

Trees and BSTs

BSTs: Binary Search Trees

Paolo Camurati and Stefano Quer Dipartimento di Automatica e Informatica Politecnico di Torino

Search

- Given a BST already formed, how to we search a key in it?
 - Recursive search of a node storing the desired key
 - Visit the tree from the root
 - Terminate the search if
 - Either the searched key is the one of the current node (search hit) or
 - An empty tree (the sentinel node or a NULL pointer) has been reached (search miss)
 - Recur from the current node on
 - The left sub-tree if the searched key is smaller than the key of the current node
 - The right sub-tree otherwise

Minimum and Maximum

- Find the minimum key in a given BST
 - ➢ If the BST is empty return NULL
 - > Follow pointers onto **left** sub-trees until they exist
 - Return last key encountered
- Find the maximum ley in a given BST
 - ➢ If the BST is empty return NULL
 - Follow pointers onto right sub-trees until they exist
 - Return last key encountered

Recursive implementation

Iterative implementation

- Insert into a BST a node storing a new item
- The BST property must be maintained
 - ➢ If the BST is empty
 - Create a new tree node with the new key and return its pointer
 - Recursion
 - Insert into the left sub-tree if the item key is less than the current node key
 - Insert into the right sub-tree if the item key is larger than the current node key
- Notice that in all cases the new node in on a BST leaf (terminal node with no children)

Iterative implementation

- BST insert can be also be performed using an iterative procedure
 - Find the position first
 - Then add the new node
- As we cannot assign the new pointer on the way back (on recursion) we need two pointers
 - Please remind the ordered list implementation
 - The visit was perfomed either using two pointers or the pointer of a pointer to assign the new pointer to the the pointer of the previous element

Iterative implementation

Node Extract

- Given a BST delete a node with a given key
 - > We have to recursively search the key into the BST
 - \succ If we found it
 - Then we must delete it
 - Otherwise the key is not in the BST and we just return
- Search is performed as before and it is followed by the procedure to delete the node

Node Extract

To sum up we have to

- ➢ If the BST is empty
 - Return doing nothing
- If the current node is the one with the desired key, then apply one of the following three basic rules
 - If the node has no children, simply remove it
 - If the node has one child, then move the chile one level higher in the tree to substitute the erased node in the tree with its child
 - If the node has two children, find
 - The greatest node in its left subtree or
 - The smallest node in its right subtree and substitute the erased node with it

Node Extract

- If the current node is not the one with the desired key
 - Recur onto the left sub-tree in the key is smaller than the node's key
 - Recur onto the right sub-tree in the key is smaller than the node's key

Recursive implementation

Recursive implementation

- Tree fully balanced with n nodes
 - Height $h = \alpha(\log_2 n)$
- Tree completely unbalanced with n nodes
 - Height $h = \alpha(n)$
- ➢ $O(\log n) ≤ T(n) ≤ O(n)$

