
Recursion

Mechanisms
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2Algorithms and Programming – Camurati & Quer

The stack
The stack was previously introduced in

the discrete mathematics unit

 In computer science a stack in an Abstract Data
Type (ADT) that serves as a collection of
elements

 A stack supports the following operations

 Push

 Insert object on top

 Pop

 Read and delete from top the last-inserted object

 This reading/writing strategy is called LIFO (Last-
In First-Out)

3Algorithms and Programming – Camurati & Quer

The stack

 A programmer can implement its own stacks

 The operating system (or any application) can
use its own stack as well

 At the C language level, the stack is the data
structure containing at least

 Formal parameters

 Local variables

 The return address when the function execution is
over

 The pointer to the function’s code

4Algorithms and Programming – Camurati & Quer

 All these pieces of data form a stack frame

 A new stack frame is created when the function is
called and the same stack frame is destroyed when
the function is over

 Stack frames are stored in the system stack

 The system stack has a predefined amount of
memory available

 When it goes beyond the space allocated to it, a
stack overflow occurs

 The stack grows from larger to smaller addresses
(thus upwards)

 The stack pointer SP is a register containing the
address of the first available stack frame

The stack

5Algorithms and Programming – Camurati & Quer

Example

 Let us analyze the stack structure during the
execution of the following program

int f1(int x);
int f2(int x);

main() {
int x, a = 10;
x = f1(a);
printf("x is %d \n", x);

}
int f1(int x) {

return f2(x);
}
int f2(int x) {

return x+1;
}

6Algorithms and Programming – Camurati & Quer

stack

control
returns to

main
pop()

stack
frame
main

f1 calls
f2

push(f2)

stack
frame

f2

stack
frame
main

stack
frame

f1

control
returns
to f1
pop()

stack
frame
main

stack
frame

f1

stack
frame
main

stack
frame
main

main calls
f1

push(f1)

stack
frame

f1

int f1(int x);
int f2(int x);
main() {
int x, a = 10;
x = f1(a);
printf("x is %d \n", x);

}
int f1(int x) { return f2(x); }
int f2(int x) { return x+1; }

7Algorithms and Programming – Camurati & Quer

Recursive functions

 With recursive functions

 Calling and called functions coincide, but operate
on different data

 The system stack is used as in any other function
call

 Too many recursive calls may result in stack
overflow

8Algorithms and Programming – Camurati & Quer

main

stack

Initial
configuration

main() {
long n;
printf("Input n: ");
scanf("%d", &n);
printf("%d %d \n",n, fact(n));

}
long fact(long n) {
if(n == 0)
return(1);

return(n * fact(n-1));
}

Example 1

9Algorithms and Programming – Camurati & Quer

main

main calls
fact(3)

fact(3)

main() {
long n;
printf("Input n: ");
scanf("%d", &n);
printf("%d %d \n",n, fact(n));

}
long fact(long n) {
if(n == 0)
return(1);

return(n * fact(n-1));
}

Example 1

3! = 3*2!

stack

10Algorithms and Programming – Camurati & Quer

main

fact(3) calls
fact(2)

fact(3)

fact(2)

main() {
long n;
printf("Input n: ");
scanf("%d", &n);
printf("%d %d \n",n, fact(n));

}
long fact(long n) {
if(n == 0)
return(1);

return(n * fact(n-1));
}

Example 1

3! = 3*2!

2! = 2*1!

stack

11Algorithms and Programming – Camurati & Quer

main

fact(2) calls
fact(1)

fact(3)

fact(2)

main() {
long n;
printf("Input n: ");
scanf("%d", &n);
printf("%d %d \n",n, fact(n));

}
long fact(long n) {
if(n == 0)
return(1);

return(n * fact(n-1));
}

fact(1)

Example 1

3! = 3*2!

1! = 1*0!

2! = 2*1!

stack

12Algorithms and Programming – Camurati & Quer

main

fact(1) calls
fact(0)

fact(3)

fact(2)

fact(1)

fact(0)

main() {
long n;
printf("Input n: ");
scanf("%d", &n);
printf("%d %d \n",n, fact(n));

}
long fact(long n) {
if(n == 0)
return(1);

return(n * fact(n-1));
}

Example 1

3! = 3*2!

1! = 1*0!

0! = 1

2! = 2*1!

stack

13Algorithms and Programming – Camurati & Quer

main

fact(0) terminates,
returns value 1 and

returns control
to fact(1)

fact(3)

fact(2)

fact(1)

main() {
long n;
printf("Input n: ");
scanf("%d", &n);
printf("%d %d \n",n, fact(n));

}
long fact(long n) {
if(n == 0)
return(1);

return(n * fact(n-1));
}

Example 1

3! = 3*2!

1! = 1*0!

0! = 1

2! = 2*1!

stack

14Algorithms and Programming – Camurati & Quer

main

fact(1) terminates,
returns value 1 and

returns control
to fact(2)

fact(3)

fact(2)

main() {
long n;
printf("Input n: ");
scanf("%d", &n);
printf("%d %d \n",n, fact(n));

}
long fact(long n) {
if(n == 0)
return(1);

return(n * fact(n-1));
}

Example 1

3! = 3*2!

1! = 1*0!

0! = 1

= 1

2! = 2*1!

stack

15Algorithms and Programming – Camurati & Quer

main() {
long n;
printf("Input n: ");
scanf("%d", &n);
printf("%d %d \n",n, fact(n));

}
long fact(long n) {
if(n == 0)
return(1);

return(n * fact(n-1));
}

main

fact(2) terminates,
returns value 2 and

returns control
to fact(3)

3! = 3*2!

fact(3)

1! = 1*0!

0! = 1

= 1

2! = 2*1! = 2

Example 1

stack

16Algorithms and Programming – Camurati & Quer

main() {
long n;
printf("Input n: ");
scanf("%d", &n);
printf("%d %d \n",n, fact(n));

}
long fact(long n) {
if(n == 0)
return(1);

return(n * fact(n-1));
}

main

fact(3) terminates,
returns value 6 and
returns control to

main

= 6

Example 1

3! = 3*2!

1! = 1*0!

0! = 1

= 1

2! = 2*1! = 2

stack

17Algorithms and Programming – Camurati & Quer

Recursion versus iteration

 Recursion

 May be memory-consuming

 Is somehow equivalent to looping

 All recursive programs may be implemented in
iterative form as well

 There is a duality between recursion and iteration

 The best solution (efficiency and clarity of code)
depends on the problem

 Try to remain at the highest possible abstraction
level

18Algorithms and Programming – Camurati & Quer

long fact(long n) {
long tot = 1;
int i;

for (i=2; i<=n; i++)
tot = tot * i;

return(tot);
}

Duality recursion - iteration

 Factorial iterative computation

 5! = 1*2*3*4*5 = 120

 The implementation may be iterative and recursive
as well

 There is no need to use a stack

19Algorithms and Programming – Camurati & Quer

 Fibonacci iterative computation

 0 1 1 2 3 5 8 13 21 ...

 F(0) = 0

 F(1) = 1

 F(2) = F(0) + F(1) = 1

 F(3) = F(1) + F(2) = 2

 F(4) = F(2) + F(3) = 3

 F(5) = F(3) + F(4) = 5

 The implementation may

be iterative and recursive

as well

 There is no need to use a stack

long fib(long int n) {
long int f1p=1, f2p=0, f;
int i;
if(n == 0 || n == 1)

return(n);
f = f1p + f2p;
for(i=3; i<= n; i++) {

f2p = f1p;
f1p = f;
f = f1p+f2p;

}
return(f);

}

Duality recursion - iteration

20Algorithms and Programming – Camurati & Quer

Duality recursion - iteration

 Binary search

 The implementation may be iterative and recursive

as well

 There is no

need to use

a stack

int BinarySearch (
int v[], int l, int r, int k) {
int c;

while (l<=r){
c = (int) ((l+r) / 2);
if (k == v[c]) {

return(c);
}
if (k < v[c]) {

r = c-1;
} else {

l = c+1;
}

}
return(-1);

}

21Algorithms and Programming – Camurati & Quer

Emulating recursion

 Recursion may be emulated explicitly dealing
with a stack

 Recursion is realized using the system stack to
store and restore the local status

 It is always possible to emulate recursion through
iterations using a user-defined stack

 The user stack mimics the system stack

 It is manipulated by the programmer to store and
restore information (function stack frames) as the
system does into the system stack

22Algorithms and Programming – Camurati & Quer

Emulating recursion

long fact(long n) {
if(n == 0)

return(1);
return(n * fact(n-1));

}

long fact(long n) {
long fact = 1;
stack_t stack;
stack = stack_init ();
while (n>0) {

stack_push (stack, n);
n--;

}
while (stack_size (stack) > 0) {

n = stack_pop (stack);
fact = n * fact;

}
return fact;

}

The ADT stack_t
a user stack

Original recursive
function

Non recursive
(iterative) function
emulating recursion
using a user stack

23Algorithms and Programming – Camurati & Quer

Tail-recursive functions

 In traditional (model) recursive function

 Recursive calls are performed first

 Then the return value is used to compute the
result

 The final result is obtained after all calls have
terminated, i.e., the program has returned from
every recursive call

 Tail-recursion (or tail-end recursion) is a
particular case of recursion

24Algorithms and Programming – Camurati & Quer

long fact(long n) {
if (n == 0)

return(1);
return(n * fact(n-1));

}

fact(3)
3 * fact(2)
3 * (2 * fact(1))
3 * (2 * (1 * fact(0)))
3 * (2 * (1 * 1))

Tail-recursive functions

 In tail recursive function, the recursive call is the
last operation to be executed, except for return

This function is not
tail-recursive because

the product can be executed
only after returning from

the recursive call

The system stack
is required

25Algorithms and Programming – Camurati & Quer

long fact_r(long n, long f) {
if (n == 0)

return(f);
return fact_tr(n-1, n*f);

}

fact_tr(3,1)
fact_tr(2,3)
fact_tr(1,6)
fact_tr(0,6)

Tail-recursive functions

 Tail-recursive version of the factorial function

This function is
tail-recursive because

the product is executed
before the recursive call

The system stack
is not required

26Algorithms and Programming – Camurati & Quer

Tail-recursive functions

 In tail recursive functions

 Calculations are performed first

 Recursive calls are done after

 Current results are passed to future calls

 The return value of any given recursive step is the
same as the return value of the next recursive call

 The consequence of this is that once you are ready
to perform your next recursive step, you do not
need the current stack frame any more

27Algorithms and Programming – Camurati & Quer

Tail-recursive functions

 Current stack frame is not needed anymore

 Recursion can be substituted by a simple jump (tail
call elimination)

 A proper compiler or language (Prolog, Lisp, etc.)
may recognize tail recursive functions and it may
optimize their code

 Stack overflows does not happen anymore and there
is no limit to the number of recursive calls that can
be made

 Tail recursion is essentially equivalent to looping

 Tail recursion only applies if there are no
instructions that follow the recursive call

28Algorithms and Programming – Camurati & Quer

Solution

void print (char *s) {
if (*s == '\0') {

return;
}
printf (“%c”, *s);
print (s+1);
return;

}

void reverse_print (char *s) {
if (*s == '\0') {

return;
}
reverse_print(s+1);
printf (“%c”, *s);
return;

}

Printing a string:
There are no instructions that

follow the recursive call.
The compiler may understand

this and it may avoid the
stack. This function is tail

recursive.

Reverse printing a string:
There are instructions that
follow the recursive call.

The stack cannot be avoided.
This function is not tail

recursive.

29Algorithms and Programming – Camurati & Quer

Limits of the recursion

 Disadvantages

 The number of recursions is limited by the stack size

 The stack consume memory

 Sub-problems may not be independent, and
recomputations may occur leading to inefficiency

F(5)

F(4)F(3)

F(1) F(2)

F(0) F(1)

F(3) F(2)

F(1) F(2)

F(0) F(1)

F(0) F(1)

F(5)

F(4)

F(3)

F(2)

F(1) F(0)

30Algorithms and Programming – Camurati & Quer

Limits

 An alternative paradigm is Dynamic Programming

 Stores solutions to subproblems as soon as they are
found

 Before it solves a subproblem, it checks whether it
has already been solved

 Better than divide and conquer for shared
subproblems

 Dynamic Programming procedes

 Bottom-up, whereas divide and conquer is top-down

 Dynamic programming is called recursion with
storage or memoization

31Algorithms and Programming – Camurati & Quer

Fibonacci with Dynamic Programming

int main (void) {
int *known, i, n;
fprintf(stdout, "Input n: ");
scanf("%d", &n);
known = (int *) malloc ((n+1)*sizeof(int));
if (known==NULL){

fprintf (stderr, "Memory allocation error.\n");
exit(EXIT_FAILURE);

}
for (i=0; i<=n; i++) {

known[i] = -1;
}
fprintf(stdout, "Fibonacci %d-th term = %d\n",

n, fib_dp(n, known));
free(known);
return EXIT_SUCCESS;

}

How can we improve
Fibonacci from O(2n)

to O(n) ?

We define an array
know

32Algorithms and Programming – Camurati & Quer

Fibonacci with Dynamic Programming

int fib_dp (int n, int *known) {
if (known[n] < 0) {

if (n==0 || n==1) {
known[n] = n;

} else {
known[n] = fib_dp (n-1, known) +

fib_dp (n-2, known);
}

}

return known[n];
}

We store partial results
into array know

We avoid all
recomputations

