

Recursion

## Combinatorics

Paolo Camurati and Stefano Quer Dipartimento di Automatica e Informatica

Politecnico di Torino

## Definition

Combinatorics is a topic of the course in Mathematical Methods for Engineering

- Combinatorics
$>$ Count on how many subsets of a given set a property holds
> Determines in how many ways the elements of a same group may be associated according to predefined rules
. In problem-solving we need to enumerate the ways, not only to count them
* The search space may modelled as
> Addition and multiplication principles
> Simple arrangements
$>$ Arrangements with repetitions
> Simple permutations
$>$ Permutations with repetition
> Simple combinations
$>$ Combinations with repetitions
> Powerset
> Partitions

We are going to analyze an implementation frame/scheme for each one of these models

## Grouping criteria

* Given a group S of n elements, we can select k objects keeping into account
> Unicity
- Are all elements in group S distinct?
- Is thus S a set? Or is it a multiset?
$>$ Ordering
- No matter a reordering, are 2 configurations the same?
$>$ Repetitions
- May the same object of a group be used several times within the same grouping?


## Basic principle: Addition



* If a set S of objects is partitioned in pair-wise disjoint subsets $\left\{S_{0}, \ldots, S_{n-1}\right\}$ such that

$$
\begin{aligned}
& >S=S_{0} \cup S_{1} \cup \ldots S_{n-1} \\
& \text { and }
\end{aligned}
$$

$$
>\forall \mathrm{i} \neq \mathrm{j}, \mathrm{~S}_{\mathrm{i}} \cap \mathrm{~S}_{\mathrm{j}}=\phi
$$

## Basic principle: Addition

## * Definition

$>$ The number of objects in S may be determined adding the number of objects of each of the sets $\left\{\mathrm{S}_{0}, \ldots, \mathrm{~S}_{\mathrm{n}-1}\right\}$

- $|S|=\sum_{i=0}^{n-1}\left|S_{i}\right|$



## Basic principle: Addition

* Alternative definition
$>$ If an object can be selected in $\left|\mathrm{S}_{0}\right|$ ways from $\mathrm{S}_{0}$, in $\left|S_{1}\right|$ ways from $S_{1}, \ldots$, in $\left|S_{n-1}\right|$ ways from $S_{n-1}$
$>$ Then, selecting an object from any of the n groups may be performed in a number of ways equal to
- \#ways $=\sum_{i=0}^{n-1}\left|S_{i}\right|$



## Example

* In an university there are
> 4 Computer Science courses
and
> 5 Mathematics courses
* A student can select just one course
- In how many ways can a student choose?
* Solution
$>$ Disjoint sets $\Rightarrow$
> Model: Principle of addition
$>$ Number of choices $=4+5=9$


## Basic principle: Multiplication



* Given
$>\mathrm{n}$ sets $\mathrm{S}_{\mathrm{i}}(0 \leq \mathrm{i}<\mathrm{n})$, each one of cardinality $\left|\mathrm{S}_{\mathrm{i}}\right|$
$>$ The number of ordered $t$-uples $\left(\mathrm{s}_{0} \ldots \mathrm{~s}_{\mathrm{n}-1}\right)$ with

$$
-s_{0} \in S_{0} \ldots s_{n-1} \in S_{n-1}
$$

is

- \#tuples $=\prod_{i=0}^{n-1}\left|S_{i}\right|$


## Basic principle: Multiplication

* Alternative definition
$>$ If an object can be selected in $\left|\mathrm{S}_{0}\right|$ ways from $\mathrm{S}_{0}$, in $\left|S_{1}\right|$ ways from $S_{1}, \ldots$, in $\left|S_{n-1}\right|$ ways from $S_{n-1}$
$>$ Then, the choice of a t-uple of objects $\left(\mathrm{S}_{0} \ldots \mathrm{~S}_{\mathrm{n}-1}\right)$ can be done in
- \#tuples $=n_{0} \cdot n_{1} \cdot n_{2} \cdots \cdot n_{n-1}=\prod_{i=0}^{n-1}\left|n_{i}\right|$
ways

```
#tuples = \i=0
```


## Example

* In a restaurant a menu is served made of
> Appetizers, 2 overall
$\rightarrow$ First course, 3 overall
> Second course, 2 overall
* Any customer can choose 1 appetizer, 1 first course, and 1 second course
* Problem
> How many different menus can the restaurant offer?
$>$ How are these menu composed?


## Solution

## Model

> Principle of multiplication

```
    2 appetizers ( }\mp@subsup{A}{0}{\prime},\mp@subsup{A}{1}{}
3 main courses (M0, M1, M2)
    2 second courses (S S, S )
                                    ( }\textrm{n}=\textrm{k}=3\mathrm{ )
```

$>$ \#menus $=2 \times 3 \times 2=12$

- menus $=\left\{\left(A_{0}, M_{0}, S_{0}\right),\left(A_{0}, M_{0}, S_{1}\right),\left(A_{0}, M_{1}, S_{0}\right),\left(A_{0}, M_{1}, S_{1}\right)\right.$, $\left(A_{0}, M_{2}, S_{0}\right),\left(A_{0}, M_{2}, S_{1}\right),\left(A_{1}, M 0, S_{0}\right),\left(A_{1}, M_{0}, S_{1}\right),\left(A_{1}, M_{1}, S_{0}\right)$, $\left.\left(A_{1}, M_{1}, S_{1}\right),\left(A_{1}, M_{2}, S_{0}\right),\left(A_{1}, M_{2}, S_{1}\right)\right\}$



## Solution

## Choices are made in sequence

$>$ They are represented by a tree
$>$ The number of choices

- Is fixed for a level
- Varies from level to level
> Nodes have a number of children that varies according to the level
- Each one of the children is one of the choices at that level
- The maximum number of children determines the degree of the tree
$>$ The tree's height is $\mathbf{n}$ (the number of groups)


## Solution

* Given the recursion tree, solutions are the labels of the edges along each path from root to node
$>$ The goal is to enumerate all solutions, searching their space
- All solutions are valid
- Each new recursive call increases the size of the solution
- The total number of recursive calls along each path is equal to $n$
$>$ Termination
- Size of current solution equals final desired size n



## Implementation

* As far as the data-base is concerned
$>$ There is a $1: 1$ matching between choices and a (possibly non contiguous) subset of integers
$>$ Possible choices are stored in array val of size $\mathbf{n}$ containing structures of type Level
- Each structure contains
- An integer field num_choice for the number of choices at that level
- An array * choices of num_choice integers storing the available choices
$>$ A solution is represented as an array sol of $\mathbf{n}$ elements that stores the choices at each step


## Implementation

* As far as the recursive function is concerned
> At each step index pos indicates the size of the partial solution
- If pos>=n a solution has been found
$>$ The recursive step iterates on possible choices for the current value of pos
- The contents of sol[pos] is taken from val[pos].choices[i] extending each time the solution's size by 1 and recurs on the pos+1-th choice
$>$ Variable count is the integer return value for the recursive function and counts the number of solutions


## Implementation

```
int mult_princ (Level *val, int *sol,
    int n, int count, int pos) {
    int i;
```

    if (pos >= n) \{
        for (i = 0; \(\mathrm{i}<\mathrm{n}\); \(\mathrm{i}+\mathrm{+}\) )
            printf("\%d ", sol[i]);
        printf("\n");
        return count+1;
    \}
    for (i=0; i<val[pos].num_choice; i++) \{
        sol[pos] = val[pos].choices[i];
        count = mult_princ (val,sol,n, count,pos+1);
    \}
    return count;
    \}

Passing pos+1 does not modify pos at this


Iteration on n choices
Choose

## Implementation



```
int mult_princ (...) {
    int i;
    if (pos >= n) {
        print ...
        return count+1;
    }
    for (i=0; i<val[pos].num_choice; i++) {
        sol[pos] = val[pos].choices[i];
        count = mult_princ (...);
    }
    return count;
}
```


## Simple arrangements

Simple means no
Distinct means it
repetitions

* A simple arrangement $D_{n, k}$ of $n$ distinct objects of class $k$ is an ordered subset composed by $k$ out of $n$ objects ( $0 \leq k \leq n$ )
* The number of simple arrangements of $n$ objects k by k is
$>D_{n, k}=\mathrm{n} \cdot(\mathrm{n}-1) \cdot \ldots \ldots \cdot(\mathrm{n}-\mathrm{k}+1)=\frac{n!}{(n-k)!}$

> I select an object out of $n$, then I select an object out of the $n-1$ remaining, etc.

## Simple arrangements

* Note that
> In simple arrangements objects are
- Distinct $\Rightarrow$ the group is a set
- Ordered $\Rightarrow$ order matters
- Simple $\Rightarrow$ in each group there are exactly $k$ non repeated objects
$>$ Two groupings differ
- Either because there is at least a different element
- Or because the ordering is different


## Example

* How many and which are the numbers on 2 distinct digits composed with digits 4, 9, 1 and 0 ?

No repeated digits

$$
\mathrm{val}=\{4,9,1,0\}
$$

$$
n=4
$$

$>$ Model

- Simple arrangements
- $\mathrm{D}_{4,2}=\frac{n!}{(n-k)!}=\frac{4!}{(4-2)!}=4 \cdot 3=12$
$>$ Solution
- Numbers $=\{49,41,40,94,91,90,14,19,10,04$, 09, 01 \}


## Example

* How many strings of 2 characters can be formed selecting chars within the group of 5 vowels $\{\mathrm{A}, \mathrm{E}, \mathrm{I}, \mathrm{O}, \mathrm{U}\}$ ?
$>$ Model

$$
\operatorname{val}=\{A, E, I, O, U\}
$$

No repeated
$\mathrm{n}=5$

- Simple arrangements
- $\mathrm{D}_{5,2}=\frac{n!}{(n-k)!}=\frac{5!}{(5-2)!}=5 \cdot 4=20$
$>$ Solution
- Strings = \{ AE, AI, AO, AU, EA, EI, EO, EU, IA, IE, IO, IU, OA, OE, OI, OU, UA, UE, UI, UO \}
> Solution
- Strings = \{ AE, AI, AO, AU, EA, EI, EO, EU, IA, IE, IO, IU, OA, OE, OI, OU, UA, UE, UI, UO \}



## Implementation



```
val = malloc (n * sizeof(int));
mark = malloc (n * sizeof(int));
sol = malloc (k * sizeof(int));
```


## Implementation

* In order not to generate repeated elements
> An array mark records already taken elements
- mark $[i]=\mathbf{0}$ implies that i-th element not yet taken, else 1
- The cardinality of mark equals the number of elements in val (all distinct, being a set)
$>$ While choosing
- The i-th element is taken only if mark[i]==0, mark[i] is assigned with 1
$>$ While backtracking
- mark[i] is assigned with 0
$>$ Array count records the number of solutions


## Implementation

```
int arr (int *val, int *sol, int *mark,
        int n, int k, int count, int pos){
    int i;
```

    if (pos >= k) \{
                                    Termination condition
        for (i=0; \(i<k ; i++)\)
            printf("\%d ", sol[i]);
        printf("\n");
        return count+1;
    \}
    for (i=0; i<n; i++) \{
        if (mark[i] == 0) \{
        Mark and choose
            mark[i] = 1;
            sol[pos] = val[i];
            count \(=\) arr (val,sol,mark, \(n, k\), count, pos+1);
            mark[i] \(=0\);
        \}
    \}
    return count;
                                Unmark
                                Recur
    \}

## Arrangements with repetitions

Set

* An arrangement with repetitions $D_{n, k}^{\prime}$ of $n$ distinct objects of class $k$ ( $k$ by $k$ ) is an ordered_subset composed of $k$ out of $n$ objects ( $0 \leq k$ ) each of whom may be taken up to $k$ times
* The number of arrangements with repetitions of $n$ objects taken k by k is
$>\mathrm{D}_{\mathrm{n}, \mathrm{k}}^{\prime}=\mathrm{n} \cdot \mathrm{n} \cdot \ldots \ldots \cdot \mathrm{n}=\mathrm{n}^{\mathrm{k}}$

```
I select an object out of n,
then I select an object out
    of n, etc.
```


## Arrangements with repetitions

* Note that
$>$ Arrangements with repetitions are
- Distinct $\Rightarrow$ the group is a set
- Ordered $\Rightarrow$ order matters
- As "simple" is not mentioned $\Rightarrow$ in every grouping the same object can occur repeatedly at most $k$ times
- k may be > n
$>$ Two groupings differ if one of them
- Contains at least an object that doesn't occur in the other group or
- Objects occur in different orders or
- Objects that occur in one grouping occur also in the other one but are repeated a different number of times


## Example

Positional representation:
order matters!

$$
n=4
$$

* How many binary numbers can be created with 4 bits?

$$
\mathrm{k}=2, \mathrm{val}=\{0,1\} \text {, repeated digits }
$$

$>$ Model

- Each bit can take either value 0 or 1
- Arrangements with repetitions
- $D_{2,4}^{\prime}=2^{4}=16$
$>$ Solution
- Numbers = \{ 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111 \}


## Example

Positional representation:
order matters!

$$
k=2
$$

* How many strings of 2 characters can be formed selecting chars with repetitions within the group of 5 vowels $\{A, E, I, O, U\}$ ?

$$
\mathrm{n}=5, \mathrm{val}=\{\mathrm{A}, \mathrm{E}, \mathrm{I}, \mathrm{O}, \mathrm{U}\}
$$

$>$ Model

- Arrangements with repetitions
- $D_{5,2}^{\prime}=n^{k}=5^{2}=25$
$>$ Solution
- Strings = \{ AA, AE, AI, AO, AU, EA, EE, EI, EO, EU, IA, IE, II, IO, IU, OA, OE, OI, OO, OU, UA, UE, UI, UO, UU \}
*ach element can be repeated up to $\mathbf{k}$ times
$>$ There in no bound on $\mathbf{k}$ imposed by $\mathbf{n}$
$\Rightarrow$ For each position we enumerate all possible choices
$\rightarrow$ Array count stores the number of solutions

principle but with


## Implementation

 the same set
## int arr_rep (int *val, int *sol,

 int $n$, int $k$, int count, int pos) \{int i;
if (pos >= k) \{ for (i=0; i<k; i++)
printf("\%d ", sol[i]); printf("\n");
return count+1;
\}
for ( $i=0 ; i<n ; i++$ ) $\{$
Choose
sol[pos] = val[i];
count $=$ arr_rep (val, sol, $n, k$, count, pos+1);
\}
return count;
\}

* A simple arrangement $D_{n, n}$ of $n$ distinct objects of class $n\left(n\right.$ by $n$ ) is a simple permutation $P_{n}$
$>$ A simple permutation is an ordered subset made of n objects


The number of simple permutations of $n$ objects is

$$
>P_{n}=D_{n, n}=n \cdot(n-1) \cdot \ldots \ldots \cdot \cdot(n-n+1)=n!
$$

## Simple Permutations

* Note that
> Simple permutation
- Distinct $\Rightarrow$ the group is a set
- Ordered $\Rightarrow$ order matters
- Simple $\Rightarrow$ in each grouping there are exactly n non repeated objects
$>$ Two groups differ because
- The elements are the same, but they appear in a different order


## Example

Positional representation:
order matters!

$$
\text { val }=\{1,2,3\}
$$

Given a set val of 3 integers, generate all possible numbers containing these 3 digits once

* Solution
> Model
- Simple permutations
$>$ The number of permutations is
- $P_{3}=n!=3!=6$
$>$ Permutations $=\{123,132,213,312,231,321\}$


## Example

Positional representation: order matters!

$$
\mathrm{val}=\{\mathrm{O}, \mathrm{R}, \mathrm{~A}\}
$$

* How many and which are the anagrams of the string ORA (string of 3 distinct letters)?

$$
n=3
$$

* Solution
> Model
- Simple permutations
$>$ The number of permutations is
- $P_{3}=n!=3!=6$
$>$ Anagrams $=\{$ ORA, OAR, ROA, AOR, RAO, ARO \}


## Implementation


sol


## Don't forget to check for NULL

Size n

```
val = malloc (n * sizeof(int));
sol = malloc (n * sizeof(int));
mark = malloc (n * sizeof(int));
```


## Solution

* In order not to generate repeated elements
> An array mark records already taken elements
- mark[i]=0 implies that the i-th element not yet taken, else 1
- The cardinality of mark equals the number of elements in val (all distinct, being a set)
$>$ While choosing
- The i-th element is taken only if mark[i]==0, mark[i] is assigned with 1
> During backtrack
- mark[i] is assigned with 0
$>$ Count stores the number of solutions

As simple arrangements

Implementation
with $\mathbf{k}==\mathbf{n}$

```
int perm (int *val, int *sol, int *mark,
            int n, int count, int pos){
```

    int i;
    if (pos >= n) \{
                                    Termination condition
        for (i=0; i<n; i++)
            printf("\%d ", sol[i]);
        printf("\n");
        return count+1; Iteration on \(n\) choices
    \}
    for ( \(i=0 ; i<n ; i++\) )
        if (mark[i] == 0) \{
            mark[i] = 1;
                        Mark and choose
            sol[pos] = val[i];
            count \(=\) perm(val,sol,mark, \(n\), count, pos+1);
            mark[i] \(=0\);
    \}
    return count;
    \}

## Permutations with repetitions

```
Repeated
elements
```

* Given a set (multiset) of $n$ objects among which
$>\alpha$ objects are identical
> $\beta$ objects are identical
$>$ etc.

the number of distinct permutations with repeated objects is

$$
>P_{n}^{(\alpha, \beta, . .)}=\frac{n!}{(\alpha!\cdot \beta!\ldots)}
$$

From permutation

$$
P_{n}=n!
$$

divided by the permutations of the repeated objects

## * Note that

> Permutation with repetetitions

- "distinct" not mentioned $\Rightarrow$ the group is a multiset
- Permutations $\Rightarrow$ order matters
> Two groups differ
- Either because the elements are the same but are repeated a different number of times or because the order differs


## Example

Positional representation: order matters!

* How many and which are the distinct anagrams of string ORO (string of 3 characters, 2 being identical)?

$$
n=3
$$

$$
\alpha=2
$$

- Solution
> Model: permutations with repetitions
- $P_{3}^{(2)}=\frac{n!}{(\alpha!\cdot \beta!\ldots)}=\frac{3!}{2!}=3$
$>$ Anagrams $=\{$ OOR, ORO, ROO $\}$



## Implementation

* As far as the data-base is concerned
> It is the same as for simple permutations, with these changes
- $\mathbf{n}$ is the cardinality of the multiset
- n_dist is the number of distinct elements of the multiset
- val is the set of (n) elements in the multuise4t
- val_dist is the set of (n_dist) distinct elements of the multiset
- count stores the number of solutions
$>$ Element val_dist[i] is taken if mark[i]>0, mark[i] is decremented

As simple arrangements but mark is an array of

## Implementation

```
int perm_rep (int *val_dist, int *sol, int *mark,
    int n, int n_dist, int count, int pos) {
    int i;
    if (pos >= n) {
        for (i=0; i<n; i++)
            printf("%d ", sol[i]);
        printf("\n");
        return count+1; Iteration on n_dist choices
    }
    for (i=0; i<n_dist; i++) {
        if (mark[i] > 0) {
            mark[i]--;
            sol[pos] = val_dist[i];
                    Mark and choose
            count = perm_rep (
                    val_dist, sol,mark, n, n_dist, count, pos+1);
            mark[i]++;
        }
    }
    return count;
}

\section*{Simple combinations}

No repetitions
* A simple combination \(C_{n, k}\) of \(n\) distinct objects of class \(k\) ( \(k\) by \(k\) ) is a non ordered subset composed by \(k\) of \(n\) objects \((0 \leq k \leq n)\)
```

Set

```


\section*{Simple combinations}
* The number of combinations of \(n\) elements \(k\) by \(k\) equals the number of arrangements of \(n\) elements \(k\) by \(k\) divided by the number of permutations of \(k\) elements
\[
>C_{n, k}=\frac{D_{n, k}}{P_{k}}=\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!}
\]

> Binomial coefficient ( \(n\) choose \(k, k \leq n\) )

\section*{Simple combinations}
* Note that
> Simple combinations
- Distinct \(\Rightarrow\) the group is a set
- Non ordered \(\Rightarrow\) order doesn't matter
- Simple \(\Rightarrow\) in each grouping there are exactly \(k\) non repeated objects
\(>\) Two groups differ
- Because there is at least a different element
\[
k=3
\]
* How many sets of 3 characters can be formed with the 4 characters \(\{A, B, C, D\}\) ?
* Model
\[
\text { val }=\{A, B, C, D\}, n=4
\]
> Simple combinations
* Solution
\(>C_{n, k}=\binom{n}{k}=\binom{4}{3}=\frac{n!}{k!\cdot(n-k)!}=\frac{4!}{3!\cdot 1!}=4\)
\(>\) Simple combinations \(=\{A B C, A B D, A C D, B C D\}\)

\section*{Example}

Order does not matter
\[
k=4
\]
* How many sets of 4 digits can be formed with the 5 digits \(\{7,2,0,4,1\}\) ?
* Model
\[
\mathrm{val}=\{7,2,0,4,1\}, \mathrm{n}=5
\]
> Simple combinations
* Solution
\(>C_{n, k}=\binom{n}{k}=\binom{5}{4}=\frac{n!}{k!\cdot(n-k)!}=\frac{5!}{4!\cdot 1!}=5\)
\(>\) Simple combinations \(=\{7204,7201,7241,7041\), 2041 \}


\section*{Implementation}

With respect to simple arrangements it is necessary to "force" one of the possible orderings
\(>\) Index start determines from which value of val we start to fill-in sol
- Array
- val is visited thanks to index i starting from start
- sol is assigned starting from index pos with possible values of val from start onwards
- Once value val[i] is assigned to sol, recur with i+1 and pos+1
- mark is not needed
\(>\) Variable count stores the number of solutions


\section*{Combinations with repetitions}

No upper bound

* A combination with repetitions \(C_{n, k}^{\prime}\) of n distinct objects of class \(k\) ( \(k\) by \(k\) ) is a non ordered subset made of \(k\) of the \(n\) objects \((k \geq 0)\)

Order does not matter
\(>\) Each object may be taken at most \(k\) times
* The number of combinations with repetitions of \(n\) objects k by k is
\(>C_{n, k}^{\prime}=\binom{n+\mathrm{k}-1}{k}=\binom{n+\mathrm{k}-1}{n-1}=\frac{(n+k-1)!}{k!\cdot(n-1)!}\)

\section*{Combinations with repetitions}

\section*{* Note that}
> Combinations with repetitions
- Distinct \(\Rightarrow\) the group is a set
- Non ordered \(\Rightarrow\) order doesn't matter
- "Simple " not mentioned \(\Rightarrow\) in each grouping the same object may occur repeatedly at most \(k\) times
- k may be > n
\(>\) Two groups differ if
- One of them contains at least an object that doen't occur in the other one
- The objects that appear in one group appear also in the other one but are repeated a different number of times

\section*{Example}

Order does not matters!
\[
\mathrm{n}=6
\]

When simultaneously casting two dice, how many compositions of values may appear on 2 faces?
* Model
> Combinations with repetitions
* Solution
\(>C_{6,2}^{\prime}=\binom{n+\mathrm{k}-1}{k}=\frac{(n+k-1)!}{k!\cdot(n-1)!}=\frac{(6+2-1)!}{2!\cdot(6-1)!}=21\)
\(>\) Compositions \(=\{11,12,13,14,15,16,22,23\), \(24,25,26,33,34,35,36,44,45,46,55,56,66\}\)
* Same as simple combinations, but
\(>\) Recursion occurs only for pos+1 and not for i+1
\(>\) Index start is incremented each time the for loop on choices
\(>\) count records the number of solutions


* Given a set S, its powerset is the set of the subsets of \(S\), including \(S\) itself and the empty set
- Example
\(>S=\{1,2,3,4\}\)
\(>\mathrm{k}=4\)
\(>\) Powerset \(_{\text {s }}=\{\varnothing, 4,3,34,2,24,23,234,1,14\), \(13,134,12,124,123,1234\}\)

The powerset can be computed using 3 different models
\(>\) Arrangements with repetitions
> Simple combinations
- Re-activating the procedure k times
\(>\) Simple combinations
- Adopting a divide and conquer strategy

\section*{The powerset: Solution 1}
* With the arrangements with repetition model the core idea is the following one
> Each one of the \(|S|\) objects of the set are paired with a binary digit
- If the value of this digit is 0 the object is not inserted in the powerset
- If the value of this digit is 1 the object is inserted in the powerset
> Thus we have to arrange two values ( 0 and 1 ) on n positions
- The computed array will tell which elements have to be selected within the powerset

\section*{Implementation}


\section*{Implementation}
* Each subset is represented by the sol array having \(\mathbf{k}\) elements
\(>\) Each element represent the set of possible choices, thus 0 and 1 (thus and \(n=2\) in the arrangements with repetition scheme)
\(>\) The for loop is replaced by 2 explicit assignments
\(>\) If
- sol[pos]=0 if the pos-th object doesn't belong to the subset
- sol[pos]=1 if the pos-th object belongs to the subset
\(>0\) and 1 may appear several times in the same solution


\section*{The powerset: Solution 2}
* Given the set S, we have to select k object from it varying k from 0 to \(n\)
\(>\) We select 0 object, then we select 1 object (all possibility of 1 object), then we select 2 objects (all possibile pairs), etc.
\(>\) Order does not matter (the powerset 123, 132, 312 , etc., are equivalent)
* Thus the core idea is the following
\(>\) Use simple combinations of \(|S|\) distinct objects of class \(k\), with incresing values of \(k(k=0, \ldots,|S|)\)
\(>\) In this case the recursive function generates the desired set (not an array of bits previously generated)

\section*{Implementation}
* We must
\(>\) Union of the empty set and
\(>\) The powerset of size \(1,2,3, \ldots, k\)
* To compute the powerset, we use simple combinations of \(k\) elements taken by groups of \(n\)
\(\Rightarrow\) Powerset \(_{s}=\{\varnothing\} \cup \cup_{n=1}^{k}\binom{k}{n}\)
* A wrapper function takes care of the union of empty set (not generated as a combination) and of iterating the recursive call to the function computing combinations

\section*{Implementation}


Simple combination

\section*{Implementation}
int powerset_2_r (int *val, int *sol, int n , int k , int start, int pos) \(\{\)
int count \(=0, i ;\)
if (pos >= k) \{ printf("\{ "); for ( \(i=0 ; i<k ; i++\) )

Print-out desired solution
(not an array of bits)
            printf("\%d ", sol[i]);
        printf(" \}\n");
        return 1;
    \}
    for (i=start; i<n; i++) \{
        sol[pos] = val[i];
        count += powerset_2_r(val,sol,n,k,i+1,pos+1);
    \}
    return count;
\}

\section*{The powerset: Solution 3}
* Simple combinations can be used to generate a powerset of \(k\) objects extracted from the set S
> Instead of re-calling simple combinations over and over again with increasing value of \(k\) we may use a divide and conquer approach
\(>\) The divide and conquer approach is based on the following formulation
- If \(\mathrm{k}=0\)
- Powerset \(_{S_{k}}=\{\varnothing\}\)

- If k>0
- Powerset \(_{S_{k}}=\left\{\right.\) Powerset \(\left._{S_{k}-1} \cup S_{k}\right\} \cup\left\{\right.\) Powerset \(\left._{S_{k}-1}\right\}\)

\section*{Implementation}
* In the simple combinations function
\(>\) We generate 2 distinct recursive branches
- The first one include the current element in the solution
- The second does not include it
* In sol we directly store the element, not a flag to indicate its presence/absence
* The value of index start is used to exclude symmetrical solutions
* The return value count represents the total number of sets

\section*{Implementation}
```

int powerset_3(int *val, int *sol,
int k, int start, int count, int pos) {
int i;
if (start >= k) {
for (i=0; i<pos; i++)
printf("%d ", sol[i]);
printf("\n");
return count+1;
}
for (i=start; i<k; i++) {
sol[pos] = val[i];
count = powerset_3(val,sol,k,i+1,count,pos+1);
}
count = powerset_3(val,sol,k,k,count,pos);
return count;
}

## Partitions of a set

* Given a set S of $|\mathrm{S}|$ elements, a collection $\mathrm{S}=$ \{Si\} of non empty blocks forms a partition only iff both the following conditions hold
> Blocks are pairwise disjoint
- $\forall S_{i}, S_{j} \in \mathrm{~S}$ with $\mathbf{i} \neq \mathbf{j}$ then $S_{i} \cap S_{j}=\varnothing$
$>$ The union of those blocks is S
- $S=\cup_{i} S_{i}$
*The number of blocks $k$ ranges
$>$ From 1, in that case the block coincides with the set S
$>$ To $n$, in that case each block contains only 1 element of $S$


## Example

* Given the following set S generate all possibile partitions
$>S=\{1,2,3,4\}$
- Solution
$>\mathrm{K}=1$
- 1 partition: \{1234\}
$>\mathrm{K}=2$
- 7 partitions: $\{123,4\},\{124,3\},\{12,34\},\{134,2\},\{13$, 24\}, \{14, 23\}, \{1, 234\}
$>\mathrm{K}=3$
- 6 partitions: $\{12,3,4\},\{13,2,4\},\{1,23,4\},\{14,2,3\}$, $\{1,24,3\},\{1,2,34\}$
$>\mathrm{K}=4$
- 4 partitions: $\{1\},\{2\},\{3\},\{4\}$
* Given the set $S$ of cardinality $n=|S|$, it is possibile to find
- All partitions in exactly k blocks, where k is a constant value
- This problem can be solved with arrangements with repetitions
$\Rightarrow$ All partitions in k blocks, where k is a variable value and it ranges between 1 and $n$
- This problem can be solved with arrangements with repetitions re-called for every value of $k$ or with the Er's algorithm (1987)


## Number of partitions

* The total number of partitions of a set $S$ of $n$ objects is given by Bell's numbers
* Bell's number are defined by the following recurrence equation
$>\mathrm{B}_{0}=1$
$>\mathrm{B}_{\mathrm{n}+1}=\sum_{k=0}^{n}\binom{n}{k} \cdot \mathrm{~B} k$
* The first Bell numbers are
$>\mathrm{B}_{0}=1, \mathrm{~B}_{1}=1, \mathrm{~B}_{2}=2, \mathrm{~B}_{3}=5, \mathrm{~B}_{4}=15, \mathrm{~B}_{5}=52$,
* Their search space is not modelled in terms of combinatorics


## Partition of a set S

* To represent a partitions at least two approaches are possibile
$>$ Given the element, identify the unique block it belongs to
$>$ Given the block, list the elements that belong to it
First approach preferrable, as it works on an array of integers and not on lists
> Example
- $S=\{1,2,3,4\}$, partition $=\{14,2,3\}$
- Partitions are numbered from 0 to 3

* To solve the first problem arrangements with repetitions are sufficient
> This is a generalization of the powerset problem (solution 1)
$>$ Instead of arranging only two values ( 0 and 1 ) on n positions we arrange k values
$>$ Each value is (from 0 to $k-1$ ) will indicate the partition
* As we do not want to have empty partitions (we would generate less than $k$ partitions)
$>$ We must check whether all partitions are not empty once a solution has been generated


## Implementation

* The number of objects stored in array val is $\mathbf{n}$
$>$ The number of decisions to take is $\mathbf{n}$, thus array sol contains $n$ cells
$>$ The number of possible choices for each object is the number of blocks, that ranges from $\mathbf{1}$ to $\mathbf{k}$
$>$ Each block is identified by an index $\mathbf{i}$ in the range from $\mathbf{0}$ to $\mathbf{k - 1}$
$>$ sol[pos] contains the index i of the block to which the current object of index pos belongs


## Solution



## Solution

```
void arr_rep(int *val, int *sol,
            int n, int k, int pos) {
    int i, j, t, ok=1, *Occ;
    occ = calloc(n, sizeof(int))
    if (pos >= n) {
        for (j=0; j<n; j++) occ[sol[j]]++;
        i=0;
        while ((i < k) && ok) {
            if (occ[i]==0) ok = 0;
                i++;
        }
        if (ok == 0) return;
                            Discard solution
        else { /*PRINT SOLUTION ... */ }
    }
    for (i=0; i<k; i++) {
        sol[pos] = i;
        arr_rep(val,sol,n,k,pos+1);
    }
}```

