#inclede <iidiibh>
#include <slving h>
#include <clypa.h>

d#define MAXPAROLA 30
#define MANKIGA 80

int main(int orge, char *argv(])
{

BSTs: Binary Search Trees
Paolo Camurati and Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

;/’/'

Algorithms and Programming - Camurati & Que _ >

Binary Search Trees (BSTSs)

% Binary tree with the following property

» [0 node x
= [0 node yOLeft(x), key[y] < key[x]
= [node y[CRight(x), key[y] > key[x]

[Distinct Q

&

Algorithms and Programming - Camurati & Quer 3

Examples

5

Algorithms and Programming - Camurati & Quen !

Binary Search Trees

item > key
is an integer
(in this section)

optional pointer to father

item

pointer to left child pointer to right child

V4

7~
[typedef struct node *Ii nk; | ADT: We use functions
struct node { to compare keys, etc.
ltemitem \
link |;
link r;
};

. J

Algorithms and Programming - Camurati & Quer 5

% Given a BST already formed, how to we search a
key in it?
» Recursive search of a node storing the desired key

= Visit the tree from the root

= Terminate the search if

e Either the searched key is the one of the current node
(search hit) or

e An empty tree (the sentinel node or a NULL pointer)
has been reached (search miss)

= Recur from the current node on

e The left sub-tree if the searched key is smaller than
the key of the current node

e The right sub-tree otherwise

;/’/'

Algorithms and Programming - Camurati & Que _ 3

Example

% Given the following BST look for
> key = 7 - search hit
> key = 20 - search hit

> key = 21 - search miss

Algorithms and Programming - Camurati & Quer 7

Recursive implementation

Sentinel
or NULL

Function
item_less
compares keys

link search_r (link root, Itemitem link z) {
i f (root == z)

return (z); Sentinel z or NULL] \L Search miss]

if (itemless(item root->item)

return search_r (root->l, item 2z);
if (itemless(root->item item) \/L J
return search r (root->r, item 2z): JEEAEEN

return root,;

}

Right
recursion

Search hit

(U

Algorithms and Programming - Camurati & Quer 8

Iterative implementation

Sentinel
or NULL

Function
item_equal
compares keys

link search_i (link root, Itemitem link z) {

while (root = 2z) {
if (itemequal (item root->iten))

return (root);
if (item.less(item rooﬁi Search hit
root = root->l,;
el se \/L e
root = root->r;
} down left }

Move
return (root) down rlght

\ Search miss /

Algorithms and Programming - Camurati & Quer 9

% Find the minimum key in a given BST
> If the BST is empty return NULL
> Follow pointers onto left sub-trees until they exist
» Return last key encountered

% Find the maximum ley in a given BST
> If the BST is empty return NULL

> Follow pointers onto right sub-trees until they
exist

» Return last key encountered

Algorithms and Programming - Camurati & Que ; 10

Example

% Given the following BST look for
» Minimun > key = 2
» Maximum - key = 20

Algorithms and Programming - Camurati & Quer 11

Recursive implementation

Ve ™\

- Empty BST N
link min_r (link root, Iink z) {Q’W_J
if (root == z) (Termination}

~return (2z); condition
if (root-> == z) b
return (root);

return mn_r (root->l, 2z); Left
} recursion

_ _ _ Empty BST

link max_r (link root, link z) {
if (root == .Z) (Termination
~return (z); condition
i f (root->r == z) N

return (root);

return max_r (root->r, z); Right
} recursion

AU)

Algorithms and Programming - Camurati & Quer 12

Iterative implementation

Ve ™\

link mini (link root, link z) { !EmptyBSTl
i f (root == z)

return (z); Move down}
while (root->I == z) \
root = root->l;

return (root); Return
} result

: : : : Empty BST
link max_i (link root, link z)

if (root == z)

{
return (z); Move down }
while (root->r == z) \
root = root->r;
return (root): QR
} L result

U

Algorithms and Programming - Camurati & Quer 13

Leaf Insert

% Insert into a BST a node storing a new item

< The BST property must be maintained

> If the BST is empty
= Create a new tree node with the new key and return
its pointer
» Recursion

= Insert into the left sub-tree if the item key is less
than the current node key

= Insert into the right sub-tree if the item key is larger
than the current node key
» Notice that in all cases the new node in on a BST
leaf (terminal node with no children)

&

Algorithms and Programming - Camurati & Quer i

Example

% Given the following BST insert
> key = 5
> key = 13

Algorithms and Programming - Camurati & Quer 15

Recursive implementation

) BST root
Function Key Termination
node_new creates condition:

a new node Insert a new node
link insert r (link root, Itemx, link z) {
I f (root == z)

return (node new(x, z, z));

If (item|less(x, root->item)

root->l = insert r (root->l, x, z); — left |
el se recursion
root->r = insert_r (root->r, x, z); - —
S Right |
return root; L recursion
} Assign (new) pointer
_ onto parent pointer)

k on the way back J

Algorithms and Programming - Camurati & Quer 16

Iterative implementation

% BST insert can be also be performed using an
iterative procedure

» Find the position first
» Then add the new node
% As we cannot assign the new pointer on the way
back (on recursion) we need two pointers

> Please remind the ordered list implementation

= The visit was perfomed either using two pointers or
the pointer of a pointer to assign the new pointer to
the the pointer of the previous element

Algorithms and Programming - Camurati & Quer 74

Iterative implementation

ﬁin_kinsert_i (link root, Itemx, link z) { p
link p, r; , @
Ifrggﬂl ?;oé)e_{new(x, z, 2)); 9 7)
oot ; @ 9

%-O -
=0 — Il 1l

’ (r 1= 2) { [Move left or move right
r

i i o==

(itemless(x, r->tem) ?2 r-> : r

->r;

}

r = node_new (x, z, z);

if (itemless (x, p->item) 6
p->I =r;

el se o) ©) 7)
p->r = r; . .

return root: izl st o) (4)

parent in the /
AN

Q right direction
(S J

Algorithms and Programming - Camurati & Quer 18

Node Extract

% Given a BST delete a node with a given key
» We have to recursively search the key into the BST

> If we found it
= Then we must delete it
= QOtherwise the key is not in the BST and we just
return
%+ Search is performed as before and it is followed
by the procedure to delete the node

Algorithms and Programming - Camurati & Quer 19

Node Extract

% To sum up we have to

> If the BST is empty
= Return doing nothing

> If the current node is the one with the desired key,
then apply one of the following three basic rules
= If the node has no children, simply remove it

= If the node has one child, then move the chile one
level higher in the tree to substitute the erased node
in the tree with its child
= If the node has two children, find
e The greatest node in its left subtree or
e The smallest node in its right subtree

and substitute the erased node with it

—
Algorithms and Programming - Camurati & Que »5 - 20

Node Extract

> If the current node is not the one with the desired
key
= Recur onto the left sub-tree in the key is smaller
than the node’s key

= Recur onto the right sub-tree in the key is smaller
than the node’s key

;/’/'

Algorithms and Programming - Camurati & Que ; 21

Example

% Given the following BST delete key
> key = 4
» Then, delete key = 3

» Then, delete key = 15

Algorithms and Programming - Camurati & Quer 22

Recursive implementation

4 0

link delete r (link root, Itemx, link z) {

i nk p;

| tem val ;
Empty BST
if (root == z)

return (root);

i f (itemless (x, root->item) { Left
root-> = delete r (root->l, x, z); recursion

return (root);

}
I f (itemless(root->tem x)) { Right
root->r = delete r (root->r, X, 2); recursion

return (root);

}

A

Algorithms and Programming - Camurati & Quer 23

Recursive implementation

()
/ Node found \
p = root; L/_

: Right child = NULL
it (root->r == 7) { \(First rule applied }
root = root->l;
free (p);
return (root);
} | Left child = NULL
if (root->I == 2z) { ~————_Firstrule applied
root = root->r;
free (p);
return (root);
}
root-> = max_delete r (&val, root->l, 2z);

root->item = val;
return (root);

} Node with 2 children
Second rule applied
\ (find max into left sub-tree)

-

Algorithms and Programming - Camurati & Quer 24

Recursive implementation

Alternative solution:
Find and delete
minimum value into [

right sub-tree value into left sub-tree

C — N

Find and delete maximum}

link max_delete r (Item*x, link root, link z) {
| i nk tnp;
if (root->r == z) {
*X = root->item Node found:
tnp = root->l; Free node and return
free (root); pointer to left child
return (tnp);

}

root->r = max_delete r (x, root->r, z);
return (root);

——

Recur until there is W

K no right child
N

&

Algorithms and Programming - Camurati & Quer &2

Sorting and Median

% Given a BST
> An in-order visit delivers keys in ascending order
» Ascending order: 234671517 18 20

Algorithms and Programming - Camurati & Quen 26

Sorting and Median

+» Given a BST

» The (inferior) median key of a set of n element
is the element stored in position | (n + 1)/2]in the
ordered sequence of the element set

[AscendingoVrder_]

1 2 3 4 5 6 7 8
2 3 4 6 7 15 17 18 20

n+1 9+1
|_ TJ = |_ TJ =5
-> position 5
- element of index 4
- 7 is the median key

Algorithms and Programming - Camurati & Quer 2

Sorting and Median

+» Given a BST

» The (inferior) median key of a set of n element
is the element stored in position | (n + 1)/2]in the
ordered sequence of the element set

[AscendingoVrder_]
0 1 2 3 4 5 6 7 @

(6 18,

3 @ @
a 0 No node !

n+1 8+1
|_ TJ = |_ TJ =4
-> position 4
- element of index 3
- 6 is the median key

Algorithms and Programming - Camurati & Quer 28

Complexity

%+ Operations on BSTs have complexity
> T(n) = O(h)
= Where h is the height of the tree
% The height of a tree is equal to
> Tree fully balanced with n nodes
= Height h = a(log, n)
» Tree completely unbalanced with n nodes
= Height h = a(n)
» O(log n) <T(n) <0(n)

"/

Algorithms and Programming - Camurati & Quer 29

% Given an initially empty BST perform the
following insertions (+) and extractions (-)

> +15 +16 +5 +3 +12 +20 +13 +8
+10 +23 +6 +7 -13 -16 -5

Algorithms and Programming - Camurati & Quer 30

%+ Suppose numbers between 1 and 1000 are
stored in a BST, and we want to search for the
key 363

<+ Which of the following sequences could be the
sequence of nodes examined?
» 2252401 398 330 344 397 363
» 924 220 911 244 898 258 362 363
» 925 202 911 240 912 245 363
» 2399 387 219 266 382 385 278 363
» 935 278 347 621 392 358 363

Algorithms and Programming - Camurati & Quer 31

%+ Suppose numbers between 1 and 1000 are
stored in a BST, and we want to search for the
key 363

<+ Which of the following sequences could be the
sequence of nodes examined?
> 2252401398330344397363 %
> 924 220 911 244 898 258 362 363 L OK_
> 925 202 911 240 912 245 363 — NO |
> 2399 387 219 266 382 385 278 363 — o |
> 935 278 347 621 392 358 363 — x|

