

Interval BSTs
Paolo Camurati and Stefano Quer Dipartimento di Automatica e Informatica
Politecnico di Torino

Interval BSTs

* Interval BSTs are BSTs used to store close intervals
* A close interval is
$>$ An ordered real couple $\left[t_{1}, t_{2}\right]$, where
- $t_{1} \leq t_{2}$ and
- $\left[\mathrm{t}_{1}, \mathrm{t}_{2}\right]=\left\{\mathrm{t} \in \mathfrak{R}: \mathrm{t}_{1} \leq \mathrm{t} \leq \mathrm{t}_{2}\right\}$
$>$ Open and half-open intervals omit both or one of the endpoints from the set
\Rightarrow Extending our result to those intervals would be straighforward

Interval BSTs

*The interval item $\left[\mathrm{t}_{1}, \mathrm{t}_{2}\right]$ can be realized with a struct with fields
$>$ low $=\mathrm{t}_{1}$, high $=\mathrm{t}_{2}$, and max

The maximum high value in the tree rooted at that node

low	high	max
pointer to left child	pointer to right child	

```
typedef struct node *link;
```

struct node \{
float low, high, max;
ADT
link l;
link r;
\};

Interval BSTs

*. Intervals i and i^{\prime} have intersection iff
$>$ low[i] \leq high[i'] AND low[i'] \leq high[i]
$\forall \mathrm{i}, \mathrm{i}^{\prime}$ the following conditions stand
$>$ i and i^{\prime} have an intersection

$>\operatorname{low}[i] \leq$ high[i'] AND low[i'] > high[i]

$>\operatorname{low}\left[i^{\prime}\right] \leq$ high[i] AND low[i] > high[i']

Interval tricotomy

A set of interval sorted by left enpoint

Example

The same set of intervals into an Interval-BST

Example

Another Interval-BST

Operations

* As with BSTs with Interval-BSTs the following operations are possible
> Insert an item (interval) into the Interval BST
- void IBST_insert (IBST, Item) ;
> Delete an item (interval) from the Interval BST
- void IBST_delete (IBST, Item) ;
$>$ Search an item (interval) into the Interval BST and return the first interval with an intersection
- Item IBST_search (IBST, Item) ;
* To insert a new node into an I-BST
> It is sufficient to use a "standard" BST insertion procedure "working" on the left endpoint
\Rightarrow It is necessary to determine the maximum value for each new node
* An inorder tree walk of the tree lists the nodes in sorted order by left endpoint

Insert: Evaluation of the maximum

The evaluation of the maximum has complexity $\Theta(1)$ for each new node inserted
$>x->\max =\max (h i g h(x), x->$ left->max, $x->r i g h t->m a x)$

Examples

* Given the following Interval-BST insert nodes with intervals
$>[12,21]$
$>\left[\begin{array}{ll}4 & 8\end{array}\right]$

* To delete a node within an Interval-BST it is necessary to do two steps
$>$ Search the element to delete and
$>$ Delete it
- Seach is the only new operation we have to develop
* Delete, once the element has been found, can be performed using the "standard" approach presented with BSts

Search

* On an Interval-BST, when we search for an interval i usually we look-for a node n with an interval having an intersection with interval i
* The algorithm works as follow
$>$ Visit the tree from root
$>$ Termination
- Find an interval with an intersection with ior
- An empty tree has been reached
$>$ Recursion from node n
- On the right sub-tree
- On the left sub-tree

Search

$>$ We recur on the right sub-tree if

Search

$>$ We recur on the left sub-tree if

$>$ We recur on the left sub-tree if

Examples

* Given the following Interval-BST search intervals
$>[22,25]$
$>[24,27]$
$>[4,5]$

Application

* Given N rectangles placed with sides parallel to the Cartesian axis
> Check whether a new rectangle has an intersection with another rectangle

Application

* Electronic CAD Application
$>$ Verify if the there are connections with an intersection on an electronic circuit
* Basic Algorithm
$>$ Check the intersection among all rectangle couples
$>$ Complexity $\mathrm{O}\left(\mathrm{N}^{2}\right)$

Application

* Algorithms using IBST

$>$ Order rectangles based on ascending left extreme x-values
$>$ Iterate on rectangles for ascending x-values

- When a left extreme in encountered, insert the y value range into an I-BST and check for intersactions
- When a right extreme is found, remove the interval from the I-BST y-values
$>$ Efficient algorithm
- Complexity O(N•logN)
- Applicability to VLSI and beyond

Insert interval on y-values

Application

 Start from rectangle 0 on

Complexity Analysis

- Sorting
$>\mathrm{O}(\mathrm{N} \cdot \log \mathrm{N})$
* If the IBST is balanced
> Each insertion/deletion of an interval or seach of the first interval that intersects a given one has cost $\mathrm{O}(\log \mathrm{N})$
$>$ Searching for all intervals that intersect a given one has cost $O(R \log N)$, where R is the number of intersections

Exercise

* Given an initially empty Interval-BST, perform the following insertions

$$
\begin{gathered}
>[3,10][4,6][1,3][16,21][7,11] \\
\\
{[2,8][12,19][5,15][9,10]}
\end{gathered}
$$

*Then, search intervals
$>[11,13]$
$>[23,25]$
> $[18,21]$

Exercise

* Given an initially empty Interval-BST, perform the following insertions

$$
\begin{gathered}
> \\
> \\
{[3,5][7,21][13,9][1,2][2,4]}
\end{gathered}[8,12]\left[\begin{array}{ll}
{[11,15]} & {[0,1]}
\end{array}\right.
$$

*Then, search intervals
$>[20,25]$
> $[16,19]$

