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Definition

 Hash-tables

 An ADT used to insert, search, delete, not to order

or to select a key

 Reduce the storage requirements of direct-access
tables from Θ(|U|) to Θ(|K|)

 Efficiency

 Memory usage in the order of the number of keys
stored in that table (not in the order of |U|)

 M(K) = Θ(|K|)

 Average access is constant

time

 T(K) = O(1) 

|K| = Forecast number of 
keys to be stored

|U| = Number of keys in the 
key universe

Usually |K| << |U|
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Definition

 It uses

 A table (an array) to store the data

 A function to transform each key into its position 
(index) into an array

 The table

 Has size M and stores |K| elements

 |K|<<|U|

 Has addresses (indices) in the range [0, M-1]

Previously st
Previously
getindex
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Hash Function

 The function used to map a key into an array 
index (position) is called hash function

 It transforms the search key into a table index, 
i.e., it creates a correspondence between a key k 
and a table address h(k)

 h: U → { 0, 1, ..., M-1 }

 Each element of key k is stored at the address h(k)

 As |K|<<|U| the hash function creates a mapping
which is n:1, no more 1:1 as in the direct access
tables
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Hash Function
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Hash Function

 Every time two different keys are placed in the 
same table element we have a conflict

 Such a conflict is called a collision

 To minimize collisions we must design proper
hash functions
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Hash Function

 Collisions may always happen as the

 Hash tables map |U| elements into |M| slots

 The table cannot contain all keys within the universe
of keys

 The hash function cannot be perfect

 The mapping may always create conflicts

 We must understand how to deal with collisions

Problem # 2
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Designing a hash function

 If the k keys are equiprobable, then the h(k) 
values must be equiprobable

 Practically, the k keys are not equiprobable, as
they are correlated

 To make the h(k) values equiprobable it is
necessary to

 Distribute h(k) in a uniform way

 Make h(ki) uncorrelated from h(kj)

 Uncorrelate h(k) from k

 “Amplify” differences

 Hash function can be designed in different ways
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The Multiplication Method

 If keys are floating point numbers

 k ∈ [s, t]

 h(k) = 
(���)

(���)
∙ M 

 Example

 M = 97

 k ∈ [0, 1.0] = 0.513871

 h(k) = 
(�.	
��
��)

(
��)
∙ 97  = 49

  = floor =
largest integer smaller than

int hash (float k, int M) {
return ( ( (k-s)/(t-s) ) * M);

}

Key’s range
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The Module Method

 If keys are integer numbers

 h(k) = k % M

 Alternative function

 h(k) = 1 + k % M’, with M’<M

 It is convenient to use prime numbers for M to 
consider all digits/bits

 If M = 2n we use only the last n bits

 If M = 10n we use only the last n decimal digits

 Keys will not evenly distribute

int hash (int k, int M) {
return (k%M);

}

Fast and easy to compute
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The Module Method

 Examples

 M = 19 

 k = 11  h(k) = 11 % 19 = 11

 k = 31  h(k) = 31 % 19 = 12

 k = 29  h(k) = 29 % 19 = 10

int hash (int k, int M) {
return (k%M);

}
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The Multiplication-Module Method

 If keys are integer numbers

 Given a constant value A, the hash function can be 
computed as

 A ∈ ] 0, 1[

 h(k) =  k ⋅ A  % M

 A good value for A is

 A = 
(�5 −1)

�
= 0.6180339887

int hash (int k, int M) {
return (((int) (k*A))%M);

}
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The Multiplication-Module Method

 Examples

 M = 19 

 k = 11  h(k) = 11 ⋅ A  % 19 = 6 % 19 = 6

 k = 31  h(k) = 11 ⋅ A  % 19 = 19 % 19 = 9

int hash (int k, int M) {
return (((int) (k*A))%M);

}
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The Modular Method

 If keys are short alphanumeric strings

 The best strategy is to convert them into integers

 Each string can be "evaluated" through a 
polinomial which "evalutes" the string as a number
in a given base

 The result is to transform the string into an integer

 Once the integer is obtained the module method can 
be applied

● h(k) = k % M 



15Algorithms and Programming – Camurati & Quer

The Modular Method

 Example

 K = ″now″

 M = 19

 h(k) = pn·b
n + p6·b

6 + … + p2·b
2 + p1·b

1 + p0·b
0 

= (‘n’ ∙ 1282 + ‘o’ ∙ 1281 + ‘w’) % 19

= (110 ∙ 1282 + 111 ∙ 1281 + 119) % 19

= 1816567 % 19 

= 15

Polinomial interpretation
of the string as a 

number in base b = 128

To each character we may
use the corresponding

ASCII value
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The Modular Method

 If keys are long alphanumeric strings

 The previous computation overflows, and the result
cannot be represented on a reasonable number of 
bits

 In this case, it is possible to use the Horner’s
method to rule-out M multiples after each step, 
instead of doing that after the application of the 
modular technique

 h(k) = pn-1·b
n-1+pn-2·b

n-2 + … +p2·b
2+p1·b

1+p0·b
0

= (((((pn·b+pn-1)·b+pn-2)·b+ … +p2)·b+p1)·b+p0

= ((((((pn-1%M)·b+pn-2)%M)·b+pn-3)·b)%M …
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The Modular Method

 The resulting implementation is the following one

 Base b=128

int hash (char *v, int M) { 
int h = 0;
int base = 128;

while (*v != '\0') {
h = (h * base + *v) % M;
v++;

}

return h;
}
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The Modular Method

 Example

 k = ″averylongkey″

 b = 128

 h(k) =

= 97·12811+118·12810+101·1289+114·1288

+121·1287+108·1286+111·1285+110·1284

+103·1283+107·1282+101·1281+121·1280

 = ((((((((((97·128+118)·128+101)·128+114)

 ·128+121)·128+108)·128+111)·128+110)

 ·128+103)·128+107)·128+101)·128+121

 = ((((((((((97%M)·128+118)%M)·128+114)%M)

 ·128+121)% …
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The Modular Method

 To obtain a uniform distribution we must have a 
collision probability for 2 different keys equal to 
1/M

 Base b = 128 = 27 is not a good base

 Rule of thumb to select b

 A prime number

 For example

 b = 127

int hash (char *v, int M) { 
int h = 0;
int base = 127;
while (*v != '\0') {

h = (h * base + *v) % M;
v++;

}
return h;

}
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The Modular Method

 Or even better random numbers different for each
digit of the key

 This approach is called universal hashing

int hash (char *v, int M) { 
int h = 0;
int a = 31415, b = 27183;

while (*v != '\0‘) {
h = (h * a + *v) % M;
a = ((a*b) % (M-1));
v++;

} 

return h;
}
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Collisions

 A collision happens when

 ki ≠ kj  h(ki)=h(kj) 

 Collisions are inevitable, as

 |K|~|M| << |U|

 Hash functions are not perfect and do not
distribute keys uniformly

 Then, it is necessary to

 Minimize their number

 Select a good hash function for each specific
problems / set of keys

 Deal with collisions when they occur
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Collisions

 Collisions can be dealt with

 Linear chaining

 For each hash table entry, a list of elements stores
all data items having the same hash function value

 Open addressing

 For each collision, it tries to place the same element
somewhere else (in another table entry) within the
table
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Linear Chaining

 More elements can be stored in the same table
location

 A table element does not contain a key anymore

 Each element points to a linked list

 Insert an element implies inserting it on the list

 The most efficient way is to do this operation on
the list head

 Delete an element implies

 A list search

 Lists are not usually sorted as insertions are on the
head

 A delete operation from the list
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Linear Chaining

 With linear chaining the hash table

 Can be smaller than the number of elements |K| 
that have to be stored in it

 The smaller the table the longer the linked lists

 Lists too long imply inefficiency

 It is a good rule of thumb to have lists with an 
average length varying from 5 to 10 elements

 Select M as the smallest prime larger than the 
maximum number of keys divided by 5 (or 10) such
that the average list length would be 5 (or 10)
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Example

 Given the following set of keys (letters)

 A  S  E  R  C  H  I  N  G  X  M  P

 Insert them into a hash table of size

 M = 5

 Using the module method for the hash function

 h(k) = k % M

 Where k is the positional order of the key within
the English alphabet (starting from 1)
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Solution

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1 2 3 4 5 6 7 8 9 1
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2
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2
6

h(k) = k % M = k % 5

key Order h(k)

A 1 1

S 19 4

E 5 0

R 18 3

C 3 3

H 8 3

I 9 4

key Order h(k)

N 14 4

G 7 2

X 24 4

M 13 3

P 16 1



27Algorithms and Programming – Camurati & Quer

0

1

2

3

4

Solution

H
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A

key Order h(k)

A 1 1

S 19 4

E 5 0

R 18 3

C 3 3

H 8 3

I 9 4

key Order h(k)

N 14 4

G 7 2

X 24 4

M 13 3

P 16 1
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Complexity

 With non-ordered lists

 N = number of stored elements

 It should be of the same order of |K|

 M = size of the hash table

 Simple Uniform Hashing

 h(k) has the same probability to generate M 
output values

 Definition

 Load factor = α = 
�

�

 It can be less, equal or larger than 1
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Complexity

 Insert

 T(n) = O(1)

 Search

 Worst case

 T(n) = Θ(N)

 Average case

 T(n) = O(1+α)

 Delete

 As the search
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Open Addressing

 Each cell table T can store a single element

 All elements are stored in T

 Once there is a collision it is necessary to look-for

an empty cell with probing

 Generate a cell permutation, i.e, an order to
search for an empty cell

 The same order has to be used to insert and to
search a key

N≤M
α≤1
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Probing Functions

 There are several ways to perform probing

 Linear probing

 Quadratic probing

 Double hashing

 A problem with open addressing is clustering

 A cluster is a set of contiguous full cells which
makes further collisions more probable in that area 
of the table
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Linear Probing

 Given a key k

 h’(k) = (h(k) + i) % M

 Variable i is the attempt counter

 Start with i = 0 and increase it after every collision

 Algorithm

 Set i=0

 Compute h(k), then h’(k)

 If the element is free, insert the key

 Otherwise, increase i and repeat until an empty
cell is found
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Linear Probing

 Linear probing suffers from primary clustering

 Long runs of occupied slots build up, increasing
the average search time

 Primary clusters are likely to arise

 Runs of occupied slots tend to get longer

 Unifor hashing is spoiled
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Quadratic Probing

 Given a key k

 h‘(k) = (h(k) + c1·i + c2·i
2) % M

 Variable i is the attempt counter

 Start with i = 0 and increase it after every collision

 Algorithm

 Set i=0

 Compute h(k), then h’(k)

 If the element is free, insert the key

 Otherwise, increase i and repeat until an empty
cell is found



35Algorithms and Programming – Camurati & Quer

Quadratic Probing

 In quadratic probing constants c1 and c2 must be 
selected carefully

 They must guarantee that h’(k) assumes distinct
values for 1 ≤ i ≤ (M-1)/2

 If M = 2K,  select c1 = c2 = ½  to generate all 
indexes between 0 and M-1

 If M is prime and  α < ½  the following values

 c1 = ½ and c2 = ½

 c1 = 1 and c2 = 1

 c1 = 0 and c2 = 1
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Quadratic Probing

 Quadratic probing suffers from secondary
clustering

 A milder form of clustering where clustered
elements are not contiguous

 The same considerations made for the primary
clustering hold also for this case of clustering
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Double Hashing

 Given a key k

 h‘(k) = (h1 (k) + i · h2 (k)) % M

 Variable i is the attempt counter

 Start with i = 0 and increase it after every collision

 Algorithm

 Set i=0

 Compute h1(k), then h’(k)

 If the element is free, insert the key

 Otherwise, increase i, compute h2(k), and repeat
until an empty cell is found
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Double Hashing

 In double hashing we must guarantte that the 
new value of h’(k) differ from the previous one
otherwise we enter an infinite loop

 To avoid this

 h2 should never return 0

 h2%M should never return 0

 Examples

 h1(k) = k % M and M prime

 h2(k) = 1 + k % 97

 h2(k) never returns 0 and h2%M never returns 0 if
M > 97
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Double Hashing

 Double hashing represents an improvement over 
linear or quadratic probing

 As we vary the key, the initial probing position and 
the offset may vary independently

 As a result, the performance of double hashing
appears to be very close of the ideal scheme of 
uniform hashing
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Probing and Delete

 With probing (all strategies) delete a key is a 
complex operation

 Each delete operation potentially breaks a collision
chain

 For that reason open addressing is often used
only when it is not necessary to delete keys

 Hash tables limited to insertions and searches
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Probing and Delete

 To extend the approach to hash tables with 
delete operations we must

 Either substitute the deleted key with a sentinel
key

 The sentinel key is considered as

● A full element during search operations and

● An empty element during insertion operations

 Or re-adjust clustered keys, to move some key into
the deleted element
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Example: Delete with Probing

 Delete E

 We need to remind

 that keys E, S, R, 

 and H collided into

 element 4
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7 H

8
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6 R

7 H
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2 C
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4 H

5 S

6 R

7

8

9

10
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12

Sentinel Re-adjustment
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Example

 Given the following set of keys (letters)

 A  S  E  R  C  H  I  N  G  X  M  P

 Insert them into a hash table of size

 M = 13

 Using the module method for the hash function
with linear probing

 h(k) = k % M

 Where k is the positional order of the key within
the English alphabet

The constraint
α< ½

is not respected 
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Solution

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

h(k) = k % M = k % 13

h’(k) = (k%13 + i) % 13

key Order h(k)

A 1 1

S 19 6

E 5 5

R 18 5  6  7

C 3 3

H 8 8

I 9 9

key Order h(k)

N 14 1  2

G 7 7  8  9 
 10

X 24 11

M 13 0

P 16 3  4
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Solution

0 1 2 3 4 5 6 7 8 9 10 11 12

A

A S

A E S

A E S R

A C E S R

A C E S R H

A C E S R H I

A N C E S R H I

A N C E S R H I G

A N C E S R H I G X

M A N C E S R H I G X

M A N C P E S R H I G X

Hash-table configuration 
after each insertion
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Example

 Given the following set of keys (letters)

 A  S  E  R  C  H  I  N  G  X  M  P

 Insert them into a hash table of size

 M = 13

 Using the module method for the hash function
with quadratic probing

 h(k) = k % M

 Where k is the positional order of the key within
the English alphabet

The constraint
α< ½

is not respected 
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Solution

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

h(k) = (h(k) + i · h(k)) % M

= (k % M + 0.5 · i + 0.5 · i2) % 13

key Order h(k)

A 1 1

S 19 6

E 5 5

R 18 5  6  8

C 3 3

H 8 8  9

I 9 9  10

key Order h(k)

N 14 1  2

G 7 7

X 24 11

M 13 0

P 16 3  4
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Solution

0 1 2 3 4 5 6 7 8 9 10 11 12

A

A S

A E S

A E S R

A C E S R

A C E S R H

A C E S R H I

A N C E S R H I

A N C E S G R H I

A N C E S G R H I X

M A N C E S G R H I X

M A N C P E S G R H I X

Hash-table configuration 
after each insertion
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Example

 Given the following set of keys (letters)

 A  S  E  R  C  H  I  N  G  X  M  P  L

 Insert them into a hash table of size

 M = 13

 Using the module method for the hash function
with double hashing

 h’(k) = k % M

 h’’(k) = 1 + k % 97

 Where k is the positional order of the key within
the English alphabet

The constraint
α< ½

is not respected 
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Solution

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

h(k) = (h(k) + i · h(k)) % M

= (k % M + i · (k % 97)) % 13

key Order h(k)

A 1 1

S 19 6

E 5 5

R 18 5  11

C 3 3

H 8 8

I 9 9

key Order h(k)

N 14 1  3  5  7

G 7 7  2

X 24 11  10

M 13 0

P 16 3711
26101
5904
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Solution

0 1 2 3 4 5 6 7 8 9 10 11 12

A

A S

A E S

A E S R

A C E S R

A C E S H R

A C E S H I R

A C E S N H I R

A G C E S N H I R

A G C E S N H I X R

M A G C E S N H I X R

M A G C P E S N H I X R

Hash-table configuration 
after each insertion
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Comparison

 Hash Table

 Unique solution when keys do not have an 
ordering relation

 Much faster on the average case

 The hast table size mut be forecast or it may be 
re-allocated

 Trees (BST and variants)

 Better worst-case performances when balanced
trees are used

 Easier to create with unknown or highly-variable
number of keys

 Allow operations on keys with an ordering relation


