
Recursion

Combinatorics
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2Algorithms and Programming – Camurati & Quer

Definition

 Combinatorics is a topic of the course in
Mathematical Methods for Engineering

 Combinatorics

 Count on how many subsets of a given set a
property holds

 Determines in how many ways the elements of a
same group may be associated according to
predefined rules

 In problem-solving we need to enumerate the
ways, not only to count them

3Algorithms and Programming – Camurati & Quer

 The search space may modelled as

 Addition and multiplication principles

 Simple arrangements

 Arrangements with repetitions

 Simple permutations

 Permutations with repetition

 Simple combinations

 Combinations with repetitions

 Powerset

 Partitions

Model

We are going to analyze an
implementation frame/scheme
for each one of these models

4Algorithms and Programming – Camurati & Quer

 Given a group S of n elements, we can select k
objects keeping into account

 Unicity

 Are all elements in group S distinct?

 Is thus S a set? Or is it a multiset?

 Ordering

 No matter a reordering, are 2 configurations the
same?

 Repetitions

 May the same object of a group be used several
times within the same grouping?

Grouping criteria

5Algorithms and Programming – Camurati & Quer

 If a set S of objects is partitioned in pair-wise
disjoint subsets {S0, ..., Sn-1} such that

 S = S0 ∪ S1 ∪ … Sn-1

and

 ∀ i ≠ j , Si ∩ Sj = φ

Basic principle: Addition

…

S0S
Sn-1S1

6Algorithms and Programming – Camurati & Quer

 Definition

 The number of objects in S may be determined
adding the number of objects of each of the sets
{S0, ..., Sn-1}

 |S| = ∑ |��|���
��	

Basic principle: Addition

|S| = ∑ |��|���
��	

…

S0
S

Sn-1S1

7Algorithms and Programming – Camurati & Quer

 Alternative definition

 If an object can be selected in |S0| ways from S0,
in |S1| ways from S1, …, in |Sn-1| ways from Sn-1

 Then, selecting an object from any of the n groups
may be performed in a number of ways equal to

 #ways = ∑ |��|���
��	

Basic principle: Addition

…

S0
S

Sn-1S1

#ways = ∑ |��|���
��	

8Algorithms and Programming – Camurati & Quer

 In an university there are

 4 Computer Science courses

and

 5 Mathematics courses

 A student can select just one course

 In how many ways can a student choose?

 Solution

 Disjoint sets 

 Model: Principle of addition

 Number of choices = 4 + 5 = 9

Example

9Algorithms and Programming – Camurati & Quer

Basic principle: Multiplication

…
S0

Sn-1S1

#tuples = ∏ |��
���
��	 |

 Given

 n sets Si (0 ≤ i < n), each one of cardinality |Si|

 The number of ordered t-uples (s0 … sn-1) with

 s0 ∈ S0 … sn-1 ∈ Sn-1

is

 #tuples = ∏ |��
���
��	 |

10Algorithms and Programming – Camurati & Quer

 Alternative definition

 If an object can be selected in |S0| ways from S0,
in |S1| ways from S1, …, in |Sn-1| ways from Sn-1

 Then, the choice of a t-uple of objects (s0 … sn-1)
can be done in

 #tuples =�	 · ��· �
 · ⋯ · ���� = ∏ |��
���
��	 |

ways

Basic principle: Multiplication

…

S0 Sn-1S1

#tuples = ∏ |��
���
��	 |

11Algorithms and Programming – Camurati & Quer

 In a restaurant a menu is served made of

 Appetizers, 2 overall

 First course, 3 overall

 Second course, 2 overall

 Any customer can choose 1 appetizer, 1 first
course, and 1 second course

 Problem

 How many different menus can the restaurant
offer?

 How are these menu composed?

Example

We want to count the
number of solution and
generate those solutions

12Algorithms and Programming – Camurati & Quer

 Model

 Principle of multiplication

 #menus = 2 x 3 x 2 = 12

 menus = { (A0,M0,S0), (A0,M0,S1), (A0,M1,S0), (A0,M1,S1),

(A0,M2,S0), (A0,M2,S1),(A1,M0,S0), (A1,M0,S1), (A1,M1,S0),

(A1,M1,S1), (A1,M2,S0), (A1,M2,S1) }

Solution

A0 A1

M0
M1

M2 M0
M1

M2

S0 S1 S0 S1 S0 S1 S0 S1 S0 S1 S0 S1

2 appetizers (A0, A1)
3 main courses (M0, M1, M2)
2 second courses (S0, S1)

(n=k=3)

Tree of degree
3, height 3,

12 paths from
root to leaves

13Algorithms and Programming – Camurati & Quer

 Choices are made in sequence

 They are represented by a tree

 The number of choices

 Is fixed for a level

 Varies from level to level

 Nodes have a number of children that varies
according to the level

 Each one of the children is one of the choices at that
level

 The maximum number of children determines the
degree of the tree

 The tree’s height is n (the number of groups)

Solution

14Algorithms and Programming – Camurati & Quer

 Given the recursion tree, solutions are the labels
of the edges along each path from root to node

 The goal is to enumerate all solutions, searching
their space

 All solutions are valid

 Each new recursive call increases the size of the
solution

 The total number of recursive calls along each path
is equal to n

 Termination

 Size of current solution equals final desired size n

Solution

15Algorithms and Programming – Camurati & Quer

typedef struct {
int *choices;
int num_choice;

} Level;

val = malloc(n*sizeof(Level));

for (i=0; i<n; i++)
val[i].choices =

malloc(val[i].n_choice*sizeof(int));

sol = malloc(n*sizeof(int));

Implementation

The check for
NULL is missing

0 1

0 1

0 1

2

choices

choices

choices

val

0

1

2

sol

0

1

2

pos

2

num_choices

3

num_choice

2

num_choice

Referring to the example

16Algorithms and Programming – Camurati & Quer

 As far as the data-base is concerned

 There is a 1:1 matching between choices and a
(possibly non contiguous) subset of integers

 Possible choices are stored in array val of size n
containing structures of type Level

 Each structure contains

● An integer field num_choice for the number of
choices at that level

● An array *choices of num_choice integers storing
the available choices

 A solution is represented as an array sol of n
elements that stores the choices at each step

Implementation

17Algorithms and Programming – Camurati & Quer

 As far as the recursive function is concerned

 At each step index pos indicates the size of the
partial solution

 If pos>=n a solution has been found

 The recursive step iterates on possible choices for
the current value of pos

 The contents of sol[pos] is taken from
val[pos].choices[i] extending each time the
solution’s size by 1 and recurs on the pos+1-th
choice

 Variable count is the integer return value for the
recursive function and counts the number of
solutions

Implementation

pos is the
recursion

level (level)

18Algorithms and Programming – Camurati & Quer

int mult_princ (Level *val, int *sol,
int n, int count, int pos) {

int i;

if (pos >= n) {
for (i = 0; i < n; i++)

printf("%d ", sol[i]);
printf("\n");
return count+1;

}
for (i=0; i<val[pos].num_choice; i++) {

sol[pos] = val[pos].choices[i];
count = mult_princ (val,sol,n,count,pos+1);

}
return count;

}

Implementation

Termination condition

Iteration on n choices

Choose

RecurPassing pos+1 does not
modify pos at this
recursione level

19Algorithms and Programming – Camurati & Quer

int mult_princ (...) {
int i;
if (pos >= n) {
print ...
return count+1;

}
for (i=0; i<val[pos].num_choice; i++) {
sol[pos] = val[pos].choices[i];
count = mult_princ (...);

}
return count;

}

Implementation

A0 A1

M0
M1

M2 M0
M1

M2

S0 S1S0 S1 S0 S1 S0 S1 S0 S1 S0 S1

20Algorithms and Programming – Camurati & Quer

 A simple arrangement Dn, k of n distinct objects of
class k is an ordered subset composed by k out
of n objects (0 ≤ k ≤ n)

 The number of simple arrangements of n objects
k by k is

 ��,�= n ∙ (n−1) ∙ ……∙ (n−k+1) =
�!

��� !

Simple arrangements

Simple means no
repetitions

Distinct means it
is a set

Order matters

I select an object out of n,
then I select an object out
of the n-1 remaining, etc.

Class k means size k
(set taken k by k)

21Algorithms and Programming – Camurati & Quer

 Note that

 In simple arrangements objects are

 Distinct  the group is a set

 Ordered  order matters

 Simple  in each group there are exactly k non
repeated objects

 Two groupings differ

 Either because there is at least a different element

 Or because the ordering is different

Simple arrangements

22Algorithms and Programming – Camurati & Quer

 How many and which are the numbers on 2
distinct digits composed with digits 4, 9, 1 and 0?

 Model

 Simple arrangements

 D4, 2 =
�!

��� !
=

�!

��
 !
= 4 ∙ 3 = 12

 Solution

 Numbers = { 49, 41, 40, 94, 91, 90, 14, 19, 10, 04,
09, 01 }

Example
Positional representation:

order matters! k = 2

No repeated digits
n = 4val = { 4, 9, 1, 0 }

23Algorithms and Programming – Camurati & Quer

 How many strings of 2 characters can be formed
selecting chars within the group of 5 vowels
{A, E, I, O, U}?

 Model

 Simple arrangements

 D5, 2 =
�!

��� !
=

�!

��
 !
= 5 ∙ 4 = 20

 Solution

 Strings = { AE, AI, AO, AU, EA, EI, EO, EU, IA, IE,
IO, IU, OA, OE, OI, OU, UA, UE, UI, UO }

ExamplePositional representation:
order matters!

k = 2

No repeated
digits

n = 5
val = { A, E, I, O, U }

24Algorithms and Programming – Camurati & Quer

 Solution

 Strings = { AE, AI, AO, AU, EA, EI, EO, EU, IA, IE,
IO, IU, OA, OE, OI, OU, UA, UE, UI, UO }

Example

Tree of degree 5, height 2,
20 paths from root to leaves

A U

E

I

U

AE

E

AI

I O

O

AUAO

A

E

O

UA AE

I

UOUI

…

25Algorithms and Programming – Camurati & Quer

val = malloc (n * sizeof(int));
mark = malloc (n * sizeof(int));

sol = malloc (k * sizeof(int));

Implementation

pos

val

0

1

2

mark

0

1

2

sol

0

1

2

Size n Size k

As for the multiplication
principle with the same

set to which one element
is extracted, recursion

level after recursion level

As the set is the same, the
array val become an array

of flags mark

26Algorithms and Programming – Camurati & Quer

 In order not to generate repeated elements

 An array mark records already taken elements

 mark[i]=0 implies that i-th element not yet taken,
else 1

 The cardinality of mark equals the number of
elements in val (all distinct, being a set)

 While choosing

 The i-th element is taken only if mark[i]==0,
mark[i] is assigned with 1

 While backtracking

 mark[i] is assigned with 0

 Array count records the number of solutions

Implementation

27Algorithms and Programming – Camurati & Quer

int arr (int *val, int *sol, int *mark,
int n, int k, int count, int pos){

int i;

if (pos >= k){
for (i=0; i<k; i++)

printf("%d ", sol[i]);
printf("\n");
return count+1;

}
for (i=0; i<n; i++){

if (mark[i] == 0) {
mark[i] = 1;
sol[pos] = val[i];
count = arr(val,sol,mark,n,k,count,pos+1);
mark[i] = 0;

}
}
return count;

}

Implementation

Termination condition

Iteration on n choices

Mark and choose

Recur
Unmark

28Algorithms and Programming – Camurati & Quer

 An arrangement with repetitions D’n, k of n distinct
objects of class k (k by k) is an ordered subset
composed of k out of n objects (0 ≤ k) each of whom
may be taken up to k times

 The number of arrangements with repetitions of n
objects taken k by k is

 D’n, k = n ∙ n ∙ ……∙ n = nk

Arrangements with repetitions

Repetitions Set

Order matters

I select an object out of n,
then I select an object out

of n, etc.

29Algorithms and Programming – Camurati & Quer

 Note that

 Arrangements with repetitions are

 Distinct  the group is a set

 Ordered  order matters

 As "simple" is not mentioned  in every grouping the
same object can occur repeatedly at most k times

● k may be > n

 Two groupings differ if one of them

 Contains at least an object that doesn’t occur in the
other group or

 Objects occur in different orders or

 Objects that occur in one grouping occur also in the
other one but are repeated a different number of times

Arrangements with repetitions

30Algorithms and Programming – Camurati & Quer

 How many binary numbers can be created with 4
bits?

 Model

 Each bit can take either value 0 or 1

 Arrangements with repetitions

● D’2, 4 = 24 = 16

 Solution

 Numbers = { 0000, 0001, 0010, 0011, 0100, 0101,
0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101,
1110, 1111 }

Example
Positional representation:

order matters! n = 4

k=2, val ={ 0, 1}, repeated digits

31Algorithms and Programming – Camurati & Quer

 How many strings of 2 characters can be formed
selecting chars with repetitions within the group
of 5 vowels {A, E, I, O, U}?

 Model

 Arrangements with repetitions

 D’5, 2 = nk = 52 = 25

 Solution

 Strings = { AA, AE, AI, AO, AU, EA, EE, EI, EO, EU,
IA, IE, II, IO, IU, OA, OE, OI, OO, OU, UA, UE, UI,
UO, UU }

Example
Positional representation:

order matters! k = 2

Repeated digits
n = 5, val = {A, E, I, O , U }

32Algorithms and Programming – Camurati & Quer

 Each element can be repeated up to k times

 There in no bound on k imposed by n

 For each position we enumerate all possible
choices

 Array count stores the number of solutions

Solution

As the multiplication
principle but extracting
from the same set over

and over again

As simple arrangements
with NO mark array, as

all elements can be
selected at any level

33Algorithms and Programming – Camurati & Quer

Implementation

int arr_rep (int *val, int *sol,
int n, int k, int count, int pos) {

int i;

if (pos >= k) {
for (i=0; i<k; i++)

printf("%d ", sol[i]);
printf("\n");
return count+1;

}
for (i=0; i<n; i++) {

sol[pos] = val[i];
count = arr_rep(val,sol,n,k,count,pos+1);

}
return count;

}

Termination condition

Iteration on n choices

Choose

Recur

As the multiplication
principle but with

the same set

34Algorithms and Programming – Camurati & Quer

 A simple arrangement Dn, n of n distinct objects of
class n (n by n) is a simple permutation Pn

 A simple permutation is an ordered subset made of
n objects

 The number of simple permutations of n objects
is

 Pn = Dn, n = n ∙ (n−1) ∙ ……∙ (n−n+1) = n!

Simple Permutations

No repetitions Order matters Set

As simple arrangements with
k==n (k does not exist)

35Algorithms and Programming – Camurati & Quer

 Note that

 Simple permutation

 Distinct  the group is a set

 Ordered  order matters

 Simple  in each grouping there are exactly n non
repeated objects

 Two groups differ because

 The elements are the same, but they appear in a
different order

Simple Permutations

36Algorithms and Programming – Camurati & Quer

 Given a set val of 3 integers, generate all
possible numbers containing these 3 digits once

 Solution

 Model

 Simple permutations

 The number of permutations is

 P3 = n! = 3! = 6

 Permutations = { 123, 132, 213, 312, 231, 321 }

Example
Positional representation:

order matters!

No repetition
n = 3

val = { 1, 2, 3 }

37Algorithms and Programming – Camurati & Quer

 How many and which are the anagrams of the
string ORA (string of 3 distinct letters)?

 Solution

 Model

 Simple permutations

 The number of permutations is

 P3 = n! = 3! = 6

 Anagrams = { ORA, OAR, ROA, AOR, RAO, ARO }

Example
Positional representation:

order matters!

No repetition

n = 3

val = { O, R, A }

38Algorithms and Programming – Camurati & Quer

Implementation

val = malloc (n * sizeof(int));
sol = malloc (n * sizeof(int));
mark = malloc (n * sizeof(int));

pos

val

0

1

2

mark

0

1

2

sol

0

1

2

Size n

Don’t forget to
check for NULL

As simple arrangements
with k==n

(we select n elements
out of n)

39Algorithms and Programming – Camurati & Quer

 In order not to generate repeated elements

 An array mark records already taken elements

 mark[i]=0 implies that the i-th element not yet
taken, else 1

 The cardinality of mark equals the number of
elements in val (all distinct, being a set)

 While choosing

 The i-th element is taken only if mark[i]==0,
mark[i] is assigned with 1

 During backtrack

 mark[i] is assigned with 0

 Count stores the number of solutions

Solution

40Algorithms and Programming – Camurati & Quer

Implementation

int perm (int *val, int *sol, int *mark,
int n, int count, int pos){

int i;
if (pos >= n){

for (i=0; i<n; i++)
printf("%d ", sol[i]);

printf("\n");
return count+1;

}
for (i=0; i<n; i++)

if (mark[i] == 0) {
mark[i] = 1;
sol[pos] = val[i];
count = perm(val,sol,mark,n,count,pos+1);
mark[i] = 0;

}
return count;

}

Termination condition

Iteration on n choices

Mark and choose

RecurUnmark

As simple
arrangements
with k==n

41Algorithms and Programming – Camurati & Quer

 Given a set (multiset) of n objects among which

 α objects are identical

 β objects are identical

 etc.

the number of distinct permutations

with repeated objects is

 ��

(�, �, ..)

=
�!

(��∙���…)

Permutations with repetitions

Repeated
elements Order matters

From permutation
Pn = n!

divided by the permutations of the
repeated objects

α

β

42Algorithms and Programming – Camurati & Quer

 Note that

 Permutation with repetetitions

 "distinct" not mentioned  the group is a multiset

 Permutations  order matters

 Two groups differ

 Either because the elements are the same but are
repeated a different number of times or because the
order differs

Permutations with repetitions

43Algorithms and Programming – Camurati & Quer

 How many and which are the distinct anagrams
of string ORO (string of 3 characters, 2 being
identical)?

 Solution

 Model: permutations with repetitions

 ��
(
)

=
�!

(��∙���…)
=

�!

!
= 3

Anagrams = { OOR, ORO, ROO }

Example
Positional representation:

order matters!

α = 2
n = 3

44Algorithms and Programming – Camurati & Quer

Implementation

dist_val = malloc (n_dist*sizeof(int));
mark = malloc (n_dist*sizeof(int));

sol = malloc (k*sizeof(int));

pos

val_dist

0

1

2

mark

0

1

2

sol

0

1

2

Size n_dist Size k

Don’t forget to
check for NULL

As simple arrangements
but mark is an array of
counters not of flags and

there are val_dist
distinct values

45Algorithms and Programming – Camurati & Quer

 As far as the data-base is concerned

 It is the same as for simple permutations, with
these changes

 n is the cardinality of the multiset

 n_dist is the number of distinct elements of the
multiset

 val is the set of (n) elements in the multuise4t

 val_dist is the set of (n_dist) distinct elements of
the multiset

 count stores the number of solutions

 Element val_dist[i] is taken if mark[i]> 0,
mark[i] is decremented

Implementation

46Algorithms and Programming – Camurati & Quer

Implementation

int perm_rep (int *val_dist, int *sol, int *mark,
int n, int n_dist, int count, int pos) {
int i;
if (pos >= n) {

for (i=0; i<n; i++)
printf("%d ", sol[i]);

printf("\n");
return count+1;

}
for (i=0; i<n_dist; i++) {

if (mark[i] > 0) {
mark[i]--;
sol[pos] = val_dist[i];
count = perm_rep (

val_dist,sol,mark,n,n_dist,count,pos+1);
mark[i]++;

}
}
return count;

}

Termination condition

Iteration on n_dist choices

Mark and choose

Recur
Unmark

Occurrence control

As simple arrangements
but mark is an array of

counters

47Algorithms and Programming – Camurati & Quer

 A simple combination Cn, k of n distinct objects of class
k (k by k) is a non ordered subset composed by k of
n objects (0 ≤ k ≤ n)

Simple combinations

No repetitions

Order does not
matter

Set

For the first time order
does not matter !

48Algorithms and Programming – Camurati & Quer

 The number of combinations of n elements k by k
equals the number of arrangements of n elements k
by k divided by the number of permutations of k
elements

 ��,� =
��,�

 �
=

�

!
=

�!

�! · ��� !

Simple combinations

Binomial coefficient
(n choose k, k≤n)

49Algorithms and Programming – Camurati & Quer

 Note that

 Simple combinations

 Distinct  the group is a set

 Non ordered  order doesn’t matter

 Simple  in each grouping there are exactly k non
repeated objects

 Two groups differ

 Because there is at least a different element

Simple combinations

50Algorithms and Programming – Camurati & Quer

 How many sets of 3 characters can be formed
with the 4 characters {A, B, C, D}?

 Model

 Simple combinations

 Solution

 ��,� =
�

!
=

4

3
=

�!

�! · ��� !
=

�!

�! · �!
= 4

 Simple combinations = { ABC, ABD, ACD, BCD }

Example

Order does not matter k = 3

val = {A, B, C, D}, n = 4

51Algorithms and Programming – Camurati & Quer

 How many sets of 4 digits can be formed with the
5 digits {7, 2, 0, 4, 1}?

 Model

 Simple combinations

 Solution

 ��,� =
�

!
=

5

4
=

�!

�! · ��� !
=

�!

�! ·�!
= 5

 Simple combinations = { 7204, 7201, 7241, 7041,
2041 }

Example

Order does not matter k = 4

val = {7, 2, 0, 4, 1}, n = 5

52Algorithms and Programming – Camurati & Quer

Implementation

val = malloc (n * sizeof(int));
sol = malloc (k * sizeof(int));

pos

val

0

1

2

sol

0

1

2

Size n Size k

Don’t forget to
check for NULL

As simple arrangements
but mark does not exist
and we begin from start
at each selection iteration

53Algorithms and Programming – Camurati & Quer

 With respect to simple arrangements it is
necessary to "force" one of the possible orderings

 Index start determines from which value of val we
start to fill-in sol

 Array

 val is visited thanks to index i starting from start

 sol is assigned starting from index pos with possible
values of val from start onwards

 Once value val[i] is assigned to sol, recur with i+1
and pos+1

 mark is not needed

 Variable count stores the number of solutions

Implementation

54Algorithms and Programming – Camurati & Quer

Implementation

int comb (int *val, int *sol, int n, int k,
int start, int count, int pos) {

int i, j;

if (pos >= k) {
for (i=0; i<k; i++)

printf("%d ", sol[i]);
printf("\n");
return count+1;

}

for (i=start; i<n; i++) {
sol[pos] = val[i];
count = comb(val,sol,n,k,i+1,count,pos+1);

}
return count;

}

Termination condition

Iteration on n choices

Recur (next position
and next choice)

sol[pos] filled with possible
values of val from start onwards

As simple arrangements
but start forces a

specific order

55Algorithms and Programming – Camurati & Quer

 A combination with repetitions ��,�
% of n distinct

objects of class k (k by k) is a non ordered
subset made of k of the n objects (k ≥ 0)

 Each object may be taken at most k times

 The number of combinations with repetitions of n
objects k by k is

 ��,�
% =

� + k − 1

!
=

� + k − 1

� − 1
=

�*� �� !

�! · � �� !

Combinations with repetitions

No upper bound

Order does
not matter

Repetition Set

56Algorithms and Programming – Camurati & Quer

 Note that

 Combinations with repetitions

 Distinct  the group is a set

 Non ordered  order doesn’t matter

 "Simple " not mentioned  in each grouping the
same object may occur repeatedly at most k times

 k may be > n

 Two groups differ if

 One of them contains at least an object that doen’t
occur in the other one

 The objects that appear in one group appear also in
the other one but are repeated a different number
of times

Combinations with repetitions

57Algorithms and Programming – Camurati & Quer

 When simultaneously casting two dice, how
many compositions of values may appear on 2
faces?

 Model

 Combinations with repetitions

 Solution

 �+,

% =

� + k − 1

!
=

�*� �� !

�! · � �� !
=

+*
 �� !

! · + �� !
= 21

 Compositions = { 11, 12, 13, 14, 15, 16, 22, 23,
24, 25, 26, 33, 34, 35, 36, 44, 45, 46, 55, 56, 66 }

Example

Order does not matters!

k = 2

n = 6

58Algorithms and Programming – Camurati & Quer

 Same as simple combinations, but

 Recursion occurs only for pos+1 and not for i+1

 Index start is incremented each time the for loop
on choices

 count records the number of solutions

Solution

59Algorithms and Programming – Camurati & Quer

Implementation

val = malloc(n * sizeof(int));

sol = malloc(k * sizeof(int));

pos

val

0

1

2

sol

0

1

2

Size n Size k

Don’t forget to
check for NULL

As simple combinations
but i is not incremented
when recurring to re-

consider the same object
over and over again

60Algorithms and Programming – Camurati & Quer

Implementation

int comb_rep (int *val, int *sol, int n, int k,
int start, int count, int pos) {

int i, j;

if (pos >= k) {
for (i=0; i<k; i++)

printf("%d ", sol[i]);
printf("\n");
return count+1;

}

for (i=start; i<n; i++) {
sol[pos] = val[i];
count = comb_rep(val,sol,n,k,i,count,pos+1);

}
return count;

}

Termination condition

Iteration on n choices

Recur
(next position)

sol[pos] filled with possible
values of val from start onwards

As simple combinations
but we must re-consider

the same object

61Algorithms and Programming – Camurati & Quer

 Given a set S, its powerset is the set of the
subsets of S, including S itself and the empty set

 Example

 S = { 1, 2, 3, 4 }

 k = 4

 PowersetS = { ∅, 4, 3, 34, 2, 24, 23, 234, 1, 14,
13, 134, 12, 124, 123, 1234 }

The powerset

K = |S|

62Algorithms and Programming – Camurati & Quer

 The powerset can be computed using 3 different
models

 Arrangements with repetitions

 Simple combinations

 Re-activating the procedure k times

 Simple combinations

 Adopting a divide and conquer strategy

Models

63Algorithms and Programming – Camurati & Quer

 With the arrangements with repetition model the
core idea is the following one

 Each one of the |S| objects of the set are paired
with a binary digit

 If the value of this digit is 0 the object is not
inserted in the powerset

 If the value of this digit is 1 the object is inserted in
the powerset

 Thus we have to arrange two values (0 and 1) on
n positions

 The computed array will tell which elements have to
be selected within the powerset

The powerset: Solution 1

64Algorithms and Programming – Camurati & Quer

0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

0 0 0 1 1 0 1 1

0 1

{} {3} {2} {2,3} {1} {1,3} {1,2} {1,3,4}

Implementation

 Powerset of

 S = {1, 2, 3}

Arrangements with
val = {1, 2, 3}

k = 3

Represented set

Recursion tree

Computed arrays (of bits)

65Algorithms and Programming – Camurati & Quer

 Each subset is represented by the sol array
having k elements

 Each element represent the set of possible
choices, thus 0 and 1 (thus and n = 2 in the
arrangements with repetition scheme)

 The for loop is replaced by 2 explicit assignments

 If

 sol[pos]=0 if the pos-th object doesn’t belong to the
subset

 sol[pos]=1 if the pos-th object belongs to the subset

 0 and 1 may appear several times in the same
solution

Implementation

66Algorithms and Programming – Camurati & Quer

Implementation

int powerset_1 (int *val, int *sol,
int k, int count, int pos) {

int j;
if (pos >= k) {

printf("{ \t");
for (j=0; j<k; j++)

if (sol[j]!=0)
printf("%d \t", val[j]);

printf("} \n");
return count+1;

}

sol[pos] = 0;
count = powerset_1(val,sol,k,count,pos+1);
sol[pos] = 1;
count = powerset_1(val,sol,k,count,pos+1);
return count;

}

Termination condition

Iteration on 2 choices
substituted by 2 explicit calls

0: No object pos in
powerset

Recur on pos+1

1: object pos in
powerset

As arrangements with
repetitions with the cycle

substituted by two explicit calls

67Algorithms and Programming – Camurati & Quer

 Given the set S, we have to select k object from
it varying k from 0 to n

 We select 0 object, then we select 1 object (all
possibility of 1 object), then we select 2 objects
(all possibile pairs), etc.

 Order does not matter (the powerset 123, 132,
312, etc., are equivalent)

 Thus the core idea is the following

 Use simple combinations of |S| distinct objects of
class k, with incresing values of k (k=0, …, |S|)

 In this case the recursive function generates the
desired set (not an array of bits previously
generated)

The powerset: Solution 2

68Algorithms and Programming – Camurati & Quer

 We must

 Union of the empty set and

 The powerset of size 1, 2, 3, …., k

 To compute the powerset, we use simple
combinations of k elements taken by groups of n

 PowersetS = { ∅ } ∪ ⋃
!

�
�
���

 A wrapper function takes care of the union of
empty set (not generated as a combination) and
of iterating the recursive call to the function
computing combinations

Implementation

69Algorithms and Programming – Camurati & Quer

Implementation

int powerset_2 (int *val, int *sol, int n){
int count, k;

count = 0;
for (k=1; k<=n; k++){

count += powerset_2_r (val,sol,n,k,0,0);
}

return count;
}

Iteration on recursive calls
(simple combinations)

Wrapper

Empty set Initially start = 0
(initial choice)

Initially pos = 0
(recursion level)

70Algorithms and Programming – Camurati & Quer

Implementation

int powerset_2_r (int *val, int *sol,
int n, int k, int start, int pos) {

int count = 0, i;

if (pos >= k){
printf("{ ");
for (i=0; i<k; i++)

printf("%d ", sol[i]);
printf(" }\n");
return 1;

}
for (i=start; i<n; i++){

sol[pos] = val[i];
count += powerset_2_r(val,sol,n,k,i+1,pos+1);

}
return count;

}

Print-out desired solution
(not an array of bits)

Simple combination

71Algorithms and Programming – Camurati & Quer

 Simple combinations can be used to generate a
powerset of k objects extracted from the set S

 Instead of re-calling simple combinations over and
over again with increasing value of k we may use
a divide and conquer approach

 The divide and conquer approach is based on the
following formulation

 If k=0

● �-./01/23�
= {�}

 If k>0

● �-./01/23�
= {�-./01/23���� ��} ∪ {�-./01/23���}

The powerset: Solution 3

Terminal case:
empty set

Recursive case:
powerset for k-1 elements union either the

k-th element sk or the empty set

72Algorithms and Programming – Camurati & Quer

 In the simple combinations function

 We generate 2 distinct recursive branches

 The first one include the current element in the
solution

 The second does not include it

 In sol we directly store the element, not a flag to
indicate its presence/absence

 The value of index start is used to exclude
symmetrical solutions

 The return value count represents the total
number of sets

Implementation

73Algorithms and Programming – Camurati & Quer

Implementation

int powerset_3(int *val, int *sol,
int k, int start, int count, int pos) {

int i;
if (start >= k) {

for (i=0; i<pos; i++)
printf("%d ", sol[i]);

printf("\n");
return count+1;

}
for (i=start; i<k; i++) {

sol[pos] = val[i];
count = powerset_3(val,sol,k,i+1,count,pos+1);

}
count = powerset_3(val,sol,k,k,count,pos);
return count;

} Do not add Sk

and recur

Add Sk and
recur

For all elements
from start onwards

74Algorithms and Programming – Camurati & Quer

 Given a set S of |S| elements, a collection S =
{Si} of non empty blocks forms a partition only iff
both the following conditions hold

 Blocks are pairwise disjoint

 ∀ ��, �6 ∈ S with i ≠ j then �� ∩ �6= ∅

 The union of those blocks is S

 � = ����

 The number of blocks k ranges

 From 1, in that case the block coincides with the
set S

 To n, in that case each block contains only 1
element of S

Partitions of a set

75Algorithms and Programming – Camurati & Quer

 Given the following set S generate all possibile
partitions

 S = {1, 2, 3, 4 }

 Solution

 K=1

 1 partition: {1234}

 K=2

 7 partitions: {123, 4}, {124, 3} , {12, 34}, {134, 2}, {13,
24}, {14, 23}, {1, 234}

 K=3

 6 partitions: {12, 3, 4}, {13, 2, 4} , {1, 23, 4}, {14, 2, 3},
{1, 24, 3}, {1, 2, 34}

 K=4

 4 partitions: {1}, {2}, {3}, {4}

Example

The order of the blocks and of the
elements within each block doesn’t matter.
As a consequence the 2 partitions {123, 4}

AND {4, 312} are identical

76Algorithms and Programming – Camurati & Quer

 Given the set S of cardinality n=|S|, it is possibile
to find

 All partitions in exactly k blocks, where k is a
constant value

 This problem can be solved with arrangements with
repetitions

 All partitions in k blocks, where k is a variable
value and it ranges between 1 and n

 This problem can be solved with arrangements with
repetitions re-called for every value of k or with the
Er’s algorithm (1987)

Problem

77Algorithms and Programming – Camurati & Quer

 The total number of partitions of a set S of n
objects is given by Bell’s numbers

 Bell’s number are defined by the following
recurrence equation

 B0 = 1

 Bn+1 = ∑
�

!
�B!�

��	

 The first Bell numbers are

 B0 = 1, B1 = 1 , B2 = 2, B3 = 5 , B4 = 15 , B5 = 52,
...

 Their search space is not modelled in terms of
combinatorics

Number of partitions

78Algorithms and Programming – Camurati & Quer

 To represent a partitions at least two approaches
are possibile

 Given the element, identify the unique block it
belongs to

 Given the block, list the elements that belong to it

 First approach preferrable, as it works on an
array of integers and not on lists

 Example

 S={1,2,3,4}, partition={14, 2, 3}

 Partitions are numbered from 0 to 3

Partition of a set S

1 2 3 4

0 1 2 0
1 ∈ partition 0

2 ∈ partition 1

4 ∈ partition 0

3 ∈ partition 2

79Algorithms and Programming – Camurati & Quer

 To solve the first problem arrangements with
repetitions are sufficient

 This is a generalization of the powerset problem
(solution 1)

 Instead of arranging only two values (0 and 1) on
n positions we arrange k values

 Each value is (from 0 to k-1) will indicate the
partition

 As we do not want to have empty partitions (we
would generate less than k partitions)

 We must check whether all partitions are not
empty once a solution has been generated

Problems

80Algorithms and Programming – Camurati & Quer

 The number of objects stored in array val is n

 The number of decisions to take is n, thus array
sol contains n cells

 The number of possible choices for each object is
the number of blocks, that ranges from 1 to k

 Each block is identified by an index i in the range
from 0 to k-1

 sol[pos] contains the index i of the block to which
the current object of index pos belongs

Implementation

81Algorithms and Programming – Camurati & Quer

Solution

val = malloc (k*sizeof(int));
sol = malloc (k*sizeof(int));

pos

val

0

1

2

sol

0

1

2

Size k Size k

Don’t forget to
check for NULL

82Algorithms and Programming – Camurati & Quer

Solution

void arr_rep(int *val, int *sol,
int n, int k, int pos) {

int i, j, t, ok=1, *occ;
occ = calloc(n, sizeof(int))
if (pos >= n) {

for (j=0; j<n; j++) occ[sol[j]]++;
i=0;
while ((i < k) && ok) {

if (occ[i]==0) ok = 0;
i++;

}
if (ok == 0) return;
else { /*PRINT SOLUTION ... */ }

}
for (i=0; i<k; i++) {

sol[pos] = i;
arr_rep(val,sol,n,k,pos+1);

}
} Recur:

Simple arrangements

Discard solution

Print solution

Occurrence check

Occurrence computation

Block occurrence array

