
Trees and BSTs

BSTs: Extension 02
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino



2Algorithms and Programming – Camurati & Quer

Pointers & Counters

 New functionalities can be added to BSTs by 
inserting new information to each node

 This information usually consists in adding for 
each node

 A pointer to the parent

 The number of nodes of the tree rooted at the 
current node

 This fields have to be

 Inserted in the original data structure

 Defined and updated (when necessary) by all BST 
manipulation functions (even the ones already
analyzed)



3Algorithms and Programming – Camurati & Quer

Binary Search Trees

typedef struct node *link; 
struct node {

link p;
Item item;
int N; 
link l; 
link r;

};

pointer to parent

item N

pointer to left child pointer to right child

item  key
is an integer

(in this section)

ADT: We use functions
to compare keys, etc.



4Algorithms and Programming – Camurati & Quer

Example

1511

67 183

171 20133
73

21 41 132

91

Inserted in the original
data structure then

updated by all
manipuation functions

Number of nodes of the 
tree rooted at that node

Pointer to the parent

pointer to parent

item N

left child ↑ right child ↑



5Algorithms and Programming – Camurati & Quer

Successor of a node

 Given a node n, find the node with the smallest
key larger than the node key

 There are two cases

 Node n has the right child

 succ(key(n)) is the minumum value in Right(n)

 Node n does not have the right child

 succ(key(n)) is the first ancestor of n such
that the left child is also an ancestor of n

n

n



6Algorithms and Programming – Camurati & Quer

15

6 18

17 203 7

2 4 13

9

Successor

15

6 18

17 203 7

2 4 13

9

Successor

 Given the following tree which node is the 
successor of node with key

 k = 15

 k = 04
k = 15

k = 4

Examples



7Algorithms and Programming – Camurati & Quer

Implementation

link search_succ_r (link root, Item item, link z) {
link p;
if (root == z)

return z;
if (item_less (item, root->item))

return search_succ_r (root->l, item, z);
if (item_less (root->item, item))

return search_succ_r (root->r, item, z);
if (root->r != z) {

return min_r (root->r, z);
} else {

p = root->p;
while (p != z && root == p->r) {

root = p; p = p->p;
}
return p;

}
}

Root
node

Search
node

Search
successor



8Algorithms and Programming – Camurati & Quer

Predecessor of a node

 Given a node n, find the node with the largest
key smaller than the node key

 There are two cases

 Node n has the left child

 pred(key(n)) is the maximum value in Left(n)

 Node n does not have the left child

 pred(key(n)) is the first ancestor of n such
that the right child is also an ancestor of n

n

n



9Algorithms and Programming – Camurati & Quer

15

6 18

17 203 7

2 4 13

9 Predecessor

15

6 18

17 203 7

2 4 13

9

Predecessor

 Given the following tree which node is the 
predecessor of node with key

 k = 15

 k = 09
k = 15

k = 9

Examples



10Algorithms and Programming – Camurati & Quer

Implementation

link search_pred_r (link root, Item item, link z) {
link p;
if (root == z) return z;
if (item_less (item, root->item))

return search_pred_r (root->l, item, z);
if (item_less (root->item, item))

return search_pred_r (root->r, item, z);
if (root->r != z) {

return max_r (root->l, z);
} else {

p = root->p;
while (p != z && root == p->l) {

root = p; p = p->p;
}
return p;

}
}

Root
node

Search
node

Search
successor



11Algorithms and Programming – Camurati & Quer

Select

 Select the item with the k-th smallest key

 We use a zero-based indexing notation

 For example, selecting the key k=0 means to 
select the item with the smallest key

 Given the node root

 We define t the number of nodes of the left sub-
tree (reported in the left sub-tree root)



12Algorithms and Programming – Camurati & Quer

Select

 If

 k = t

 The root stores the k-th smallest key

 Return the root pointer

 k < t

 The left sub-tree includes "enough" nodes

 Recur into the left sub-tree to look-for the smallest
k-th key

 k > t

 The left sub-tree does not include "enough" nodes

 Recur on the right sub-tree

 Set k to (k-t-1), and look for the (k-t-1)-th smallest
key

186

123 297

k

t=3

…



13Algorithms and Programming – Camurati & Quer

Examples

 Given the folllowing BST select the key with

 k = 3  4-th smallest key

 k = 8  9-th smallest key

 k = 6  7-th smallest key
1511

67 183

171 20133 73

21 41 132

91



14Algorithms and Programming – Camurati & Quer

Implementation

link select_r (link root, int k, link z) {
int t;

if (root == z)
return z;

t = (root->l == z) ? 0 : root->l->N;

if (k < t)
return select_r (root->l, k, z);

if (k > t)
return select_r (root->r, k-t-1, z);

return root;
}

Root
node



15Algorithms and Programming – Camurati & Quer

Partition

 Restructuring the tree, forcing the smallest k-th
key into the root

 Consider the sub-tree root node

 k = t

 Return and rotate

 k < t

 Recur on the left sub-tree, partition with respect to 
the smallest k-th key, at the end right-rotation

 k > t

 Recur on the right sub-tree, partition with respect to 
the smallest (k-t-1)-th key, at the end left rotation



16Algorithms and Programming – Camurati & Quer

Partition

 Partitioning is often performed around the 
median key



17Algorithms and Programming – Camurati & Quer

Examples

 Given the folllowing BST partition it with respect
to the key with

 k = 4  5-th smallest key

 k = 9  10-th smallest key
1511

67 183

171 20133 73

21 41 132

91



18Algorithms and Programming – Camurati & Quer

Implementation

link part_r (link root, int k, link z) {
int t;

if (root == z)
return z;

t = (root->l == z) ? 0 : root->l->N;
if (k < t) {

root->l = part_r (root->l, k);
root = rotR (root);

}
if (k > t) {

root->r = part_r (root->r, k-t-1);
root = rotL (root);

}

return root;
}

Root
node



19Algorithms and Programming – Camurati & Quer

Delete a node: Version 2

 To delete from a BST a node with an item with a 
given key k, it is possible to use the partition
function

 If NULL or sentinel is reached

 He key is not in the tree, just return

 If the node with the item belongs to one sub-tree

 Recursively delete such a sub-tree

 If it is the root

 Delete the node

 The new root is the succ or pred of the deleted item

 Rotate one of them up to the root

 Combine the two sub-trees into the new root



20Algorithms and Programming – Camurati & Quer

Examples

 Given the following BST delete nodes with key 7 
ad 18

1511

67 183

171 20133 73

21 41 132

91



21Algorithms and Programming – Camurati & Quer

15

6 21

20 253 9

2 4 12

14

 Given the following BST select the key with

 k = 5  6-th smallest key

 k = 9  10-th smallest key

Exercise

178



22Algorithms and Programming – Camurati & Quer

20

12 33

30 359 17

8 19

 Given the following BST select the key with

 k = 05  6-th smallest key

 k = 10  11-th smallest key

Exercise

2515 37



23Algorithms and Programming – Camurati & Quer

5

19

13 27

9 16

15

 Given the folllowing BST partition it with respect
to the key with

 k = 4  5-th smallest

Exercise

21



24Algorithms and Programming – Camurati & Quer

15

6 21

20 253 9

2 4 12

14

 Given the following BST partition it with respect
to the key with

 k = 6  7-th smallest

Exercise

178


