
Symbol Tables

Hash Tables
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2Algorithms and Programming – Camurati & Quer

Definition

 Hash-tables

 An ADT used to insert, search, delete, not to order

or to select a key

 Reduce the storage requirements of direct-access
tables from Θ(|U|) to Θ(|K|)

 Efficiency

 Memory usage in the order of the number of keys
stored in that table (not in the order of |U|)

 M(K) = Θ(|K|)

 Average access is constant

time

 T(K) = O(1)

|K| = Forecast number of
keys to be stored

|U| = Number of keys in the
key universe

Usually |K| << |U|

3Algorithms and Programming – Camurati & Quer

Definition

 It uses

 A table (an array) to store the data

 A function to transform each key into its position
(index) into an array

 The table

 Has size M and stores |K| elements

 |K|<<|U|

 Has addresses (indices) in the range [0, M-1]

Previously st
Previously
getindex

4Algorithms and Programming – Camurati & Quer

Hash Function

 The function used to map a key into an array
index (position) is called hash function

 It transforms the search key into a table index,
i.e., it creates a correspondence between a key k
and a table address h(k)

 h: U → { 0, 1, ..., M-1 }

 Each element of key k is stored at the address h(k)

 As |K|<<|U| the hash function creates a mapping
which is n:1, no more 1:1 as in the direct access
tables

5Algorithms and Programming – Camurati & Quer

Hash Function

k1

0

1

2

3

4

5

6

7

8

M-1

T

U

k3

k2

k4

k5

h(k1)

h(k4)

h(k2)=h(k5)

h(k3)

…

The mapping between
k∈U and elements in the
table is |U|:M (not 1:1)

h(k4)

h(k3)

6Algorithms and Programming – Camurati & Quer

Hash Function

 Every time two different keys are placed in the
same table element we have a conflict

 Such a conflict is called a collision

 To minimize collisions we must design proper
hash functions

k1

0
1
2
3
4
5
6
7
8

M-1

U

k3

k2

k4

k5

h(k1)
h(k4)

h(k2)=h(k5)

h(k3)…

h(k4)

h(k3)

Problem # 1

7Algorithms and Programming – Camurati & Quer

Hash Function

 Collisions may always happen as the

 Hash tables map |U| elements into |M| slots

 The table cannot contain all keys within the universe
of keys

 The hash function cannot be perfect

 The mapping may always create conflicts

 We must understand how to deal with collisions

Problem # 2

k1

0
1
2
3
4
5
6
7
8

M-1

U

k3

k2

k4

k5

h(k1)
h(k4)

h(k2)=h(k5)

h(k3)…

h(k4)

h(k3)

8Algorithms and Programming – Camurati & Quer

Designing a hash function

 If the k keys are equiprobable, then the h(k)
values must be equiprobable

 Practically, the k keys are not equiprobable, as
they are correlated

 To make the h(k) values equiprobable it is
necessary to

 Distribute h(k) in a uniform way

 Make h(ki) uncorrelated from h(kj)

 Uncorrelate h(k) from k

 “Amplify” differences

 Hash function can be designed in different ways

9Algorithms and Programming – Camurati & Quer

The Multiplication Method

 If keys are floating point numbers

 k ∈ [s, t]

 h(k) =
(���)

(���)
∙ M

 Example

 M = 97

 k ∈ [0, 1.0] = 0.513871

 h(k) =
(�.	
��
��)

(
��)
∙ 97 = 49

 = floor =
largest integer smaller than

int hash (float k, int M) {
return (((k-s)/(t-s)) * M);

}

Key’s range

10Algorithms and Programming – Camurati & Quer

The Module Method

 If keys are integer numbers

 h(k) = k % M

 Alternative function

 h(k) = 1 + k % M’, with M’<M

 It is convenient to use prime numbers for M to
consider all digits/bits

 If M = 2n we use only the last n bits

 If M = 10n we use only the last n decimal digits

 Keys will not evenly distribute

int hash (int k, int M) {
return (k%M);

}

Fast and easy to compute

11Algorithms and Programming – Camurati & Quer

The Module Method

 Examples

 M = 19

 k = 11 h(k) = 11 % 19 = 11

 k = 31 h(k) = 31 % 19 = 12

 k = 29 h(k) = 29 % 19 = 10

int hash (int k, int M) {
return (k%M);

}

12Algorithms and Programming – Camurati & Quer

The Multiplication-Module Method

 If keys are integer numbers

 Given a constant value A, the hash function can be
computed as

 A ∈] 0, 1[

 h(k) = k ⋅ A % M

 A good value for A is

 A =
(�5 −1)

�
= 0.6180339887

int hash (int k, int M) {
return (((int) (k*A))%M);

}

13Algorithms and Programming – Camurati & Quer

The Multiplication-Module Method

 Examples

 M = 19

 k = 11 h(k) = 11 ⋅ A % 19 = 6 % 19 = 6

 k = 31 h(k) = 11 ⋅ A % 19 = 19 % 19 = 9

int hash (int k, int M) {
return (((int) (k*A))%M);

}

14Algorithms and Programming – Camurati & Quer

The Modular Method

 If keys are short alphanumeric strings

 The best strategy is to convert them into integers

 Each string can be "evaluated" through a
polinomial which "evalutes" the string as a number
in a given base

 The result is to transform the string into an integer

 Once the integer is obtained the module method can
be applied

● h(k) = k % M

15Algorithms and Programming – Camurati & Quer

The Modular Method

 Example

 K = ″now″

 M = 19

 h(k) = pn·b
n + p6·b

6 + … + p2·b
2 + p1·b

1 + p0·b
0

= (‘n’ ∙ 1282 + ‘o’ ∙ 1281 + ‘w’) % 19

= (110 ∙ 1282 + 111 ∙ 1281 + 119) % 19

= 1816567 % 19

= 15

Polinomial interpretation
of the string as a

number in base b = 128

To each character we may
use the corresponding

ASCII value

16Algorithms and Programming – Camurati & Quer

The Modular Method

 If keys are long alphanumeric strings

 The previous computation overflows, and the result
cannot be represented on a reasonable number of
bits

 In this case, it is possible to use the Horner’s
method to rule-out M multiples after each step,
instead of doing that after the application of the
modular technique

 h(k) = pn-1·b
n-1+pn-2·b

n-2 + … +p2·b
2+p1·b

1+p0·b
0

= (((((pn·b+pn-1)·b+pn-2)·b+ … +p2)·b+p1)·b+p0

= ((((((pn-1%M)·b+pn-2)%M)·b+pn-3)·b)%M …

17Algorithms and Programming – Camurati & Quer

The Modular Method

 The resulting implementation is the following one

 Base b=128

int hash (char *v, int M) {
int h = 0;
int base = 128;

while (*v != '\0') {
h = (h * base + *v) % M;
v++;

}

return h;
}

18Algorithms and Programming – Camurati & Quer

The Modular Method

 Example

 k = ″averylongkey″

 b = 128

 h(k) =

= 97·12811+118·12810+101·1289+114·1288

+121·1287+108·1286+111·1285+110·1284

+103·1283+107·1282+101·1281+121·1280

 = ((((((((((97·128+118)·128+101)·128+114)

 ·128+121)·128+108)·128+111)·128+110)

 ·128+103)·128+107)·128+101)·128+121

 = ((((((((((97%M)·128+118)%M)·128+114)%M)

 ·128+121)% …

19Algorithms and Programming – Camurati & Quer

The Modular Method

 To obtain a uniform distribution we must have a
collision probability for 2 different keys equal to
1/M

 Base b = 128 = 27 is not a good base

 Rule of thumb to select b

 A prime number

 For example

 b = 127

int hash (char *v, int M) {
int h = 0;
int base = 127;
while (*v != '\0') {

h = (h * base + *v) % M;
v++;

}
return h;

}

20Algorithms and Programming – Camurati & Quer

The Modular Method

 Or even better random numbers different for each
digit of the key

 This approach is called universal hashing

int hash (char *v, int M) {
int h = 0;
int a = 31415, b = 27183;

while (*v != '\0‘) {
h = (h * a + *v) % M;
a = ((a*b) % (M-1));
v++;

}

return h;
}

21Algorithms and Programming – Camurati & Quer

Collisions

 A collision happens when

 ki ≠ kj h(ki)=h(kj)

 Collisions are inevitable, as

 |K|~|M| << |U|

 Hash functions are not perfect and do not
distribute keys uniformly

 Then, it is necessary to

 Minimize their number

 Select a good hash function for each specific
problems / set of keys

 Deal with collisions when they occur

22Algorithms and Programming – Camurati & Quer

Collisions

 Collisions can be dealt with

 Linear chaining

 For each hash table entry, a list of elements stores
all data items having the same hash function value

 Open addressing

 For each collision, it tries to place the same element
somewhere else (in another table entry) within the
table

23Algorithms and Programming – Camurati & Quer

Linear Chaining

 More elements can be stored in the same table
location

 A table element does not contain a key anymore

 Each element points to a linked list

 Insert an element implies inserting it on the list

 The most efficient way is to do this operation on
the list head

 Delete an element implies

 A list search

 Lists are not usually sorted as insertions are on the
head

 A delete operation from the list

24Algorithms and Programming – Camurati & Quer

Linear Chaining

 With linear chaining the hash table

 Can be smaller than the number of elements |K|
that have to be stored in it

 The smaller the table the longer the linked lists

 Lists too long imply inefficiency

 It is a good rule of thumb to have lists with an
average length varying from 5 to 10 elements

 Select M as the smallest prime larger than the
maximum number of keys divided by 5 (or 10) such
that the average list length would be 5 (or 10)

25Algorithms and Programming – Camurati & Quer

Example

 Given the following set of keys (letters)

 A S E R C H I N G X M P

 Insert them into a hash table of size

 M = 5

 Using the module method for the hash function

 h(k) = k % M

 Where k is the positional order of the key within
the English alphabet (starting from 1)

26Algorithms and Programming – Camurati & Quer

Solution

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

h(k) = k % M = k % 5

key Order h(k)

A 1 1

S 19 4

E 5 0

R 18 3

C 3 3

H 8 3

I 9 4

key Order h(k)

N 14 4

G 7 2

X 24 4

M 13 3

P 16 1

27Algorithms and Programming – Camurati & Quer

0

1

2

3

4

Solution

H

E

G

NX

C

I S

P

M R

A

key Order h(k)

A 1 1

S 19 4

E 5 0

R 18 3

C 3 3

H 8 3

I 9 4

key Order h(k)

N 14 4

G 7 2

X 24 4

M 13 3

P 16 1

28Algorithms and Programming – Camurati & Quer

Complexity

 With non-ordered lists

 N = number of stored elements

 It should be of the same order of |K|

 M = size of the hash table

 Simple Uniform Hashing

 h(k) has the same probability to generate M
output values

 Definition

 Load factor = α =
�

�

 It can be less, equal or larger than 1

29Algorithms and Programming – Camurati & Quer

Complexity

 Insert

 T(n) = O(1)

 Search

 Worst case

 T(n) = Θ(N)

 Average case

 T(n) = O(1+α)

 Delete

 As the search

30Algorithms and Programming – Camurati & Quer

Open Addressing

 Each cell table T can store a single element

 All elements are stored in T

 Once there is a collision it is necessary to look-for

an empty cell with probing

 Generate a cell permutation, i.e, an order to
search for an empty cell

 The same order has to be used to insert and to
search a key

N≤M
α≤1

31Algorithms and Programming – Camurati & Quer

Probing Functions

 There are several ways to perform probing

 Linear probing

 Quadratic probing

 Double hashing

 A problem with open addressing is clustering

 A cluster is a set of contiguous full cells which
makes further collisions more probable in that area
of the table

32Algorithms and Programming – Camurati & Quer

Linear Probing

 Given a key k

 h’(k) = (h(k) + i) % M

 Variable i is the attempt counter

 Start with i = 0 and increase it after every collision

 Algorithm

 Set i=0

 Compute h(k), then h’(k)

 If the element is free, insert the key

 Otherwise, increase i and repeat until an empty
cell is found

33Algorithms and Programming – Camurati & Quer

Linear Probing

 Linear probing suffers from primary clustering

 Long runs of occupied slots build up, increasing
the average search time

 Primary clusters are likely to arise

 Runs of occupied slots tend to get longer

 Unifor hashing is spoiled

34Algorithms and Programming – Camurati & Quer

Quadratic Probing

 Given a key k

 h‘(k) = (h(k) + c1·i + c2·i
2) % M

 Variable i is the attempt counter

 Start with i = 0 and increase it after every collision

 Algorithm

 Set i=0

 Compute h(k), then h’(k)

 If the element is free, insert the key

 Otherwise, increase i and repeat until an empty
cell is found

35Algorithms and Programming – Camurati & Quer

Quadratic Probing

 In quadratic probing constants c1 and c2 must be
selected carefully

 They must guarantee that h’(k) assumes distinct
values for 1 ≤ i ≤ (M-1)/2

 If M = 2K, select c1 = c2 = ½ to generate all
indexes between 0 and M-1

 If M is prime and α < ½ the following values

 c1 = ½ and c2 = ½

 c1 = 1 and c2 = 1

 c1 = 0 and c2 = 1

36Algorithms and Programming – Camurati & Quer

Quadratic Probing

 Quadratic probing suffers from secondary
clustering

 A milder form of clustering where clustered
elements are not contiguous

 The same considerations made for the primary
clustering hold also for this case of clustering

37Algorithms and Programming – Camurati & Quer

Double Hashing

 Given a key k

 h‘(k) = (h1 (k) + i · h2 (k)) % M

 Variable i is the attempt counter

 Start with i = 0 and increase it after every collision

 Algorithm

 Set i=0

 Compute h1(k), then h’(k)

 If the element is free, insert the key

 Otherwise, increase i, compute h2(k), and repeat
until an empty cell is found

38Algorithms and Programming – Camurati & Quer

Double Hashing

 In double hashing we must guarantte that the
new value of h’(k) differ from the previous one
otherwise we enter an infinite loop

 To avoid this

 h2 should never return 0

 h2%M should never return 0

 Examples

 h1(k) = k % M and M prime

 h2(k) = 1 + k % 97

 h2(k) never returns 0 and h2%M never returns 0 if
M > 97

39Algorithms and Programming – Camurati & Quer

Double Hashing

 Double hashing represents an improvement over
linear or quadratic probing

 As we vary the key, the initial probing position and
the offset may vary independently

 As a result, the performance of double hashing
appears to be very close of the ideal scheme of
uniform hashing

40Algorithms and Programming – Camurati & Quer

Probing and Delete

 With probing (all strategies) delete a key is a
complex operation

 Each delete operation potentially breaks a collision
chain

 For that reason open addressing is often used
only when it is not necessary to delete keys

 Hash tables limited to insertions and searches

41Algorithms and Programming – Camurati & Quer

Probing and Delete

 To extend the approach to hash tables with
delete operations we must

 Either substitute the deleted key with a sentinel
key

 The sentinel key is considered as

● A full element during search operations and

● An empty element during insertion operations

 Or re-adjust clustered keys, to move some key into
the deleted element

42Algorithms and Programming – Camurati & Quer

Example: Delete with Probing

 Delete E

 We need to remind

 that keys E, S, R,

 and H collided into

 element 4

0 A

1

2 C

3

4 E

5 S

6 R

7 H

8

9

10

11

12

0 A

1

2 C

3

4 E

5 S

6 R

7 H

8

9

10

11

12

0 A

1

2 C

3

4 H

5 S

6 R

7

8

9

10

11

12

Sentinel Re-adjustment

43Algorithms and Programming – Camurati & Quer

Example

 Given the following set of keys (letters)

 A S E R C H I N G X M P

 Insert them into a hash table of size

 M = 13

 Using the module method for the hash function
with linear probing

 h(k) = k % M

 Where k is the positional order of the key within
the English alphabet

The constraint
α< ½

is not respected

44Algorithms and Programming – Camurati & Quer

Solution

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

h(k) = k % M = k % 13

h’(k) = (k%13 + i) % 13

key Order h(k)

A 1 1

S 19 6

E 5 5

R 18 5 6 7

C 3 3

H 8 8

I 9 9

key Order h(k)

N 14 1 2

G 7 7 8 9
 10

X 24 11

M 13 0

P 16 3 4

45Algorithms and Programming – Camurati & Quer

Solution

0 1 2 3 4 5 6 7 8 9 10 11 12

A

A S

A E S

A E S R

A C E S R

A C E S R H

A C E S R H I

A N C E S R H I

A N C E S R H I G

A N C E S R H I G X

M A N C E S R H I G X

M A N C P E S R H I G X

Hash-table configuration
after each insertion

46Algorithms and Programming – Camurati & Quer

Example

 Given the following set of keys (letters)

 A S E R C H I N G X M P

 Insert them into a hash table of size

 M = 13

 Using the module method for the hash function
with quadratic probing

 h(k) = k % M

 Where k is the positional order of the key within
the English alphabet

The constraint
α< ½

is not respected

47Algorithms and Programming – Camurati & Quer

Solution

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

h(k) = (h(k) + i · h(k)) % M

= (k % M + 0.5 · i + 0.5 · i2) % 13

key Order h(k)

A 1 1

S 19 6

E 5 5

R 18 5 6 8

C 3 3

H 8 8 9

I 9 9 10

key Order h(k)

N 14 1 2

G 7 7

X 24 11

M 13 0

P 16 3 4

48Algorithms and Programming – Camurati & Quer

Solution

0 1 2 3 4 5 6 7 8 9 10 11 12

A

A S

A E S

A E S R

A C E S R

A C E S R H

A C E S R H I

A N C E S R H I

A N C E S G R H I

A N C E S G R H I X

M A N C E S G R H I X

M A N C P E S G R H I X

Hash-table configuration
after each insertion

49Algorithms and Programming – Camurati & Quer

Example

 Given the following set of keys (letters)

 A S E R C H I N G X M P L

 Insert them into a hash table of size

 M = 13

 Using the module method for the hash function
with double hashing

 h’(k) = k % M

 h’’(k) = 1 + k % 97

 Where k is the positional order of the key within
the English alphabet

The constraint
α< ½

is not respected

50Algorithms and Programming – Camurati & Quer

Solution

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

h(k) = (h(k) + i · h(k)) % M

= (k % M + i · (k % 97)) % 13

key Order h(k)

A 1 1

S 19 6

E 5 5

R 18 5 11

C 3 3

H 8 8

I 9 9

key Order h(k)

N 14 1 3 5 7

G 7 7 2

X 24 11 10

M 13 0

P 16 3711
26101
5904

51Algorithms and Programming – Camurati & Quer

Solution

0 1 2 3 4 5 6 7 8 9 10 11 12

A

A S

A E S

A E S R

A C E S R

A C E S H R

A C E S H I R

A C E S N H I R

A G C E S N H I R

A G C E S N H I X R

M A G C E S N H I X R

M A G C P E S N H I X R

Hash-table configuration
after each insertion

52Algorithms and Programming – Camurati & Quer

Comparison

 Hash Table

 Unique solution when keys do not have an
ordering relation

 Much faster on the average case

 The hast table size mut be forecast or it may be
re-allocated

 Trees (BST and variants)

 Better worst-case performances when balanced
trees are used

 Easier to create with unknown or highly-variable
number of keys

 Allow operations on keys with an ordering relation

