
Symbol Tables

Hash Tables
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2Algorithms and Programming – Camurati & Quer

Definition

 Hash-tables

 An ADT used to insert, search, delete, not to order

or to select a key

 Reduce the storage requirements of direct-access
tables from Θ(|U|) to Θ(|K|)

 Efficiency

 Memory usage in the order of the number of keys
stored in that table (not in the order of |U|)

 M(K) = Θ(|K|)

 Average access is constant

time

 T(K) = O(1)

|K| = Forecast number of
keys to be stored

|U| = Number of keys in the
key universe

Usually |K| << |U|

3Algorithms and Programming – Camurati & Quer

Definition

 It uses

 A table (an array) to store the data

 A function to transform each key into its position
(index) into an array

 The table

 Has size M and stores |K| elements

 |K|<<|U|

 Has addresses (indices) in the range [0, M-1]

Previously st
Previously
getindex

4Algorithms and Programming – Camurati & Quer

Hash Function

 The function used to map a key into an array
index (position) is called hash function

 It transforms the search key into a table index,
i.e., it creates a correspondence between a key k
and a table address h(k)

 h: U → { 0, 1, ..., M-1 }

 Each element of key k is stored at the address h(k)

 As |K|<<|U| the hash function creates a mapping
which is n:1, no more 1:1 as in the direct access
tables

5Algorithms and Programming – Camurati & Quer

Hash Function

k1

0

1

2

3

4

5

6

7

8

M-1

T

U

k3

k2

k4

k5

h(k1)

h(k4)

h(k2)=h(k5)

h(k3)

…

The mapping between
k∈U and elements in the
table is |U|:M (not 1:1)

h(k4)

h(k3)

6Algorithms and Programming – Camurati & Quer

Hash Function

 Every time two different keys are placed in the
same table element we have a conflict

 Such a conflict is called a collision

 To minimize collisions we must design proper
hash functions

k1

0
1
2
3
4
5
6
7
8

M-1

U

k3

k2

k4

k5

h(k1)
h(k4)

h(k2)=h(k5)

h(k3)…

h(k4)

h(k3)

Problem # 1

7Algorithms and Programming – Camurati & Quer

Hash Function

 Collisions may always happen as the

 Hash tables map |U| elements into |M| slots

 The table cannot contain all keys within the universe
of keys

 The hash function cannot be perfect

 The mapping may always create conflicts

 We must understand how to deal with collisions

Problem # 2

k1

0
1
2
3
4
5
6
7
8

M-1

U

k3

k2

k4

k5

h(k1)
h(k4)

h(k2)=h(k5)

h(k3)…

h(k4)

h(k3)

8Algorithms and Programming – Camurati & Quer

Designing a hash function

 If the k keys are equiprobable, then the h(k)
values must be equiprobable

 Practically, the k keys are not equiprobable, as
they are correlated

 To make the h(k) values equiprobable it is
necessary to

 Distribute h(k) in a uniform way

 Make h(ki) uncorrelated from h(kj)

 Uncorrelate h(k) from k

 “Amplify” differences

 Hash function can be designed in different ways

9Algorithms and Programming – Camurati & Quer

The Multiplication Method

 If keys are floating point numbers

 k ∈ [s, t]

 h(k) = 
(���)

(���)
∙ M 

 Example

 M = 97

 k ∈ [0, 1.0] = 0.513871

 h(k) = 
(�.	
��

��)

(
��)
∙ 97  = 49

  = floor =
largest integer smaller than

int hash (float k, int M) {
return (((k-s)/(t-s)) * M);

}

Key’s range

10Algorithms and Programming – Camurati & Quer

The Module Method

 If keys are integer numbers

 h(k) = k % M

 Alternative function

 h(k) = 1 + k % M’, with M’<M

 It is convenient to use prime numbers for M to
consider all digits/bits

 If M = 2n we use only the last n bits

 If M = 10n we use only the last n decimal digits

 Keys will not evenly distribute

int hash (int k, int M) {
return (k%M);

}

Fast and easy to compute

11Algorithms and Programming – Camurati & Quer

The Module Method

 Examples

 M = 19

 k = 11  h(k) = 11 % 19 = 11

 k = 31  h(k) = 31 % 19 = 12

 k = 29  h(k) = 29 % 19 = 10

int hash (int k, int M) {
return (k%M);

}

12Algorithms and Programming – Camurati & Quer

The Multiplication-Module Method

 If keys are integer numbers

 Given a constant value A, the hash function can be
computed as

 A ∈] 0, 1[

 h(k) =  k ⋅ A  % M

 A good value for A is

 A =
(�5 −1)

�
= 0.6180339887

int hash (int k, int M) {
return (((int) (k*A))%M);

}

13Algorithms and Programming – Camurati & Quer

The Multiplication-Module Method

 Examples

 M = 19

 k = 11  h(k) = 11 ⋅ A  % 19 = 6 % 19 = 6

 k = 31  h(k) = 11 ⋅ A  % 19 = 19 % 19 = 9

int hash (int k, int M) {
return (((int) (k*A))%M);

}

14Algorithms and Programming – Camurati & Quer

The Modular Method

 If keys are short alphanumeric strings

 The best strategy is to convert them into integers

 Each string can be "evaluated" through a
polinomial which "evalutes" the string as a number
in a given base

 The result is to transform the string into an integer

 Once the integer is obtained the module method can
be applied

● h(k) = k % M

15Algorithms and Programming – Camurati & Quer

The Modular Method

 Example

 K = ″now″

 M = 19

 h(k) = pn·b
n + p6·b

6 + … + p2·b
2 + p1·b

1 + p0·b
0

= (‘n’ ∙ 1282 + ‘o’ ∙ 1281 + ‘w’) % 19

= (110 ∙ 1282 + 111 ∙ 1281 + 119) % 19

= 1816567 % 19

= 15

Polinomial interpretation
of the string as a

number in base b = 128

To each character we may
use the corresponding

ASCII value

16Algorithms and Programming – Camurati & Quer

The Modular Method

 If keys are long alphanumeric strings

 The previous computation overflows, and the result
cannot be represented on a reasonable number of
bits

 In this case, it is possible to use the Horner’s
method to rule-out M multiples after each step,
instead of doing that after the application of the
modular technique

 h(k) = pn-1·b
n-1+pn-2·b

n-2 + … +p2·b
2+p1·b

1+p0·b
0

= (((((pn·b+pn-1)·b+pn-2)·b+ … +p2)·b+p1)·b+p0

= ((((((pn-1%M)·b+pn-2)%M)·b+pn-3)·b)%M …

17Algorithms and Programming – Camurati & Quer

The Modular Method

 The resulting implementation is the following one

 Base b=128

int hash (char *v, int M) {
int h = 0;
int base = 128;

while (*v != '\0') {
h = (h * base + *v) % M;
v++;

}

return h;
}

18Algorithms and Programming – Camurati & Quer

The Modular Method

 Example

 k = ″averylongkey″

 b = 128

 h(k) =

= 97·12811+118·12810+101·1289+114·1288

+121·1287+108·1286+111·1285+110·1284

+103·1283+107·1282+101·1281+121·1280

 = ((((((((((97·128+118)·128+101)·128+114)

 ·128+121)·128+108)·128+111)·128+110)

 ·128+103)·128+107)·128+101)·128+121

 = ((((((((((97%M)·128+118)%M)·128+114)%M)

 ·128+121)% …

19Algorithms and Programming – Camurati & Quer

The Modular Method

 To obtain a uniform distribution we must have a
collision probability for 2 different keys equal to
1/M

 Base b = 128 = 27 is not a good base

 Rule of thumb to select b

 A prime number

 For example

 b = 127

int hash (char *v, int M) {
int h = 0;
int base = 127;
while (*v != '\0') {

h = (h * base + *v) % M;
v++;

}
return h;

}

20Algorithms and Programming – Camurati & Quer

The Modular Method

 Or even better random numbers different for each
digit of the key

 This approach is called universal hashing

int hash (char *v, int M) {
int h = 0;
int a = 31415, b = 27183;

while (*v != '\0‘) {
h = (h * a + *v) % M;
a = ((a*b) % (M-1));
v++;

}

return h;
}

21Algorithms and Programming – Camurati & Quer

Collisions

 A collision happens when

 ki ≠ kj  h(ki)=h(kj)

 Collisions are inevitable, as

 |K|~|M| << |U|

 Hash functions are not perfect and do not
distribute keys uniformly

 Then, it is necessary to

 Minimize their number

 Select a good hash function for each specific
problems / set of keys

 Deal with collisions when they occur

22Algorithms and Programming – Camurati & Quer

Collisions

 Collisions can be dealt with

 Linear chaining

 For each hash table entry, a list of elements stores
all data items having the same hash function value

 Open addressing

 For each collision, it tries to place the same element
somewhere else (in another table entry) within the
table

23Algorithms and Programming – Camurati & Quer

Linear Chaining

 More elements can be stored in the same table
location

 A table element does not contain a key anymore

 Each element points to a linked list

 Insert an element implies inserting it on the list

 The most efficient way is to do this operation on
the list head

 Delete an element implies

 A list search

 Lists are not usually sorted as insertions are on the
head

 A delete operation from the list

24Algorithms and Programming – Camurati & Quer

Linear Chaining

 With linear chaining the hash table

 Can be smaller than the number of elements |K|
that have to be stored in it

 The smaller the table the longer the linked lists

 Lists too long imply inefficiency

 It is a good rule of thumb to have lists with an
average length varying from 5 to 10 elements

 Select M as the smallest prime larger than the
maximum number of keys divided by 5 (or 10) such
that the average list length would be 5 (or 10)

25Algorithms and Programming – Camurati & Quer

Example

 Given the following set of keys (letters)

 A S E R C H I N G X M P

 Insert them into a hash table of size

 M = 5

 Using the module method for the hash function

 h(k) = k % M

 Where k is the positional order of the key within
the English alphabet (starting from 1)

26Algorithms and Programming – Camurati & Quer

Solution

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

h(k) = k % M = k % 5

key Order h(k)

A 1 1

S 19 4

E 5 0

R 18 3

C 3 3

H 8 3

I 9 4

key Order h(k)

N 14 4

G 7 2

X 24 4

M 13 3

P 16 1

27Algorithms and Programming – Camurati & Quer

0

1

2

3

4

Solution

H

E

G

NX

C

I S

P

M R

A

key Order h(k)

A 1 1

S 19 4

E 5 0

R 18 3

C 3 3

H 8 3

I 9 4

key Order h(k)

N 14 4

G 7 2

X 24 4

M 13 3

P 16 1

28Algorithms and Programming – Camurati & Quer

Complexity

 With non-ordered lists

 N = number of stored elements

 It should be of the same order of |K|

 M = size of the hash table

 Simple Uniform Hashing

 h(k) has the same probability to generate M
output values

 Definition

 Load factor = α =
�

�

 It can be less, equal or larger than 1

29Algorithms and Programming – Camurati & Quer

Complexity

 Insert

 T(n) = O(1)

 Search

 Worst case

 T(n) = Θ(N)

 Average case

 T(n) = O(1+α)

 Delete

 As the search

30Algorithms and Programming – Camurati & Quer

Open Addressing

 Each cell table T can store a single element

 All elements are stored in T

 Once there is a collision it is necessary to look-for

an empty cell with probing

 Generate a cell permutation, i.e, an order to
search for an empty cell

 The same order has to be used to insert and to
search a key

N≤M
α≤1

31Algorithms and Programming – Camurati & Quer

Probing Functions

 There are several ways to perform probing

 Linear probing

 Quadratic probing

 Double hashing

 A problem with open addressing is clustering

 A cluster is a set of contiguous full cells which
makes further collisions more probable in that area
of the table

32Algorithms and Programming – Camurati & Quer

Linear Probing

 Given a key k

 h’(k) = (h(k) + i) % M

 Variable i is the attempt counter

 Start with i = 0 and increase it after every collision

 Algorithm

 Set i=0

 Compute h(k), then h’(k)

 If the element is free, insert the key

 Otherwise, increase i and repeat until an empty
cell is found

33Algorithms and Programming – Camurati & Quer

Linear Probing

 Linear probing suffers from primary clustering

 Long runs of occupied slots build up, increasing
the average search time

 Primary clusters are likely to arise

 Runs of occupied slots tend to get longer

 Unifor hashing is spoiled

34Algorithms and Programming – Camurati & Quer

Quadratic Probing

 Given a key k

 h‘(k) = (h(k) + c1·i + c2·i
2) % M

 Variable i is the attempt counter

 Start with i = 0 and increase it after every collision

 Algorithm

 Set i=0

 Compute h(k), then h’(k)

 If the element is free, insert the key

 Otherwise, increase i and repeat until an empty
cell is found

35Algorithms and Programming – Camurati & Quer

Quadratic Probing

 In quadratic probing constants c1 and c2 must be
selected carefully

 They must guarantee that h’(k) assumes distinct
values for 1 ≤ i ≤ (M-1)/2

 If M = 2K, select c1 = c2 = ½ to generate all
indexes between 0 and M-1

 If M is prime and α < ½ the following values

 c1 = ½ and c2 = ½

 c1 = 1 and c2 = 1

 c1 = 0 and c2 = 1

36Algorithms and Programming – Camurati & Quer

Quadratic Probing

 Quadratic probing suffers from secondary
clustering

 A milder form of clustering where clustered
elements are not contiguous

 The same considerations made for the primary
clustering hold also for this case of clustering

37Algorithms and Programming – Camurati & Quer

Double Hashing

 Given a key k

 h‘(k) = (h1 (k) + i · h2 (k)) % M

 Variable i is the attempt counter

 Start with i = 0 and increase it after every collision

 Algorithm

 Set i=0

 Compute h1(k), then h’(k)

 If the element is free, insert the key

 Otherwise, increase i, compute h2(k), and repeat
until an empty cell is found

38Algorithms and Programming – Camurati & Quer

Double Hashing

 In double hashing we must guarantte that the
new value of h’(k) differ from the previous one
otherwise we enter an infinite loop

 To avoid this

 h2 should never return 0

 h2%M should never return 0

 Examples

 h1(k) = k % M and M prime

 h2(k) = 1 + k % 97

 h2(k) never returns 0 and h2%M never returns 0 if
M > 97

39Algorithms and Programming – Camurati & Quer

Double Hashing

 Double hashing represents an improvement over
linear or quadratic probing

 As we vary the key, the initial probing position and
the offset may vary independently

 As a result, the performance of double hashing
appears to be very close of the ideal scheme of
uniform hashing

40Algorithms and Programming – Camurati & Quer

Probing and Delete

 With probing (all strategies) delete a key is a
complex operation

 Each delete operation potentially breaks a collision
chain

 For that reason open addressing is often used
only when it is not necessary to delete keys

 Hash tables limited to insertions and searches

41Algorithms and Programming – Camurati & Quer

Probing and Delete

 To extend the approach to hash tables with
delete operations we must

 Either substitute the deleted key with a sentinel
key

 The sentinel key is considered as

● A full element during search operations and

● An empty element during insertion operations

 Or re-adjust clustered keys, to move some key into
the deleted element

42Algorithms and Programming – Camurati & Quer

Example: Delete with Probing

 Delete E

 We need to remind

 that keys E, S, R,

 and H collided into

 element 4

0 A

1

2 C

3

4 E

5 S

6 R

7 H

8

9

10

11

12

0 A

1

2 C

3

4 E

5 S

6 R

7 H

8

9

10

11

12

0 A

1

2 C

3

4 H

5 S

6 R

7

8

9

10

11

12

Sentinel Re-adjustment

43Algorithms and Programming – Camurati & Quer

Example

 Given the following set of keys (letters)

 A S E R C H I N G X M P

 Insert them into a hash table of size

 M = 13

 Using the module method for the hash function
with linear probing

 h(k) = k % M

 Where k is the positional order of the key within
the English alphabet

The constraint
α< ½

is not respected

44Algorithms and Programming – Camurati & Quer

Solution

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

h(k) = k % M = k % 13

h’(k) = (k%13 + i) % 13

key Order h(k)

A 1 1

S 19 6

E 5 5

R 18 5  6  7

C 3 3

H 8 8

I 9 9

key Order h(k)

N 14 1  2

G 7 7  8  9
 10

X 24 11

M 13 0

P 16 3  4

45Algorithms and Programming – Camurati & Quer

Solution

0 1 2 3 4 5 6 7 8 9 10 11 12

A

A S

A E S

A E S R

A C E S R

A C E S R H

A C E S R H I

A N C E S R H I

A N C E S R H I G

A N C E S R H I G X

M A N C E S R H I G X

M A N C P E S R H I G X

Hash-table configuration
after each insertion

46Algorithms and Programming – Camurati & Quer

Example

 Given the following set of keys (letters)

 A S E R C H I N G X M P

 Insert them into a hash table of size

 M = 13

 Using the module method for the hash function
with quadratic probing

 h(k) = k % M

 Where k is the positional order of the key within
the English alphabet

The constraint
α< ½

is not respected

47Algorithms and Programming – Camurati & Quer

Solution

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

h(k) = (h(k) + i · h(k)) % M

= (k % M + 0.5 · i + 0.5 · i2) % 13

key Order h(k)

A 1 1

S 19 6

E 5 5

R 18 5  6  8

C 3 3

H 8 8  9

I 9 9  10

key Order h(k)

N 14 1  2

G 7 7

X 24 11

M 13 0

P 16 3  4

48Algorithms and Programming – Camurati & Quer

Solution

0 1 2 3 4 5 6 7 8 9 10 11 12

A

A S

A E S

A E S R

A C E S R

A C E S R H

A C E S R H I

A N C E S R H I

A N C E S G R H I

A N C E S G R H I X

M A N C E S G R H I X

M A N C P E S G R H I X

Hash-table configuration
after each insertion

49Algorithms and Programming – Camurati & Quer

Example

 Given the following set of keys (letters)

 A S E R C H I N G X M P L

 Insert them into a hash table of size

 M = 13

 Using the module method for the hash function
with double hashing

 h’(k) = k % M

 h’’(k) = 1 + k % 97

 Where k is the positional order of the key within
the English alphabet

The constraint
α< ½

is not respected

50Algorithms and Programming – Camurati & Quer

Solution

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

h(k) = (h(k) + i · h(k)) % M

= (k % M + i · (k % 97)) % 13

key Order h(k)

A 1 1

S 19 6

E 5 5

R 18 5  11

C 3 3

H 8 8

I 9 9

key Order h(k)

N 14 1  3  5  7

G 7 7  2

X 24 11  10

M 13 0

P 16 3711
26101
5904

51Algorithms and Programming – Camurati & Quer

Solution

0 1 2 3 4 5 6 7 8 9 10 11 12

A

A S

A E S

A E S R

A C E S R

A C E S H R

A C E S H I R

A C E S N H I R

A G C E S N H I R

A G C E S N H I X R

M A G C E S N H I X R

M A G C P E S N H I X R

Hash-table configuration
after each insertion

52Algorithms and Programming – Camurati & Quer

Comparison

 Hash Table

 Unique solution when keys do not have an
ordering relation

 Much faster on the average case

 The hast table size mut be forecast or it may be
re-allocated

 Trees (BST and variants)

 Better worst-case performances when balanced
trees are used

 Easier to create with unknown or highly-variable
number of keys

 Allow operations on keys with an ordering relation

