
Recursion

Combinatorics
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino



2Algorithms and Programming – Camurati & Quer

Definition

 Combinatorics is a topic of the course in 
Mathematical Methods for Engineering

 Combinatorics

 Count on how many subsets of a given set a 
property holds

 Determines in how many ways the elements of a 
same group may be associated according to 
predefined rules

 In problem-solving we need to enumerate the 
ways, not only to count them
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 The search space may modelled as

 Addition and multiplication principles

 Simple arrangements

 Arrangements with repetitions

 Simple permutations

 Permutations with repetition

 Simple combinations

 Combinations with repetitions

 Powerset

 Partitions

Model

We are going to analyze an 
implementation frame/scheme
for each one of these models
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 Given a group S of n elements, we can select k 
objects keeping into account

 Unicity

 Are all elements in group S distinct?

 Is thus S a set? Or is it a multiset?

 Ordering

 No matter a reordering, are 2 configurations the 
same?

 Repetitions

 May the same object of a group be used several
times within the same grouping?

Grouping criteria
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 If a set S of objects is partitioned in pair-wise
disjoint subsets {S0, ..., Sn-1} such that

 S = S0 ∪ S1 ∪ … Sn-1

and

 ∀ i ≠ j , Si ∩ Sj = φ

Basic principle: Addition

…

S0S
Sn-1S1
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 Definition

 The number of objects in S may be determined
adding the number of objects of each of the sets 
{S0, ..., Sn-1}

 |S| = ∑ |��|���
��	

Basic principle: Addition

|S| = ∑ |��|���
��	

…

S0
S

Sn-1S1
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 Alternative definition

 If an object can be selected in |S0| ways from S0, 
in |S1| ways from S1, …, in |Sn-1| ways from Sn-1

 Then, selecting an object from any of the n groups
may be performed in a number of ways equal to

 #ways = ∑ |��|���
��	

Basic principle: Addition

…

S0
S

Sn-1S1

#ways = ∑ |��|���
��	
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 In an university there are

 4 Computer Science courses

and

 5 Mathematics courses

 A student can select just one course

 In how many ways can a student choose?

 Solution

 Disjoint sets 

 Model: Principle of addition

 Number of choices = 4 + 5 = 9

Example
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Basic principle: Multiplication

…
S0

Sn-1S1

#tuples = ∏ |��
���
��	 |

 Given

 n sets Si (0 ≤ i < n), each one of cardinality |Si|

 The number of ordered t-uples (s0 … sn-1) with

 s0  ∈ S0 …  sn-1 ∈ Sn-1

is

 #tuples = ∏ |��
���
��	 |
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 Alternative definition

 If an object can be selected in |S0| ways from S0, 
in |S1| ways from S1, …, in |Sn-1| ways from Sn-1

 Then, the choice of a t-uple of objects (s0 … sn-1) 
can be done in 

 #tuples =�	 · ��· �
 · ⋯ · ���� = ∏ |��
���
��	 |

ways

Basic principle: Multiplication

…

S0 Sn-1S1

#tuples = ∏ |��
���
��	 |
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 In a restaurant a menu is served made of

 Appetizers, 2 overall

 First course, 3 overall

 Second course, 2 overall

 Any customer can choose 1 appetizer, 1 first 
course, and 1 second course

 Problem

 How many different menus can the restaurant
offer?

 How are these menu composed?

Example

We want to count the 
number of solution and 
generate those solutions
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 Model

 Principle of multiplication

 #menus = 2 x 3 x 2 = 12

 menus = { (A0,M0,S0), (A0,M0,S1), (A0,M1,S0), (A0,M1,S1), 

(A0,M2,S0), (A0,M2,S1),(A1,M0,S0), (A1,M0,S1), (A1,M1,S0), 

(A1,M1,S1), (A1,M2,S0), (A1,M2,S1) }

Solution

A0 A1

M0
M1

M2 M0
M1

M2

S0 S1 S0 S1 S0 S1 S0 S1 S0 S1 S0 S1

2 appetizers (A0, A1)
3 main courses (M0, M1, M2)
2 second courses (S0, S1) 

(n=k=3)

Tree of degree
3,  height 3,

12 paths from 
root to leaves
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 Choices are made in sequence

 They are represented by a tree

 The number of choices

 Is fixed for a level

 Varies from level to level

 Nodes have a number of children that varies 
according to the level

 Each one of the children is one of the choices at that 
level

 The maximum number of children determines the 
degree of the tree

 The tree’s height is n (the number of groups)

Solution
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 Given the recursion tree, solutions are the labels
of the edges along each path from root to node

 The goal is to enumerate all solutions, searching 
their space

 All solutions are valid

 Each new recursive call increases the size of the 
solution

 The total number of recursive calls along each path
is equal to n 

 Termination

 Size of current solution equals final desired size n

Solution



15Algorithms and Programming – Camurati & Quer

typedef struct {
int *choices;
int num_choice;

} Level;

val = malloc(n*sizeof(Level)); 

for (i=0; i<n; i++)
val[i].choices =

malloc(val[i].n_choice*sizeof(int));

sol = malloc(n*sizeof(int));

Implementation

The check for 
NULL is missing

0 1

0 1

0 1

2

choices

choices

choices

val

0

1

2

sol

0

1

2

pos

2

num_choices

3

num_choice

2

num_choice

Referring to the example
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 As far as the data-base is concerned

 There is a 1:1 matching between choices and a 
(possibly non contiguous) subset of integers

 Possible choices are stored in array val of size n
containing structures of type Level

 Each structure contains

● An integer field num_choice for the number of 
choices at that level

● An array *choices of num_choice integers storing 
the available choices

 A solution is represented as an array sol of n
elements that stores the choices at each step

Implementation
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 As far as the recursive function is concerned

 At each step index pos indicates the size of the 
partial solution

 If pos>=n a solution has been found

 The recursive step iterates on possible choices for 
the current value of pos

 The contents of sol[pos] is taken from 
val[pos].choices[i] extending each time the 
solution’s size by 1 and recurs on the  pos+1-th 
choice

 Variable count is the integer return value for the 
recursive function and counts the number of 
solutions

Implementation

pos is the 
recursion

level (level)
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int mult_princ (Level *val, int *sol,
int n, int count, int pos) {

int i;

if (pos >= n) {
for (i = 0; i < n; i++)

printf("%d ", sol[i]);
printf("\n");
return count+1;

}
for (i=0; i<val[pos].num_choice; i++) {

sol[pos] = val[pos].choices[i];
count = mult_princ (val,sol,n,count,pos+1);

}
return count;

}

Implementation

Termination condition

Iteration on n choices

Choose

RecurPassing pos+1 does not
modify pos at this
recursione level
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int mult_princ (...) {
int i;
if (pos >= n) {
print ...
return count+1;

}
for (i=0; i<val[pos].num_choice; i++) {
sol[pos] = val[pos].choices[i];
count = mult_princ (...);

}
return count;

}

Implementation

A0 A1

M0
M1

M2 M0
M1

M2

S0 S1S0 S1 S0 S1 S0 S1 S0 S1 S0 S1
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 A simple arrangement Dn, k of n distinct objects of 
class k is an ordered subset composed by k out 
of n objects (0 ≤ k ≤ n)

 The number of simple arrangements of n objects
k by k is

 ��,�= n ∙ (n−1) ∙ ……∙ (n−k+1) =  
�!

��� !

Simple arrangements

Simple means no 
repetitions

Distinct means it
is a set

Order matters

I select an object out of n, 
then I select an object out 
of the n-1 remaining, etc.

Class k means size k 
(set taken k by k)
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 Note that

 In simple arrangements objects are

 Distinct  the group is a set

 Ordered  order matters

 Simple  in each group there are exactly k non 
repeated objects

 Two groupings differ

 Either because there is at least a different element

 Or because the ordering is different

Simple arrangements



22Algorithms and Programming – Camurati & Quer

 How many and which are the numbers on 2 
distinct digits composed with digits 4, 9, 1 and 0?

 Model

 Simple arrangements

 D4, 2 =  
�!

��� !
=  

�!

��
 !
= 4 ∙ 3 = 12 

 Solution

 Numbers = { 49, 41, 40, 94, 91, 90, 14, 19, 10, 04, 
09, 01 }

Example
Positional representation: 

order matters! k = 2

No repeated digits
n = 4val = { 4, 9, 1, 0 }
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 How many strings of 2 characters can be formed
selecting chars within the group of 5 vowels
{A, E, I, O, U}?

 Model

 Simple arrangements

 D5, 2 =  
�!

��� !
=  

�!

��
 !
= 5 ∙ 4 = 20 

 Solution

 Strings = { AE, AI, AO, AU, EA, EI, EO, EU, IA, IE, 
IO, IU, OA, OE, OI, OU, UA, UE, UI, UO }

ExamplePositional representation: 
order matters!

k = 2

No repeated
digits

n = 5
val = { A, E, I, O, U }
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 Solution

 Strings = { AE, AI, AO, AU, EA, EI, EO, EU, IA, IE, 
IO, IU, OA, OE, OI, OU, UA, UE, UI, UO }

Example

Tree of degree 5,  height 2,
20 paths from root to leaves

A U

E

I

U

AE

E

AI

I O

O

AUAO

A

E

O

UA AE

I

UOUI

…
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val = malloc (n * sizeof(int));
mark = malloc (n * sizeof(int));

sol = malloc (k * sizeof(int));

Implementation

pos

val

0

1

2

mark

0

1

2

sol

0

1

2

Size n Size k

As for the multiplication
principle with the same

set to which one element
is extracted, recursion

level after recursion level

As the set is the same, the 
array val become an array 

of flags mark
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 In order not to generate repeated elements

 An array mark records already taken elements

 mark[i]=0 implies that i-th element not yet taken, 
else 1

 The cardinality of mark equals the number of 
elements in val (all distinct, being a set)

 While choosing

 The i-th element is taken only if mark[i]==0, 
mark[i] is assigned with 1

 While backtracking

 mark[i] is assigned with 0

 Array count records the number of solutions

Implementation
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int arr (int *val, int *sol, int *mark,
int n, int k, int count, int pos){

int i;

if (pos >= k){
for (i=0; i<k; i++)

printf("%d ", sol[i]);
printf("\n");
return count+1;

}
for (i=0; i<n; i++){

if (mark[i] == 0) {
mark[i] = 1;
sol[pos] = val[i];
count = arr(val,sol,mark,n,k,count,pos+1);
mark[i] = 0;

}
}
return count;

}

Implementation

Termination condition

Iteration on n choices

Mark and choose

Recur
Unmark
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 An arrangement with repetitions D’n, k  of n distinct
objects of class k (k by k) is an ordered subset 
composed of k out of n objects (0 ≤ k) each of whom
may be taken up to k times

 The number of arrangements with repetitions of n 
objects taken k by k is

 D’n, k = n ∙ n ∙ ……∙ n = nk

Arrangements with repetitions

Repetitions Set

Order matters

I select an object out of n, 
then I select an object out 

of n, etc.
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 Note that

 Arrangements with repetitions are

 Distinct  the group is a set

 Ordered  order matters

 As "simple" is not mentioned  in every grouping the 
same object can occur repeatedly at most k times

● k may be > n

 Two groupings differ if one of them

 Contains at least an object that doesn’t occur in the 
other group or

 Objects occur in different orders or 

 Objects that occur in one grouping occur also in the 
other one but are repeated a different number of times

Arrangements with repetitions
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 How many binary numbers can be created with 4 
bits?

 Model

 Each bit can take either value 0 or 1

 Arrangements with repetitions

● D’2, 4 = 24 = 16

 Solution

 Numbers = { 0000, 0001, 0010, 0011, 0100, 0101, 
0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 
1110, 1111 }

Example
Positional representation: 

order matters! n = 4

k=2, val ={ 0, 1}, repeated digits
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 How many strings of 2 characters can be formed
selecting chars with repetitions within the group
of 5 vowels {A, E, I, O, U}?

 Model

 Arrangements with repetitions

 D’5, 2 = nk = 52 = 25 

 Solution

 Strings = { AA, AE, AI, AO, AU, EA, EE, EI, EO, EU, 
IA, IE, II, IO, IU, OA, OE, OI, OO, OU, UA, UE, UI, 
UO, UU }

Example
Positional representation: 

order matters! k = 2

Repeated digits
n = 5, val = {A, E, I, O , U }
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 Each element can be repeated up to k times

 There in no bound on k imposed by n

 For each position we enumerate all possible
choices

 Array count stores the number of solutions

Solution

As the multiplication
principle but extracting
from the same set over 

and over again

As simple arrangements
with NO mark array, as

all elements can be 
selected at any level
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Implementation

int arr_rep (int *val, int *sol,
int n, int k, int count, int pos) {

int i;

if (pos >= k) {
for (i=0; i<k; i++)

printf("%d ", sol[i]);
printf("\n");
return count+1;

}
for (i=0; i<n; i++) {

sol[pos] = val[i];
count = arr_rep(val,sol,n,k,count,pos+1);

}
return count;

}

Termination condition

Iteration on n choices

Choose

Recur

As the multiplication
principle but with 

the same set
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 A simple arrangement Dn, n of n distinct objects of 
class n (n by n) is a simple permutation Pn

 A simple permutation is an ordered subset made of 
n objects

 The number of simple permutations of n objects
is

 Pn = Dn, n = n ∙ (n−1) ∙ ……∙ (n−n+1) = n!

Simple Permutations

No repetitions Order matters Set

As simple arrangements with 
k==n (k does not exist)
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 Note that

 Simple permutation

 Distinct  the group is a set

 Ordered  order matters

 Simple  in each grouping there are exactly n non 
repeated objects

 Two groups differ because

 The elements are the same, but they appear in a 
different order

Simple Permutations
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 Given a set val of 3 integers, generate all 
possible numbers containing these 3 digits once

 Solution 

 Model

 Simple permutations

 The number of permutations is

 P3 = n! = 3! = 6

 Permutations = { 123, 132, 213, 312, 231, 321 }

Example
Positional representation: 

order matters!

No repetition
n = 3

val = { 1, 2, 3 }
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 How many and which are the anagrams of the 
string ORA (string of 3 distinct letters)?

 Solution

 Model

 Simple permutations

 The number of permutations is

 P3 = n! = 3! = 6

 Anagrams = { ORA, OAR, ROA, AOR, RAO, ARO }

Example
Positional representation: 

order matters!

No repetition

n = 3

val = { O, R, A }
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Implementation

val = malloc (n * sizeof(int));
sol = malloc (n * sizeof(int));
mark = malloc (n * sizeof(int));

pos

val

0

1

2

mark

0

1

2

sol

0

1

2

Size n

Don’t forget to 
check for NULL

As simple arrangements
with k==n

(we select n elements
out of n)
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 In order not to generate repeated elements

 An array mark records already taken elements

 mark[i]=0 implies that the i-th element not yet
taken, else 1

 The cardinality of mark equals the number of 
elements in val (all distinct, being a set)

 While choosing

 The i-th element is taken only if mark[i]==0, 
mark[i] is assigned with 1

 During backtrack

 mark[i] is assigned with 0

 Count stores the number of solutions

Solution
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Implementation

int perm (int *val, int *sol, int *mark,
int n, int count, int pos){

int i;
if (pos >= n){

for (i=0; i<n; i++)
printf("%d ", sol[i]);

printf("\n");
return count+1;

}
for (i=0; i<n; i++)

if (mark[i] == 0) {
mark[i] = 1;
sol[pos] = val[i];
count = perm(val,sol,mark,n,count,pos+1);
mark[i] = 0;

}
return count;

}

Termination condition

Iteration on n choices

Mark and choose

RecurUnmark

As simple
arrangements
with k==n
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 Given a set (multiset) of n objects among which

 α objects are identical

 β objects are identical

 etc.

the number of distinct permutations

with repeated objects is

 ��

(�, �, ..)

=  
�!

(��∙���… )

Permutations with repetitions

Repeated
elements Order matters

From permutation
Pn = n!

divided by the permutations of the 
repeated objects

α

β
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 Note that

 Permutation with repetetitions

 "distinct" not mentioned  the group is a multiset

 Permutations  order matters

 Two groups differ

 Either because the elements are the same but are 
repeated a different number of times or because the 
order differs

Permutations with repetitions
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 How many and which are the distinct anagrams
of string ORO (string of 3 characters, 2 being
identical)?

 Solution

 Model: permutations with repetitions

 ��
(
)

=
�!

(��∙���… )
=

�!


!
= 3

Anagrams = { OOR,  ORO, ROO }

Example
Positional representation: 

order matters!

α = 2
n = 3
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Implementation

dist_val = malloc (n_dist*sizeof(int));
mark = malloc (n_dist*sizeof(int));

sol = malloc (k*sizeof(int));

pos

val_dist

0

1

2

mark

0

1

2

sol

0

1

2

Size n_dist Size k

Don’t forget to 
check for NULL

As simple arrangements
but mark is an array of 
counters not of flags and 

there are val_dist
distinct values
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 As far as the data-base is concerned

 It is the same as for simple permutations, with 
these changes

 n is the cardinality of the multiset

 n_dist is the number of distinct elements of the 
multiset

 val is the set of (n) elements in the multuise4t

 val_dist is the set of (n_dist) distinct elements of 
the multiset

 count stores the number of solutions

 Element val_dist[i] is taken if mark[i]> 0, 
mark[i] is decremented

Implementation
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Implementation

int perm_rep (int *val_dist, int *sol, int *mark,
int n, int n_dist, int count, int pos) {
int i;
if (pos >= n) {

for (i=0; i<n; i++)
printf("%d ", sol[i]);

printf("\n");
return count+1;

}
for (i=0; i<n_dist; i++) {

if (mark[i] > 0) {
mark[i]--;
sol[pos] = val_dist[i];
count = perm_rep (

val_dist,sol,mark,n,n_dist,count,pos+1);
mark[i]++;

}
}
return count;

}

Termination condition

Iteration on n_dist choices

Mark and choose

Recur
Unmark

Occurrence control

As simple arrangements
but mark is an array of 

counters
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 A simple combination Cn, k  of n distinct objects of class
k  (k by k) is a non ordered subset composed by k of 
n objects (0 ≤ k ≤  n)

Simple combinations

No repetitions

Order does not 
matter

Set

For the first time order
does not matter !
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 The number of combinations of n elements k by k 
equals the number of arrangements of n elements k 
by k divided by the number of permutations of k 
elements

 ��,� =  
��,�

 �
= 

�

!
=

�!

�! · ��� !

Simple combinations

Binomial coefficient
(n choose k, k≤n)
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 Note that

 Simple combinations

 Distinct  the group is a set

 Non ordered  order doesn’t matter

 Simple  in each grouping there are exactly k non 
repeated objects

 Two groups differ

 Because there is at least a different element

Simple combinations
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 How many sets of 3 characters can be formed 
with the 4 characters {A, B, C, D}?

 Model

 Simple combinations

 Solution

 ��,� = 
�

!
=

4

3
= 

�!

�! · ��� !
=

�!

�! · �!
= 4

 Simple combinations = { ABC, ABD, ACD, BCD } 

Example

Order does not matter k = 3

val = {A, B, C, D}, n = 4
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 How many sets of 4 digits can be formed with the 
5 digits {7, 2, 0, 4, 1}?

 Model

 Simple combinations

 Solution

 ��,� = 
�

!
=

5

4
= 

�!

�! · ��� !
=

�!

�! ·�!
= 5

 Simple combinations = { 7204, 7201, 7241, 7041, 
2041 } 

Example

Order does not matter k = 4

val = {7, 2, 0, 4, 1}, n = 5
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Implementation

val = malloc (n * sizeof(int));
sol = malloc (k * sizeof(int));

pos

val

0

1

2

sol

0

1

2

Size n Size k

Don’t forget to 
check for NULL

As simple arrangements
but mark does not exist
and we begin from start
at each selection iteration
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 With respect to simple arrangements it is
necessary to "force" one of the possible orderings

 Index start determines from which value of val we 
start to fill-in sol

 Array

 val is visited thanks to index i starting from start

 sol is assigned starting from index pos with possible 
values of val from start onwards

 Once value val[i] is assigned to sol, recur with i+1
and pos+1

 mark is not needed 

 Variable count stores the number of solutions

Implementation
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Implementation

int comb (int *val, int *sol, int n, int k, 
int start, int count, int pos) {

int i, j;

if (pos >= k) {
for (i=0; i<k; i++)

printf("%d ", sol[i]);
printf("\n");
return count+1;

}

for (i=start; i<n; i++) {
sol[pos] = val[i];
count = comb(val,sol,n,k,i+1,count,pos+1);

}
return count;

}

Termination condition

Iteration on n choices

Recur (next position 
and next choice)

sol[pos] filled with possible
values of val from start onwards

As simple arrangements
but start forces a 

specific order
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 A combination with repetitions ��,�
% of n distinct

objects of class k (k by k) is a non ordered
subset made of k of the n objects (k ≥ 0)

 Each object may be taken at most k times

 The number of combinations with repetitions of n 
objects k by k is

 ��,�
% = 

� + k − 1

!
= 

� + k − 1

� − 1
= 

�*� �� !

�! · � �� !

Combinations with repetitions

No upper bound

Order does
not matter

Repetition Set
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 Note that

 Combinations with repetitions

 Distinct  the group is a set

 Non ordered  order doesn’t matter

 "Simple " not mentioned  in each grouping the 
same object may occur repeatedly at most k times

 k may be > n

 Two groups differ if

 One of them contains at least an object that doen’t
occur in the other one

 The objects that appear in one group appear also in 
the other one but are repeated a different number
of times

Combinations with repetitions
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 When simultaneously casting two dice, how
many compositions of values may appear on 2 
faces?

 Model

 Combinations with repetitions

 Solution

 �+,

% = 

� + k − 1

!
= 

�*� �� !

�! · � �� !
= 

+*
 �� !


! · + �� !
= 21

 Compositions = { 11, 12, 13, 14, 15, 16, 22, 23, 
24, 25, 26, 33, 34, 35, 36, 44, 45, 46, 55, 56, 66 } 

Example

Order does not matters!

k = 2

n = 6
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 Same as simple combinations, but

 Recursion occurs only for pos+1 and not for i+1

 Index start is incremented each time the for loop 
on choices

 count records the number of solutions

Solution
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Implementation

val = malloc(n * sizeof(int));

sol = malloc(k * sizeof(int));

pos

val

0

1

2

sol

0

1

2

Size n Size k

Don’t forget to 
check for NULL

As simple combinations
but i is not incremented
when recurring to re-

consider the same object
over and over again
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Implementation

int comb_rep (int *val, int *sol, int n, int k, 
int start, int count, int pos) {

int i, j;

if (pos >= k) {
for (i=0; i<k; i++)

printf("%d ", sol[i]);
printf("\n");
return count+1;

}

for (i=start; i<n; i++) {
sol[pos] = val[i];
count = comb_rep(val,sol,n,k,i,count,pos+1);

}
return count;

}

Termination condition

Iteration on n choices

Recur
(next position)

sol[pos] filled with possible
values of val from start onwards

As simple combinations
but we must re-consider

the same object
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 Given a set S, its powerset is the set of the 
subsets of S, including S itself and the empty set

 Example

 S = { 1, 2, 3, 4 }

 k = 4

 PowersetS = { ∅, 4, 3, 34, 2, 24, 23, 234, 1, 14, 
13, 134, 12, 124, 123, 1234 }

The powerset

K = |S|
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 The powerset can be computed using 3 different 
models

 Arrangements with repetitions

 Simple combinations

 Re-activating the procedure k times

 Simple combinations

 Adopting a divide and conquer strategy

Models
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 With the arrangements with repetition model the 
core idea is the following one

 Each one of the |S| objects of the set are paired
with a binary digit

 If the value of this digit is 0 the object is not
inserted in the powerset

 If the value of this digit is 1 the object is inserted in 
the powerset

 Thus we have to arrange two values (0 and 1) on 
n positions

 The computed array will tell which elements have to 
be selected within the powerset

The powerset: Solution 1
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0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

0 0 0 1 1 0 1 1

0 1

{}       {3}     {2}  {2,3}   {1}    {1,3}  {1,2} {1,3,4}

Implementation

 Powerset of

 S = {1, 2, 3}

Arrangements with
val = {1, 2, 3}

k = 3

Represented set

Recursion tree

Computed arrays (of bits)
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 Each subset is represented by the sol array 
having k elements

 Each element represent the set of possible
choices, thus 0 and 1 (thus and n = 2 in the 
arrangements with repetition scheme)

 The for loop is replaced by 2 explicit assignments

 If

 sol[pos]=0 if the pos-th object doesn’t belong to the 
subset

 sol[pos]=1 if the pos-th object belongs to the subset 

 0 and 1 may appear several times in the same
solution

Implementation
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Implementation

int powerset_1 (int *val, int *sol,
int k, int count, int pos) {

int j;
if (pos >= k) {

printf("{ \t");
for (j=0; j<k; j++)

if (sol[j]!=0)
printf("%d \t", val[j]);

printf("} \n");
return count+1;

}

sol[pos] = 0;
count = powerset_1(val,sol,k,count,pos+1);
sol[pos] = 1;
count = powerset_1(val,sol,k,count,pos+1);
return count;

}

Termination condition

Iteration on 2 choices
substituted by 2 explicit calls

0: No object pos in 
powerset

Recur on pos+1

1: object pos in 
powerset

As arrangements with 
repetitions with the cycle

substituted by two explicit calls
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 Given the set S, we have to select k object from 
it varying k from 0 to n

 We select 0 object, then we select 1 object (all
possibility of 1 object), then we select 2 objects
(all possibile pairs), etc.

 Order does not matter (the powerset 123, 132, 
312, etc., are equivalent)

 Thus the core idea is the following

 Use simple combinations of |S| distinct objects of 
class k, with incresing values of k (k=0, …, |S|)

 In this case the recursive function generates the 
desired set (not an array of bits previously
generated)

The powerset: Solution 2
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 We must

 Union of the empty set and

 The powerset of size 1, 2, 3, …., k

 To compute the powerset, we use simple
combinations of k elements taken by groups of  n

 PowersetS = { ∅ } ∪ ⋃
!

�
�
���

 A wrapper function takes care of the union of 
empty set (not generated as a combination) and 
of iterating the recursive call to the function
computing combinations

Implementation
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Implementation

int powerset_2 (int *val, int *sol, int n){
int count, k;

count = 0;
for (k=1; k<=n; k++){

count += powerset_2_r (val,sol,n,k,0,0);
}

return count;
}

Iteration on recursive calls
(simple combinations)

Wrapper

Empty set Initially start = 0
(initial choice)

Initially pos = 0
(recursion level)
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Implementation

int powerset_2_r (int *val, int *sol,
int n, int k, int start, int pos) {

int count = 0, i;

if (pos >= k){
printf("{ ");
for (i=0; i<k; i++)

printf("%d ", sol[i]);
printf(" }\n");  
return 1;

}
for (i=start; i<n; i++){

sol[pos] = val[i];
count += powerset_2_r(val,sol,n,k,i+1,pos+1);

}
return count;

}

Print-out desired solution
(not an array of bits) 

Simple combination
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 Simple combinations can be used to generate a 
powerset of k objects extracted from the set S 

 Instead of re-calling simple combinations over and 
over again with increasing value of k we may use 
a divide and conquer approach

 The divide and conquer approach is based on the 
following formulation

 If k=0

● �-./01/23�
= {�}

 If k>0

● �-./01/23�
= {�-./01/23���� ��} ∪ {�-./01/23���}

The powerset: Solution 3

Terminal case:
empty set

Recursive case:
powerset for k-1 elements union either the 

k-th element sk or the empty set
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 In the simple combinations function

 We generate 2 distinct recursive branches

 The first one include the current element in the 
solution

 The second does not include it

 In sol we directly store the element, not a flag to 
indicate its presence/absence

 The value of index start is used to exclude
symmetrical solutions

 The return value count represents the total
number of sets

Implementation
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Implementation

int powerset_3(int *val, int *sol,
int k, int start, int count, int pos) {

int i;
if (start >= k) {

for (i=0; i<pos; i++)
printf("%d ", sol[i]);

printf("\n");
return count+1;

}
for (i=start; i<k; i++) {

sol[pos] = val[i];
count = powerset_3(val,sol,k,i+1,count,pos+1);

}
count = powerset_3(val,sol,k,k,count,pos);
return count;

} Do not add Sk

and recur

Add Sk and 
recur

For all elements
from start onwards
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 Given a set S of |S| elements, a collection S = 
{Si} of non empty blocks forms a partition only iff
both the following conditions hold

 Blocks are pairwise disjoint

 ∀ ��, �6 ∈ S   with i ≠ j then �� ∩ �6= ∅

 The union of those blocks is S

 � = ����

 The number of blocks k ranges

 From 1, in that case the block coincides with the 
set S

 To n, in that case each block contains only 1 
element of S 

Partitions of a set
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 Given the following set S generate all possibile 
partitions

 S = {1, 2, 3, 4 }

 Solution

 K=1

 1 partition: {1234}

 K=2

 7 partitions: {123, 4},  {124, 3} , {12, 34}, {134, 2}, {13, 
24}, {14, 23}, {1, 234}

 K=3

 6 partitions: {12, 3, 4},  {13, 2, 4} , {1, 23, 4}, {14, 2, 3}, 
{1, 24, 3}, {1, 2, 34}

 K=4

 4 partitions: {1}, {2}, {3}, {4}

Example

The order of the blocks and of the 
elements within each block doesn’t matter. 
As a consequence the 2 partitions {123, 4} 

AND {4, 312} are identical
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 Given the set S of cardinality n=|S|, it is possibile
to find

 All partitions in exactly k blocks, where k is a 
constant value

 This problem can be solved with arrangements with 
repetitions

 All partitions in k blocks, where k is a variable
value and it ranges between 1 and n

 This problem can be solved with arrangements with 
repetitions re-called for every value of k or with the 
Er’s algorithm (1987)

Problem
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 The total number of partitions of a set S of n 
objects is given by Bell’s numbers

 Bell’s number are defined by the following
recurrence equation

 B0 = 1

 Bn+1 =  ∑
�

!
�B!�

��	

 The first Bell numbers are

 B0 = 1, B1 = 1 , B2 = 2, B3 = 5 , B4 = 15 , B5 = 52, 
...

 Their search space is not modelled in terms of 
combinatorics

Number of partitions
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 To represent a partitions at least two approaches 
are possibile

 Given the element, identify the unique block it
belongs to

 Given the block, list the elements that belong to it

 First approach preferrable, as it works on an 
array of integers and not on lists

 Example

 S={1,2,3,4}, partition={14, 2, 3}

 Partitions are numbered from 0 to 3

Partition of a set S

1 2 3 4

0 1 2 0
1 ∈ partition 0

2 ∈ partition 1

4 ∈ partition 0

3 ∈ partition 2
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 To solve the first problem arrangements with 
repetitions are sufficient

 This is a generalization of the powerset problem
(solution 1)

 Instead of arranging only two values (0 and 1) on 
n positions we arrange k values

 Each value is (from 0 to k-1) will indicate the 
partition

 As we do not want to have empty partitions (we 
would generate less than k partitions)

 We must check whether all partitions are not 
empty once a solution has been generated

Problems
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 The number of objects stored in array val is n

 The number of decisions to take is n, thus array 
sol contains n cells

 The number of possible choices for each object is
the number of blocks, that ranges from 1 to k

 Each block is identified by an index i in the range 
from 0 to k-1

 sol[pos] contains the index i of the block to which 
the current object of index pos belongs

Implementation
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Solution

val = malloc (k*sizeof(int));
sol = malloc (k*sizeof(int));

pos

val

0

1

2

sol

0

1

2

Size k Size k

Don’t forget to 
check for NULL
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Solution

void arr_rep(int *val, int *sol,
int n, int k, int pos) {

int i, j, t, ok=1, *occ;
occ = calloc(n, sizeof(int))
if (pos >= n) {

for (j=0; j<n; j++) occ[sol[j]]++;
i=0;
while ((i < k) && ok) {

if (occ[i]==0) ok = 0;
i++;

}
if (ok == 0) return;
else { /*PRINT SOLUTION ... */ }

}
for (i=0; i<k; i++) {

sol[pos] = i;
arr_rep(val,sol,n,k,pos+1);

}
} Recur:

Simple arrangements

Discard solution

Print solution

Occurrence check

Occurrence computation

Block occurrence array


