

Recursion

Combinatorics

Paolo Camurati and Stefano Quer Dipartimento di Automatica e Informatica Politecnico di Torino

The search space may modelled as

- Addition and multiplication principles
- Simple arrangements
- > **Arrangements** with repetitions
- Simple permutations
- Permutations with repetition
- Simple combinations
- Combinations with repetitions
- Powerset
- Partitions

We are going to analyze an implementation frame/scheme for each one of these models

3

Model

Grouping criteria

- Given a group S of n elements, we can select k objects keeping into account
 - > Unicity
 - Are all elements in group S distinct?
 - Is thus S a set? Or is it a multiset?

- > Ordering
 - No matter a reordering, are 2 configurations the same?
- Repetitions
 - May the same object of a group be used several times within the same grouping?

✤ If a set S of objects is partitioned in pair-wise disjoint subsets {S₀, ..., S_{n-1}} such that
> S = S₀ ∪ S₁ ∪ ... S_{n-1}
and

 $ightarrow \forall i \neq j$, $S_i \cap S_j = \phi$

Basic principle: Addition

7

Alternative definition

- > If an object can be selected in $|S_0|$ ways from S_0 , in $|S_1|$ ways from S_1 , ..., in $|S_{n-1}|$ ways from S_{n-1}
- Then, selecting an object from any of the n groups may be performed in a number of ways equal to

•
$$\#$$
ways = $\sum_{i=0}^{n-1} |S_i|$

Example

8

In an university there are

> 4 Computer Science courses

and

5 Mathematics courses

A student can select just one course

In how many ways can a student choose?

Solution

- \succ Disjoint sets \Rightarrow
- Model: Principle of addition
- > Number of choices = 4 + 5 = 9

Basic principle: Multiplication

Alternative definition

- > If an object can be selected in $|S_0|$ ways from S_0 , in $|S_1|$ ways from S_1 , ..., in $|S_{n-1}|$ ways from S_{n-1}
- Then, the choice of a t-uple of objects (s₀ ... s_{n-1}) can be done in
 - #tuples = $n_0 \cdot n_1 \cdot n_2 \cdot \dots \cdot n_{n-1} = \prod_{i=0}^{n-1} |n_i|$

ways

In a restaurant a menu is served made of

- > Appetizers, 2 overall
- First course, 3 overall
- Second course, 2 overall
- Any customer can choose 1 appetizer, 1 first course, and 1 second course
- Problem
 - How many different menus can the restaurant offer?
 - How are these menu composed?

We want to count the number of solution and generate those solutions

11

Example

Solution

13

Choices are made in sequence

- > They are represented by a tree
- The number of choices
 - Is fixed for a level
 - Varies from level to level
- Nodes have a number of children that varies according to the level
 - Each one of the children is one of the choices at that level
 - The maximum number of children determines the degree of the tree
- > The tree's height is **n** (the number of groups)

Implementation

As far as the data-base is concerned

- There is a 1:1 matching between choices and a (possibly non contiguous) subset of integers
- Possible choices are stored in array val of size n containing structures of type Level
 - Each structure contains
 - An integer field **num_choice** for the number of choices at that level
 - An array *choices of num_choice integers storing the available choices
- A solution is represented as an array sol of n elements that stores the choices at each step

Variable count is the integer return value for the recursive function and counts the number of solutions

Implementation

```
int mult_princ (Level *val, int *sol,
                  int n, int count, int pos) {
  int i;
                                             Termination condition
  if (pos >= n) {
    for (i = 0; i < n; i++)
      printf("%d ", sol[i]);
    printf("\n");
                                             Iteration on n choices
    return count+1;
  for (i=0; i<val[pos].num_choice; i++) {</pre>
                                                        Choose
    sol[pos] = val[pos].choices[i];
    count = mult_princ (val,sol,n,count,pos+1);
  return count;
                     Passing pos+1 does not
                                              Recur
                       modify pos at this
                        recursione level
```

 A_1

 A_0

 M_{2}

S₁ S₂

Implementation

```
int mult_princ (...) {
    int i;
    if (pos >= n) {
        print ...
        return count+1;
    }
    for (i=0; i<val[pos].num_choice; i++) {
        sol[pos] = val[pos].choices[i];
        count = mult_princ (...);
    }
    return count;
}</pre>
```

M₂

M₁

S₁ S₄

Simple arrangements

21

Note that

> In simple arrangements objects are

- Distinct \Rightarrow the group is a set
- Ordered ⇒ order matters
- Simple ⇒ in each group there are exactly k non repeated objects

Two groupings differ

- Either because there is at least a different element
- Or because the ordering is different


```
val = malloc (n * sizeof(int));
mark = malloc (n * sizeof(int));
sol = malloc (k * sizeof(int));
```

Implementation

In order not to generate repeated elements

- > An array **mark** records already taken elements
 - mark[i]=0 implies that i-th element not yet taken, else 1
 - The cardinality of mark equals the number of elements in val (all distinct, being a set)
- While choosing
 - The i-th element is taken only if mark[i]==0, mark[i] is assigned with 1
- While backtracking
 - mark[i] is assigned with 0
- Array count records the number of solutions

Implementation

27

Arrangements with repetitions

Note that

> Arrangements with repetitions are

- Distinct \Rightarrow the group is a set
- Ordered ⇒ order matters
- As "simple" is not mentioned ⇒ in every grouping the same object can occur repeatedly at most k times
 - k may be > n

> Two groupings differ if one of them

- Contains at least an object that doesn't occur in the other group or
- Objects occur in different orders or
- Objects that occur in one grouping occur also in the other one but are repeated a different number of times

Model

- Each bit can take either value 0 or 1
- Arrangements with repetitions

•
$$D'_{2,4} = 2^4 = 16$$

Solution

Numbers = { 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111 }

Arrangements with repetitions

•
$$D'_{5,2} = n^k = 5^2 = 25$$

Solution

Strings = { **AA**, AE, AI, AO, AU, EA, **EE**, EI, EO, EU, IA, IE, **II**, IO, IU, OA, OE, OI, **OO**, OU, UA, UE, UI, UO, **UU** }

Simple Permutations

Note that

Simple permutation

- Distinct \Rightarrow the group is a set
- Ordered ⇒ order matters
- Simple ⇒ in each grouping there are exactly n non repeated objects

Two groups differ because

The elements are the same, but they appear in a different order

Solution

In order not to generate repeated elements

- > An array **mark** records already taken elements
 - mark[i]=0 implies that the i-th element not yet taken, else 1
 - The cardinality of mark equals the number of elements in val (all distinct, being a set)

While choosing

- The i-th element is taken only if mark[i]==0, mark[i] is assigned with 1
- During backtrack
 - mark[i] is assigned with 0
- Count stores the number of solutions

Permutations with repetitions

Note that

Permutation with repetetitions

- "distinct" not mentioned ⇒ the group is a multiset
- Permutations ⇒ order matters

Two groups differ

 Either because the elements are the same but are repeated a different number of times or because the order differs

Model: permutations with repetitions

•
$$P_3^{(2)} = \frac{n!}{(\alpha! \cdot \beta! \dots)} = \frac{3!}{2!} = 3$$

> Anagrams = { OOR, ORO, ROO }

As far as the data-base is concerned

- It is the same as for simple permutations, with these changes
 - **n** is the cardinality of the multiset
 - n_dist is the number of distinct elements of the multiset
 - val is the set of (n) elements in the multuise4t
 - val_dist is the set of (n_dist) distinct elements of the multiset
 - **count** stores the number of solutions
- Element val_dist[i] is taken if mark[i]> 0, mark[i] is decremented

Algorithms and Programming - Camurati & Quer

Simple combinations

Note that

Simple combinations

- Distinct \Rightarrow the group is a set
- Non ordered \Rightarrow order doesn't matter
- Simple ⇒ in each grouping there are exactly k non repeated objects

Two groups differ

Because there is at least a different element

Simple combinations = { 7204, 7201, 7241, 7041, 2041 }

- With respect to simple arrangements it is necessary to "force" one of the possible orderings
 - Index start determines from which value of val we start to fill-in sol
 - > Array
 - **val** is visited thanks to index **i** starting from **start**
 - sol is assigned starting from index pos with possible values of val from start onwards
 - Once value val[i] is assigned to sol, recur with i+1 and pos+1
 - mark is not needed
 - Variable count stores the number of solutions

Combinations with repetitions

Note that

Combinations with repetitions

- Distinct \Rightarrow the group is a set
- Non ordered ⇒ order doesn't matter
- "Simple " not mentioned ⇒ in each grouping the same object may occur repeatedly at most k times
- k may be > n

Two groups differ if

- One of them contains at least an object that doen't occur in the other one
- The objects that appear in one group appear also in the other one but are repeated a different number of times

- Combinations with repetitions
- Solution

$$\succ C_{6,2}' = \binom{n+k-1}{k} = \frac{(n+k-1)!}{k! \cdot (n-1)!} = \frac{(6+2-1)!}{2! \cdot (6-1)!} = 21$$

Compositions = { 11, 12, 13, 14, 15, 16, 22, 23, 24, 25, 26, 33, 34, 35, 36, 44, 45, 46, 55, 56, 66 }

The powerset: Solution 1

- With the arrangements with repetition model the core idea is the following one
 - Each one of the |S| objects of the set are paired with a binary digit
 - If the value of this digit is 0 the object is **not** inserted in the powerset
 - If the value of this digit is 1 the object is inserted in the powerset
 - Thus we have to arrange two values (0 and 1) on n positions
 - The computed array will tell which elements have to be selected within the powerset

We must

- > Union of the empty set and
- The powerset of size 1, 2, 3, ..., k
- To compute the powerset, we use simple combinations of k elements taken by groups of n

> Powerset_S = { \emptyset } \cup $\bigcup_{n=1}^{k} \binom{k}{n}$

A wrapper function takes care of the union of empty set (not generated as a combination) and of iterating the recursive call to the function computing combinations

The powerset: Solution 3

- Simple combinations can be used to generate a powerset of k objects extracted from the set S
 - Instead of re-calling simple combinations over and over again with increasing value of k we may use a divide and conquer approach
 - The divide and conquer approach is based on the following formulation

In the simple combinations function

- > We generate 2 distinct recursive branches
 - The first one include the current element in the solution
 - The second does not include it
- In sol we directly store the element, not a flag to indicate its presence/absence
- The value of index start is used to exclude symmetrical solutions
- The return value count represents the total number of sets
Algorithms and Programming - Camurati & Quer

Implementation

Implementation

80

- The number of objects stored in array val is n
 - The number of decisions to take is n, thus array sol contains n cells
 - The number of possible choices for each object is the number of blocks, that ranges from 1 to k
 - Each block is identified by an index i in the range from 0 to k-1
 - sol[pos] contains the index i of the block to which the current object of index pos belongs

Algorithms and Programming - Camurati & Quer

Solution

82

