
Trees and BSTs

BSTs: Binary Search Trees
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2Algorithms and Programming – Camurati & Quer

 Binary tree with the following property

 ∀ node x

 ∀ node y∈Left(x), key[y] < key[x]

 ∀ node y∈Right(x), key[y] > key[x]

Binary Search Trees (BSTs)

<
Left (x)

>
Right (x)

xDistinct keys

3Algorithms and Programming – Camurati & Quer

Examples

19

6 24

3

2 4

7 23 33

This is a BST

15

6 18

3

2 8

5 13 20

This is not
a BST

27

4Algorithms and Programming – Camurati & Quer

Binary Search Trees

typedef struct node *link;
struct node {

Item item;
link l;
link r;

};

optional pointer to father

item

pointer to left child pointer to right child

item key

is an integer
(in this section)

ADT: We use functions
to compare keys, etc.

5Algorithms and Programming – Camurati & Quer

 Given a BST already formed, how to we search a
key in it?

 Recursive search of a node storing the desired key

 Visit the tree from the root

 Terminate the search if

● Either the searched key is the one of the current node
(search hit) or

● An empty tree (the sentinel node or a NULL pointer)
has been reached (search miss)

 Recur from the current node on

● The left sub-tree if the searched key is smaller than
the key of the current node

● The right sub-tree otherwise

Search

6Algorithms and Programming – Camurati & Quer

Example

 Given the following BST look for

 key = 7 search hit

 key = 20 search hit

 key = 21 search miss

15

6 18

3

2 4

7 17 20

root

7Algorithms and Programming – Camurati & Quer

Recursive implementation

link search_r (link root, Item item, link z) {
if (root == z)

return (z);

if (item_less(item, root->item))
return search_r (root->l, item, z);

if (item_less(root->item, item))
return search_r (root->r, item, z);

return root;
}

Sentinel
or NULL

Root
node

Searched
key

Search miss

Left
recursion

Right
recursion

Search hit

Sentinel z or NULL

Function
item_less

compares keys

8Algorithms and Programming – Camurati & Quer

Iterative implementation

link search_i (link root, Item item, link z) {

while (root != z) {
if (item_equal (item, root->item))

return (root);

if (item_less(item, root->item))
root = root->l;

else
root = root->r;

}

return (root);
}

Sentinel
or NULL

Root
node

Searched
key

Search miss

Move
down left

Move
down right

Search hit

Function
item_equal

compares keys

9Algorithms and Programming – Camurati & Quer

Minimum and Maximum

 Find the minimum key in a given BST

 If the BST is empty return NULL

 Follow pointers onto left sub-trees until they exist

 Return last key encountered

 Find the maximum ley in a given BST

 If the BST is empty return NULL

 Follow pointers onto right sub-trees until they
exist

 Return last key encountered

10Algorithms and Programming – Camurati & Quer

Example

 Given the following BST look for

 Minimun key = 2

 Maximum key = 20

15

6 18

3

2 4

7 17 20

root

11Algorithms and Programming – Camurati & Quer

Recursive implementation

link min_r (link root, link z) {
if (root == z)

return (z);
if (root->l == z)

return (root);
return min_r (root->l, z);

}

link max_r (link root, link z) {
if (root == z)

return (z);
if (root->r == z)

return (root);
return max_r (root->r, z);

}

Left
recursion

Termination
condition

Empty BST

Right
recursion

Termination
condition

Empty BST

12Algorithms and Programming – Camurati & Quer

Iterative implementation

link min_i (link root, link z) {
if (root == z)

return (z);
while (root->l == z)

root = root->l;
return (root);

}

link max_i (link root, link z) {
if (root == z)

return (z);
while (root->r == z)

root = root->r;
return (root);

}

Return
result

Move down

Empty BST

Empty BST

Return
result

Move down

13Algorithms and Programming – Camurati & Quer

 Insert into a BST a node storing a new item

 The BST property must be maintained

 If the BST is empty

 Create a new tree node with the new key and return
its pointer

 Recursion

 Insert into the left sub-tree if the item key is less
than the current node key

 Insert into the right sub-tree if the item key is larger
than the current node key

 Notice that in all cases the new node in on a BST
leaf (terminal node with no children)

Leaf Insert

14Algorithms and Programming – Camurati & Quer

Example

 Given the following BST insert

 key = 05

 key = 13

 key = 19

15

6 18

3

2 4

7 17 20

root

15Algorithms and Programming – Camurati & Quer

Recursive implementation

link insert_r (link root, Item x, link z) {
if (root == z)

return (node_new(x, z, z));

if (item_less(x, root->item))
root->l = insert_r (root->l, x, z);

else
root->r = insert_r (root->r, x, z);

return root;
}

Left
recursion

Termination
condition:

Insert a new node

Right
recursion

Assign (new) pointer
onto parent pointer

on the way back

Function
node_new creates

a new node

BST root
Key

16Algorithms and Programming – Camurati & Quer

 BST insert can be also be performed using an
iterative procedure

 Find the position first

 Then add the new node

 As we cannot assign the new pointer on the way
back (on recursion) we need two pointers

 Please remind the ordered list implementation

 The visit was perfomed either using two pointers or
the pointer of a pointer to assign the new pointer to
the the pointer of the previous element

Iterative implementation

17Algorithms and Programming – Camurati & Quer

Iterative implementation

link insert_i (link root, Item x, link z) {
link p, r;

if (root == z) {
return (node_new(x, z, z));

}
r = root;
p = r;
while (r != z) {

p = r;
r = (item_less(x, r->item)) ? r->l : r->r;

}
r = node_new (x, z, z);
if (item_less (x, p->item))

p->l = r;
else

p->r = r;
return root;

}

Move left or move right

Create link with
parent in the
right direction

6

3

2 4

7

p

r

6

3

2 4

7p

r

18Algorithms and Programming – Camurati & Quer

 Given a BST delete a node with a given key

 We have to recursively search the key into the BST

 If we found it

 Then we must delete it

 Otherwise the key is not in the BST and we just
return

 Search is performed as before and it is followed
by the procedure to delete the node

Node Extract

19Algorithms and Programming – Camurati & Quer

Node Extract

 To sum up we have to

 If the BST is empty

 Return doing nothing

 If the current node is the one with the desired key,
then apply one of the following three basic rules

 If the node has no children, simply remove it

 If the node has one child, then move the chile one
level higher in the tree to substitute the erased node
in the tree with its child

 If the node has two children, find

● The greatest node in its left subtree or

● The smallest node in its right subtree

 and substitute the erased node with it

20Algorithms and Programming – Camurati & Quer

Node Extract

 If the current node is not the one with the desired
key

 Recur onto the left sub-tree in the key is smaller
than the node’s key

 Recur onto the right sub-tree in the key is smaller
than the node’s key

21Algorithms and Programming – Camurati & Quer

Example

 Given the following BST delete key

 key = 4

 Then, delete key = 03

 Then, delete key = 15

15

6 18

3

2 4

7 17 20

root

22Algorithms and Programming – Camurati & Quer

Recursive implementation

link delete_r (link root, Item x, link z) {
link p;
Item val;

if (root == z)
return (root);

if (item_less (x, root->item)) {
root->l = delete_r (root->l, x, z);
return (root);

}
if (item_less(root->item, x)) {

root->r = delete_r (root->r, x, z);
return (root);

}

Left
recursion

Empty BST

Right
recursion

23Algorithms and Programming – Camurati & Quer

p = root;
if (root->r == z) {

root = root->l;
free (p);
return (root);

}
if (root->l == z) {

root = root->r;
free (p);
return (root);

}
root->l = max_delete_r (&val, root->l, z);
root->item = val;
return (root);

}

Recursive implementation

Right child = NULL
First rule applied

Node found

Node with 2 children
Second rule applied

(find max into left sub-tree)

Left child = NULL
First rule applied

24Algorithms and Programming – Camurati & Quer

link max_delete_r (Item *x, link root, link z) {
link tmp;

if (root->r == z) {
*x = root->item;
tmp = root->l;
free (root);
return (tmp);

}

root->r = max_delete_r (x, root->r, z);
return (root);

}

Recursive implementation

Find and delete maximum
value into left sub-tree

Node found:
Free node and return
pointer to left child

Recur until there is
no right child

Alternative solution:
Find and delete

minimum value into
right sub-tree

25Algorithms and Programming – Camurati & Quer

Sorting and Median

 Given a BST

 An in-order visit delivers keys in ascending order

 Ascending order: 2 3 4 6 7 15 17 18 20

15

6 18

3

2 4

7 17 20

root

26Algorithms and Programming – Camurati & Quer

Sorting and Median

 Given a BST

 The (inferior) median key of a set of n element
is the element stored in position (n + 1)/2 in the
ordered sequence of the element set

15

6 18

3

2 4

7 17 20

root

0 1 2 3 4 5 6 7 8

2 3 4 6 7 15 17 18 20

Ascending order

���

�
 =

���

�
 = 5

 position 5
 element of index 4
 7 is the median key

27Algorithms and Programming – Camurati & Quer

Sorting and Median

 Given a BST

 The (inferior) median key of a set of n element
is the element stored in position (n + 1)/2 in the
ordered sequence of the element set

0 1 2 3 4 5 6 7

2 3 4 6 7 15 17 18

Ascending order

���

�
 =

���

�
 = 4

 position 4
 element of index 3
 6 is the median key

15

6 18

3

2 4

7 17

root

No node !

28Algorithms and Programming – Camurati & Quer

Complexity

 Operations on BSTs have complexity

 T(n) = O(h)

 Where h is the height of the tree

 The height of a tree is equal to

 Tree fully balanced with n nodes

 Height h = α(log2 n)

 Tree completely unbalanced with n nodes

 Height h = α(n)

 O(log n) ≤ T(n) ≤ O(n)

29Algorithms and Programming – Camurati & Quer

Exercise

 Given an initially empty BST perform the
following insertions (+) and extractions (–)

 +15 +16 +5 +3 +12 +20 +13 +8

 +10 +23 +6 +7 –13 –16 – 5

30Algorithms and Programming – Camurati & Quer

Exercise

 Suppose numbers between 1 and 1000 are
stored in a BST, and we want to search for the
key 363

 Which of the following sequences could be the
sequence of nodes examined?

 2 252 401 398 330 344 397 363

 924 220 911 244 898 258 362 363

 925 202 911 240 912 245 363

 2 399 387 219 266 382 385 278 363

 935 278 347 621 392 358 363

31Algorithms and Programming – Camurati & Quer

Exercise

 Suppose numbers between 1 and 1000 are
stored in a BST, and we want to search for the
key 363

 Which of the following sequences could be the
sequence of nodes examined?

 2 252 401 398 330 344 397 363

 924 220 911 244 898 258 362 363

 925 202 911 240 912 245 363

 2 399 387 219 266 382 385 278 363

 935 278 347 621 392 358 363

OK

NO

OK

OK

NO

