
Symbol Tables

Direct Access Tables
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2Algorithms and Programming – Camurati & Quer

Definition

 A Symbol Table is a data structure with records
including a key and allowing operations such as

 Insertion of a new record

 Search of a record with a given key

 Delete, select, order, union

 Sometimes symbol tables are denoted with the
term dictionary

 Many applications need fast searches

 Dictionaries are very important in computer
engineering

3Algorithms and Programming – Camurati & Quer

Applications

 Symbol tables have several applications

Applications Target, i.e., searching Key Return Value

Dictionary Definition Word Definition

Book index Relevant pages Word Page list

DNS Lookup IP address given its URL URL IP address

Reverse DNS
Lookup

URL given its IP address IP address URL

File system File on disk File name Disk location

Web search Web page Keyword Page list

4Algorithms and Programming – Camurati & Quer

Implementations

 Linear structures

 Direct Access Tables

 Arrays

 Unordered

 Ordered

 Lists

 Unordered

 Ordered

 Hash Tables

 Tree structures

 Binary Search Trees
(BSTs)

 Balanced Trees

 2-3-4

 RB-tree

 B-tree

Already studied - To be done - Not analyzed in this course

 Symbol tables have several implementations

5Algorithms and Programming – Camurati & Quer

Complexity

Data Structure Insert Search

Direct Access Table 1 1

Unordered Array 1 n

Ordered Array Linear Search n n

Ordered Array Binary Search n log n

Unordered List 1 n

Ordered List n n

BST n n

RB-tree log n log n

Hashing 1 n

 Different data structures have different
performances Worst case complexity

6Algorithms and Programming – Camurati & Quer

Complexity

Data Structure Insert
Search

Hit Miss

Direct Access Table 1 1 1

Unordered Array 1 n/2 n

Ordered Array Linear Search n/2 n/2 n/2

Orderer Array Binary Search n/2 log n log n

Unordered List 1 n/2 n

Ordered List n/2 n/2 n/2

BST log n log n log n

RB-tree log n log n log n

Hashing 1 1 1

Average case complexity

7Algorithms and Programming – Camurati & Quer

Direct Access Tables

 All search algorithms analyzed so far in the
course are based on comparisons

 For example searching for a key into an array, a
list or a BST implies comparing this key with the
element or node keys visiting the data structure
with a specific logic

 Direct Access Tables and Hash Tables use a
different paradigm

 They compute the position of the key within the
data structure by applying a function to the key

8Algorithms and Programming – Camurati & Quer

Direct Access Tables

 Problem definition

 Suppose we need to store a key k belonging to a
universe U of key in a table, with

 k ∈ U

 No two elements have the same key

 U has cardinality |U|

 Core ideas

 We can use an array to store the keys (and the
related data fields)

 The array (st) has size equal to |U|

 We need to map each key (k∈U) into a specific
element of the array

9Algorithms and Programming – Camurati & Quer

Direct Access Tables

•H
•E

•J

F
D

I

•G

•A
•B

C

D

F

I

0

1

2

3

4

5

6

7

8

C

st

25

•K

•L
•M•N•O•P

•Q
•R

•S

•T •U •V
•W

•X•Y

•Z

U (Universe of keys)

K (used keys)

…

getindex(C)

getindex(I)

There is a 1:1 mapping
between k∈U and

elements in st

10Algorithms and Programming – Camurati & Quer

Direct Access Tables

 We have two problems

 As the array st has size equal to |U|, the
cardinality of U must be small to be able to
allocate the array st

 We always use |U| elements even when we want
to store a small subset of |U|

25

•H
•E

•J

FD
I

•G

•A
•B

C

D

F

I

0
1
2
3
4
5
6
7
8

C•K
•L

•M•N•O•P
•Q •R

•S

•T •U •V
•W

•X•Y

•Z …

11Algorithms and Programming – Camurati & Quer

Direct Access Tables

 We have two problems

 We need to understand how to map keys into
elements

 This may be simple in specific cases, but the keys
are not necessarily integer values

 The mapping between keys and array indices may
be complex

25

•H
•E

•J

FD
I

•G

•A
•B

C

D

F

I

0
1
2
3
4
5
6
7
8

C•K
•L

•M•N•O•P
•Q •R

•S

•T •U •V
•W

•X•Y

•Z …

12Algorithms and Programming – Camurati & Quer

Direct Access Tables

 To create the mapping key-index we have to

design a function (getindex) that given a key k

 Returns an integer from 0 to |U|-1, acting as an
array index

 If the key k is in the table

● st[getindex(k)] stores it

 If the key k is not in the table

● st[getindex(k)] stores an empty element

There is a 1:1 mapping
between k∈U and

elements in st

•H
•E

•J

FD
I

•G

•A
•B

C

D

F

I

0
1
2
3
4
5
6
7
8

C•K
•L

•M•N•O•P
•Q •R

•S

•T •U •V
•W

•X•Y

•Z …

13Algorithms and Programming – Camurati & Quer

Direct Access Tables

 This looks simple enough, but getindex must

be general

 If keys are integers from 0 to |U|-1

 getindex (k) = k

 If keys are small (capital) letters in the English
alphabet (i.e., a-z or A-Z)

 getindex (k) = k – ((int) ’a’)

 getindex (k) = k – ((int) ’A’)

•H
•E

•J

FD
I

•G

•A
•B

C

D

F

I

0
1
2
3
4
5
6
7
8

C•K
•L

•M•N•O•P
•Q •R

•S

•T •U •V
•W

•X•Y

•Z …

ASCII for ‘a’ is 97, thus ‘a’ is mapped
onto 0 and ‘z’ is mapped onto 26.

Same consideration for ‘A’ (ASCII 65).

14Algorithms and Programming – Camurati & Quer

Direct Access Tables

 If keys are generic values

 Function getindex has to map those keys into
integer values in the range [0, |U|-1]

 This may be very complex

•H
•E

•J

FD
I

•G

•A
•B

C

D

F

I

0
1
2
3
4
5
6
7
8

C•K
•L

•M•N•O•P
•Q •R

•S

•T •U •V
•W

•X•Y

•Z …

15Algorithms and Programming – Camurati & Quer

Advantages

 Complexity plays in favour of direct access tables

 Insert, search, and delete complexity

 T(n) = Θ(1)

 Init complexity

 T(n) = Θ(|U|)

 Memory usage

 S(n) = Θ(|U|)

16Algorithms and Programming – Camurati & Quer

Disadvantages

 Limits are due to

 For large |U| the array st cannot be allocated

 Direct access tables can be used only for small |U|

 Thus, if |U| is large direct tables cannot be used

 If |K| << |U| there is a memory loss

 Funcion getindex has to be properly designed
depending on the key type

17Algorithms and Programming – Camurati & Quer

Disadvantages

 Direct access tables have restricted practical
applications

 Used to convert keys into integers (and vice-versa)
with a cost equal to 1

 When |U| is large or keys are complex, direct
access tables must be extended into Hash
Tables

 With hash-tables the 1:1 mapping between keys
and array indices is lost

 We must map "many" elements in a "small" table

