
Trees and BSTs

BSTs: Binary Search Trees
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino



2Algorithms and Programming – Camurati & Quer

 Binary tree with the following property

 ∀ node x

 ∀ node y∈Left(x), key[y] < key[x]

 ∀ node y∈Right(x), key[y] > key[x]

Binary Search Trees (BSTs)

<
Left (x)

>
Right (x)

xDistinct keys



3Algorithms and Programming – Camurati & Quer

Examples

19

6 24

3

2 4

7 23 33

This is a BST

15

6 18

3

2 8

5 13 20

This is not
a BST

27



4Algorithms and Programming – Camurati & Quer

Binary Search Trees

typedef struct node *link; 
struct node {

Item item; 
link l; 
link r;

};

optional pointer to father

item

pointer to left child pointer to right child

item  key

is an integer
(in this section)

ADT: We use functions
to compare keys, etc.



5Algorithms and Programming – Camurati & Quer

 Given a BST already formed, how to we search a 
key in it?

 Recursive search of a node storing the desired key

 Visit the tree from the root

 Terminate the search if

● Either the searched key is the one of the current node
(search hit) or

● An empty tree (the sentinel node or a NULL pointer) 
has been reached (search miss)

 Recur from the current node on

● The left sub-tree if the searched key is smaller than 
the key of the current node

● The right sub-tree otherwise

Search



6Algorithms and Programming – Camurati & Quer

Example

 Given the following BST look for

 key = 7  search hit

 key = 20  search hit

 key = 21  search miss

15

6 18

3

2 4

7 17 20

root



7Algorithms and Programming – Camurati & Quer

Recursive implementation

link search_r (link root, Item item, link z) {
if (root == z)

return (z);

if (item_less(item, root->item))
return search_r (root->l, item, z);

if (item_less(root->item, item))
return search_r (root->r, item, z);

return root;
}

Sentinel
or NULL

Root
node

Searched
key

Search miss

Left 
recursion

Right 
recursion

Search hit

Sentinel z or NULL

Function
item_less

compares keys



8Algorithms and Programming – Camurati & Quer

Iterative implementation

link search_i (link root, Item item, link z) {

while (root != z) {
if (item_equal (item, root->item))

return (root);

if (item_less(item, root->item))
root = root->l;

else
root = root->r;

}

return (root);
}

Sentinel
or NULL

Root
node

Searched
key

Search miss

Move
down left

Move
down right

Search hit

Function
item_equal

compares keys



9Algorithms and Programming – Camurati & Quer

Minimum and Maximum

 Find the minimum key in a given BST

 If the BST is empty return NULL

 Follow pointers onto left sub-trees until they exist

 Return last key encountered

 Find the maximum ley in a given BST

 If the BST is empty return NULL

 Follow pointers onto right sub-trees until they
exist

 Return last key encountered



10Algorithms and Programming – Camurati & Quer

Example

 Given the following BST look for

 Minimun  key = 2

 Maximum  key = 20

15

6 18

3

2 4

7 17 20

root



11Algorithms and Programming – Camurati & Quer

Recursive implementation

link min_r (link root, link z) {
if (root == z)

return (z);
if (root->l == z)

return (root);
return min_r (root->l, z);

}

link max_r (link root, link z) {
if (root == z)

return (z);
if (root->r == z)

return (root);
return max_r (root->r, z);

}

Left 
recursion

Termination
condition

Empty BST

Right 
recursion

Termination
condition

Empty BST



12Algorithms and Programming – Camurati & Quer

Iterative implementation

link min_i (link root, link z) {
if (root == z)

return (z);
while (root->l == z)

root = root->l;
return (root);

}

link max_i (link root, link z) {
if (root == z)

return (z);
while (root->r == z)

root = root->r;
return (root);

}

Return 
result

Move down

Empty BST

Empty BST

Return 
result

Move down



13Algorithms and Programming – Camurati & Quer

 Insert into a BST a node storing a new item

 The BST property must be maintained

 If the BST is empty

 Create a new tree node with the new key and return
its pointer

 Recursion

 Insert into the left sub-tree if the item key is less
than the current node key

 Insert into the right sub-tree if the item key is larger
than the current node key

 Notice that in all cases the new node in on a BST 
leaf (terminal node with no children)

Leaf Insert



14Algorithms and Programming – Camurati & Quer

Example

 Given the following BST insert

 key = 05

 key = 13

 key = 19

15

6 18

3

2 4

7 17 20

root



15Algorithms and Programming – Camurati & Quer

Recursive implementation

link insert_r (link root, Item x, link z) {
if (root == z)

return (node_new(x, z, z));

if (item_less(x, root->item))
root->l = insert_r (root->l, x, z);

else
root->r = insert_r (root->r, x, z);

return root;
}

Left 
recursion

Termination
condition:

Insert a new node

Right 
recursion

Assign (new) pointer
onto parent pointer

on the way back

Function
node_new creates

a new node

BST root
Key



16Algorithms and Programming – Camurati & Quer

 BST insert can be also be performed using an 
iterative procedure

 Find the position first

 Then add the new node

 As we cannot assign the new pointer on the way 
back (on recursion) we need two pointers

 Please remind the ordered list implementation

 The visit was perfomed either using two pointers or 
the pointer of a pointer to assign the new pointer to 
the the pointer of the previous element

Iterative implementation



17Algorithms and Programming – Camurati & Quer

Iterative implementation

link insert_i (link root, Item x, link z) {
link p, r;

if (root == z) {
return (node_new(x, z, z));

}
r = root;
p = r;
while (r != z) {

p = r;
r = (item_less(x, r->item)) ? r->l : r->r;

}
r = node_new (x, z, z);
if (item_less (x, p->item))

p->l = r;
else

p->r = r;
return root;

}

Move left or move right

Create link with 
parent in the 
right direction

6

3

2 4

7

p

r

6

3

2 4

7p

r



18Algorithms and Programming – Camurati & Quer

 Given a BST delete a node with a given key

 We have to recursively search the key into the BST

 If we found it

 Then we must delete it

 Otherwise the key is not in the BST and we just 
return

 Search is performed as before and it is followed
by the procedure to delete the node

Node Extract



19Algorithms and Programming – Camurati & Quer

Node Extract

 To sum up we have to

 If the BST is empty

 Return doing nothing

 If the current node is the one with the desired key,
then apply one of the following three basic rules

 If the node has no children, simply remove it

 If the node has one child, then move the chile one
level higher in the tree to substitute the erased node
in the tree with its child

 If the node has two children, find

● The greatest node in its left subtree or

● The smallest node in its right subtree

 and substitute the erased node with it



20Algorithms and Programming – Camurati & Quer

Node Extract

 If the current node is not the one with the desired
key

 Recur onto the left sub-tree in the key is smaller
than the node’s key

 Recur onto the right sub-tree in the key is smaller
than the node’s key



21Algorithms and Programming – Camurati & Quer

Example

 Given the following BST delete key

 key = 4

 Then, delete key = 03

 Then, delete key = 15

15

6 18

3

2 4

7 17 20

root



22Algorithms and Programming – Camurati & Quer

Recursive implementation

link delete_r (link root, Item x, link z) {
link p;
Item val;

if (root == z)
return (root);

if (item_less (x, root->item)) {
root->l = delete_r (root->l, x, z);
return (root);

}
if (item_less(root->item, x)) {

root->r = delete_r (root->r, x, z);
return (root);

}

Left 
recursion

Empty BST

Right 
recursion



23Algorithms and Programming – Camurati & Quer

p = root;
if (root->r == z) {

root = root->l;
free (p);
return (root);

}
if (root->l == z) {

root = root->r;
free (p);
return (root);

}
root->l = max_delete_r (&val, root->l, z);
root->item = val;
return (root);

}

Recursive implementation

Right child = NULL
First rule applied

Node found

Node with 2 children
Second rule applied

(find max into left sub-tree)

Left child = NULL
First rule applied



24Algorithms and Programming – Camurati & Quer

link max_delete_r (Item *x, link root, link z) {
link tmp;

if (root->r == z) {
*x = root->item;
tmp = root->l;
free (root);
return (tmp);

}

root->r = max_delete_r (x, root->r, z);
return (root);

}

Recursive implementation

Find and delete maximum 
value into left sub-tree

Node found:
Free node and return
pointer to left child

Recur until there is
no right child

Alternative solution: 
Find and delete 

minimum value into
right sub-tree



25Algorithms and Programming – Camurati & Quer

Sorting and Median

 Given a BST

 An in-order visit delivers keys in ascending order

 Ascending order: 2 3 4 6 7 15 17 18 20

15

6 18

3

2 4

7 17 20

root



26Algorithms and Programming – Camurati & Quer

Sorting and Median

 Given a BST

 The (inferior) median key of a set of n element
is the element stored in position (n + 1)/2 in the 
ordered sequence of the element set

15

6 18

3

2 4

7 17 20

root

0 1 2 3 4 5 6 7 8

2 3 4 6 7 15 17 18 20

Ascending order


���

�
 = 

���

�
 = 5

 position 5
 element of index 4
 7 is the median key



27Algorithms and Programming – Camurati & Quer

Sorting and Median

 Given a BST

 The (inferior) median key of a set of n element
is the element stored in position (n + 1)/2 in the 
ordered sequence of the element set

0 1 2 3 4 5 6 7

2 3 4 6 7 15 17 18

Ascending order


���

�
 = 

���

�
 = 4

 position 4
 element of index 3
 6 is the median key

15

6 18

3

2 4

7 17

root

No node !



28Algorithms and Programming – Camurati & Quer

Complexity

 Operations on BSTs have complexity

 T(n) = O(h)

 Where h is the height of the tree

 The height of a tree is equal to

 Tree fully balanced with n nodes

 Height h = α(log2 n)

 Tree completely unbalanced with n nodes

 Height h = α(n)

 O(log n) ≤ T(n) ≤ O(n)



29Algorithms and Programming – Camurati & Quer

Exercise

 Given an initially empty BST perform the  
following insertions (+) and extractions (–)

 +15  +16  +5  +3  +12  +20  +13  +8

 +10  +23  +6  +7  –13   –16   – 5



30Algorithms and Programming – Camurati & Quer

Exercise

 Suppose numbers between 1 and 1000 are 
stored in a BST, and we want to search for the 
key 363

 Which of the following sequences could be the 
sequence of nodes examined?

 2 252 401 398 330 344 397 363

 924 220 911 244 898 258 362 363

 925 202 911 240 912 245 363

 2 399 387 219 266 382 385 278 363

 935 278 347 621 392 358 363



31Algorithms and Programming – Camurati & Quer

Exercise

 Suppose numbers between 1 and 1000 are 
stored in a BST, and we want to search for the 
key 363

 Which of the following sequences could be the 
sequence of nodes examined?

 2 252 401 398 330 344 397 363

 924 220 911 244 898 258 362 363

 925 202 911 240 912 245 363

 2 399 387 219 266 382 385 278 363

 935 278 347 621 392 358 363

OK

NO

OK

OK

NO


