

BSTs: Extension 02

Paolo Camurati and Stefano Quer Dipartimento di Automatica e Informatica Politecnico di Torino

Pointers \& Counters

- New functionalities can be added to BSTs by inserting new information to each node
This information usually consists in adding for each node
$>$ A pointer to the parent
$>$ The number of nodes of the tree rooted at the current node
* This fields have to be
$>$ Inserted in the original data structure
> Defined and updated (when necessary) by all BST manipulation functions (even the ones already analyzed)

Example

Successor of a node

* Given a node n , find the node with the smallest key larger than the node key
* There are two cases
> Node n has the right child
- $\operatorname{succ}(\operatorname{key}(\mathrm{n}))$ is the minumum value in Right(n)
$>$ Node n does not have the right child
- $\operatorname{succ}(\operatorname{key}(\mathrm{n}))$ is the first ancestor of n such that the left child is also an ancestor of n

Examples

* Given the following tree which node is the successor of node with key
$>\mathrm{k}=15$
$>\mathrm{k}=4$

Predecessor of a node

* Given a node n , find the node with the largest key smaller than the node key
* There are two cases
> Node n has the left child
- pred(key(n)) is the maximum value in Left(n)
$>$ Node n does not have the left child
- $\operatorname{pred}(\operatorname{key}(\mathrm{n}))$ is the first ancestor of n such that the right child is also an ancestor of n
n

Examples

* Given the following tree which node is the predecessor of node with key

Select

Select the item with the k-th smallest key
$>$ We use a zero-based indexing notation
$>$ For example, selecting the key $\mathrm{k}=0$ means to select the item with the smallest key

* Given the node root
$>$ We define \mathbf{t} the number of nodes of the left subtree (reported in the left sub-tree root)

Select

* If
$>\mathrm{k}=\mathrm{t}$
- The root stores the k-th smallest key
- Return the root pointer
 $>\mathrm{k}<\mathrm{t}$
- The left sub-tree includes "enough" nodes
- Recur into the left sub-tree to look-for the smallest k-th key
$>\mathrm{k}>\mathrm{t}$
- The left sub-tree does not include "enough" nodes
- Recur on the right sub-tree
- Set \mathbf{k} to ($\mathbf{k}-\mathbf{t - 1}$), and look for the (k-t-1)-th smallest key

Examples

* Given the folllowing BST select the key with
$>\mathrm{k}=3 \rightarrow$ 4-th smallest key
$\rightarrow \mathrm{k}=8 \rightarrow$ 9-th smallest key
$>\mathrm{k}=6 \rightarrow 7$-th smallest key

Implementation

link select_r (link root, int k, link z) \{
int $t ;$
if (root $==\quad z$) return z;
$t=($ root $->1==z)$? 0 : root $->1->N$;
if (k < t)
return select_r (root->l, $k, z)$;
if (k>t) return select_r (root->r, k-t-1, z);
return root;
\}

Partition

Restructuring the tree, forcing the smallest k-th key into the root

* Consider the sub-tree root node
$>\mathrm{k}=\mathrm{t}$
- Return and rotate
$>\mathrm{k}<\mathrm{t}$
- Recur on the left sub-tree, partition with respect to the smallest k-th key, at the end right-rotation
$>\mathrm{k}>\mathrm{t}$
- Recur on the right sub-tree, partition with respect to the smallest (k-t-1)-th key, at the end left rotation

Partition

Partitioning is often performed around the median key

Examples

* Given the folllowing BST partition it with respect to the key with
$>\mathrm{k}=4 \rightarrow 5$-th smallest key
$\rightarrow \mathrm{k}=9 \rightarrow 10$-th smallest key


```
link part_r (link root, int k, link z) {
    int t;
    if (root == z)
        return z;
    t = (root }->1==z) ? 0 : root->1->N
    if (k < t) {
        root->l = part_r (root->l, k);
        root = rotR (root);
    }
    if (k > t) {
        root->r = part_r (root->r, k-t-1);
        root = rotL (root);
    }
    return root;
}
```

 Implementation

Delete a node: Version 2

* To delete from a BST a node with an item with a given key k, it is possible to use the partition function
> If NULL or sentinel is reached
- He key is not in the tree, just return
$>$ If the node with the item belongs to one sub-tree
- Recursively delete such a sub-tree
$>$ If it is the root
- Delete the node
- The new root is the succ or pred of the deleted item
- Rotate one of them up to the root
- Combine the two sub-trees into the new root

Examples

* Given the following BST delete nodes with key 7 ad 18

Exercise

* Given the following BST select the key with
$>\mathrm{k}=5 \rightarrow 6$-th smallest key
$\rightarrow \mathrm{k}=9 \rightarrow$ 10-th smallest key

Exercise

* Given the following BST select the key with
$>\mathrm{k}=5 \rightarrow$ 6-th smallest key
$\rightarrow \mathrm{k}=10 \rightarrow$ 11-th smallest key

Exercise

* Given the folllowing BST partition it with respect to the key with
$>\mathrm{k}=4 \rightarrow$ 5-th smallest

Exercise

* Given the following BST partition it with respect to the key with
$\rightarrow \mathrm{k}=6 \rightarrow 7$-th smallest

