer

Exercise

4
0

13
1

1
3

7
4

5
2

0
5

15
6

9
7

4
8

11
9

12
10

2
11

10
12

 Call function

 heapbuild (A)
Only (integer) keys are
shown, not data items

Array index, i.e., node
with key 1 is stored in

heap->A[0]

16Algorithms and Programming – Camurati & Quer

Solution

15
0

13
1

9
3

12
4

10
2

4
5

5
6

1
7

4
8

11
9

7
10

2
11

0
12

 Call function

 heapbuild (A)
Only (integer) keys are
shown, not data items

Array index, i.e., node
with key 1 is stored in

heap->A[0]

17Algorithms and Programming – Camurati & Quer

Implementation

void heapbuild (heap_t heap) {
int i;

for (i=(heap->heapsize)/2-1; i >= 0; i--) {
heapify (heap, i);

}

return;
}

Start from the last
node of the last

complete tree leve

Move backward till the
root

Call heapify on
each node

18Algorithms and Programming – Camurati & Quer

Function heapsort

 Premises

 Given a binary tree complete but at the last level
and stored into array heap->A

 Outcome

 Turn array heap->A into a completely sorted array

19Algorithms and Programming – Camurati & Quer

Function heapsort

 Process

 Turns the array into a heap using heapbuild

 Swaps first and last elements

 Decreases heap size by 1

 Reinforces the heap property using heapify

 Repeats until the heap is empty and the array
ordered

 Complexity

 T(n)= O (n · lg n)

 In place

 Not stable

A single call to buildheap  O(n)

+
n calls to heapify, each one  O(log n)

=
implies an overall cost  O(n·logn)

20Algorithms and Programming – Camurati & Quer

Exercise

4
0

3
1

1
3

17
4

5
2

10
5

15
6

9
7

4
8

11
9

12
10

2
11

9
12

0 1 2 3 4 5 6 7 8 9 10 11 12

A 4 3 5 1 17 10 15 9 4 11 12 2 9

 Call function

 heapsort (A)

Only (integer) keys are
shown, not data items

Array index, i.e., node
with key 1 is stored in

heap->A[0]

21Algorithms and Programming – Camurati & Quer

Solution

17
0

12
1

9
3

11
4

15
2

10
5

5
6

1
7

4
8

4
9

3
10

2
11

9
12

0 1 2 3 4 5 6 7 8 9 10 11 12

A 1 2 3 4 4 5 9 9 10 11 12 15 17

 Call function

 heapsort (A)

Only (integer) keys are
shown, not data items

Array index, i.e., node
with key 1 is stored in

heap->A[0]

22Algorithms and Programming – Camurati & Quer

Implementation

void heapsort (heap_t heap) {
int i, tmp;

heapbuild (heap);

tmp = heap->heapsize;
for (i=heap->heapsize-1; i>0; i--) {

swap (heap, 0, i);
heap->heapsize--;
heapify (heap,0);

}
heap->heapsize = tmp;

return;
}

Initial heap buld.
Forces max value into

the root

For heapsize-1 times

Move max value into
rigthmost element

Heapify again forcing
new max into root

23Algorithms and Programming – Camurati & Quer

Exercise

 Is the following sequence a max heap?

 23 17 14 6 13 10 1 5 7 12

24Algorithms and Programming – Camurati & Quer

Exercise

 Sort the following sequence in ascending order
using heap-sort

 12 14 43 10 80 100 61 32 89 78 44 57 11 68 85 56

25Algorithms and Programming – Camurati & Quer

Exercise

 Sort the following sequence in descending order
using heap-sort

 41 58 65 36 12 69 13 14 23 10 60 100 78 44 17 21

