

Recursion

Mechanisms

Paolo Camurati and Stefano Quer Dipartimento di Automatica e Informatica

Politecnico di Torino

The stack was previously introduced in the discrete mathematics unit

* In computer science a stack in an Abstract Data Type (ADT) that serves as a collection of elements
A stack supports the following operations
> Push
- Insert object on top
> Pop
- Read and delete from top the last-inserted object
$>$ This reading/writing strategy is called LIFO (LastIn First-Out)
* A programmer can implement its own stacks
* The operating system (or any application) can use its own stack as well
$>$ At the C language level, the stack is the data structure containing at least
- Formal parameters
- Local variables
- The return address when the function execution is over
- The pointer to the function's code

The stack

All these pieces of data form a stack frame
$>$ A new stack frame is created when the function is called and the same stack frame is destroyed when the function is over

* Stack frames are stored in the system stack
\Rightarrow The system stack has a predefined amount of memory available
- When it goes beyond the space allocated to it, a stack overflow occurs
$>$ The stack grows from larger to smaller addresses (thus upwards)
$>$ The stack pointer SP is a register containing the address of the first available stack frame

Let us analyze the stack structure during the execution of the following program

```
int f1(int x);
int f2(int x);
main() {
    int x, a = 10;
    x = f1(a);
    printf("x is %d \n", x);
}
int fl(int x) {
    return f2(x);
}
int f2(int x) {
    return x+1;
}
```


Recursive functions

* With recursive functions
> Calling and called functions coincide, but operate on different data
$>$ The system stack is used as in any other function call
* Too many recursive calls may result in stack overflow

Example 1

stack

Initial
configuration

```
main()
    long n;
    printf("Input n: ");
    scanf("%d", &n);
    printf("%d'%d \n",n, fact(n));
}
long fact(long n) {
    if(n == 0)
        return(1);
    return(n * fact(n-1));
}
```


Example 1

stack

main calls fact(3) (3)

```
main()
    long n;
    printf("Input n: ");
        scanf("%d", &n);
        printf("%d'%d \n",n, fact(n));
}
long fact(long n) {
    if(n == 0)
        return(1);
        return(n * fact(n-1));
} scanf("\%d", \&n) printf("\%d'\%d \(\backslash n ", n, f a c t(n)) ;\)
```

$3!=3 * 2$!

Example 1

Example 1


```
main()
    long n;
    printf("Input n: ");
    scanf("%d", &n);
    printf("%d'%d \n",n, fact(n));
}
1ong fact(long n) {
    if(n == 0)
        return(1);
    return(n * fact(n-1));
}
```

$3!=3 * 2!$
$1!=1^{*} 0!$
fact(2) calls
fact(1)

Example 1

Example 1

fact(0) terminates, returns value 1 and
returns control to fact(1)

Example 1

fact(1) terminates, returns value 1 and
returns control to fact(2)

Example 1

Example 1

Recursion versus iteration

* Recursion
$>$ May be memory-consuming
$>$ Is somehow equivalent to looping
* All recursive programs may be implemented in iterative form as well
$>$ There is a duality between recursion and iteration
* The best solution (efficiency and clarity of code) depends on the problem
* Try to remain at the highest possible abstraction level

Duality recursion - iteration

* Factorial iterative computation
$>5!=1 * 2 * 3 * 4 * 5=120$
> The implementation may be iterative and recursive as well
> There is no need to use a stack

```
long fact(long n) {
    long tot = 1;
    int i;
    for (i=2; i<=n; i++)
        tot = tot * i;
    return(tot);
}
```


Duality recursion - iteration

Fibonacci iterative computation
> 01123581321 ...

- $F(0)=0$
- $F(1)=1$
- $F(2)=F(0)+F(1)=1$
- $F(3)=F(1)+F(2)=2$
- $F(4)=F(2)+F(3)=3$
- $F(5)=F(3)+F(4)=5$
\Rightarrow The implementation may be iterative and recursive

```
long fib(long int n) {
    long int f1p=1, f2p=0, f;
    int i;
    if(n == 0 || n == 1)
        return(n);
    f = f1p + f2p;
    for(i=3; i<= n; i++) {
        f2p = f1p;
        f1p = f;
        f = f1p+f2p;
    }
    return(f);
}
```

as well
$>$ There is no need to use a stack

Duality recursion - iteration

* Binary search
> The implementation may be iterative and recursive as well
> There is no need to use a stack

```
int BinarySearch (
    int v[], int l, int r, int k) {
    int c;
    while (l<=r) {
        c = (int) ((l+r) / 2);
        if (k == v[c]) {
            return(c);
        }
        if (k < v[c]) {
            r = c-1;
        } else {
        l = c+1;
        }
    }
    return(-1);
}
```


Emulating recursion

* Recursion may be emulated explicitly dealing with a stack
> Recursion is realized using the system stack to store and restore the local status
$>$ It is always possible to emulate recursion through iterations using a user-defined stack
- The user stack mimics the system stack
- It is manipulated by the programmer to store and restore information (function stack frames) as the system does into the system stack

Emulating recursion

```
long fact(long n) {
    if(n == 0)
        return(1);
    return(n * fact (n-1));
}
```



```
The ADT stack_t
a user stack
```

```
long fact(long n) {
```

long fact(long n) {
long fact = 1;
long fact = 1;
stack_t stack;
stack_t stack;
stack = stack_init ();
stack = stack_init ();
while (n>0) {
while (n>0) {
stack_push (stack, n);
stack_push (stack, n);
n--;
n--;
}
}
while (stack_size (stack) > 0) {
while (stack_size (stack) > 0) {
n = stack_pop (stack);
n = stack_pop (stack);
fact = n * fact;
fact = n * fact;
}
}
return fact;
return fact;
}

```
    }
```


Tail-recursive functions

* In traditional (model) recursive function
> Recursive calls are performed first
$>$ Then the return value is used to compute the result
$>$ The final result is obtained after all calls have terminated, i.e., the program has returned from every recursive call
* Tail-recursion (or tail-end recursion) is a particular case of recursion

Tail-recursive functions

* In tail recursive function, the recursive call is the last operation to be executed, except for return

```
long fact(long n) {
    if (n == 0)
        return(1);
    return(n * fact(n-1));
}
\square
```

```
fact(3)
```

fact(3)
3 * fact(2)
3 * fact(2)
3 * (2 * fact(1))
3 * (2 * fact(1))
3 * (2 * (1 * fact(0)))
3 * (2 * (1 * fact(0)))
3* (2 * (1 * 1))

```
3* (2 * (1 * 1))
```


Tail-recursive functions

Tail-recursive version of the factorial function

Tail-recursive functions

* In tail recursive functions
> Calculations are performed first
> Recursive calls are done after
> Current results are passed to future calls
- The return value of any given recursive step is the same as the return value of the next recursive call
- The consequence of this is that once you are ready to perform your next recursive step, you do not need the current stack frame any more

Tail-recursive functions

- Current stack frame is not needed anymore
- Recursion can be substituted by a simple jump (tail call elimination)
- A proper compiler or language (Prolog, Lisp, etc.) may recognize tail recursive functions and it may optimize their code
- Stack overflows does not happen anymore and there is no limit to the number of recursive calls that can be made
$>$ Tail recursion is essentially equivalent to looping
> Tail recursion only applies if there are no instructions that follow the recursive call

Solution

```
void print (char *s) {
    if (*s == '\0') {
        return;
    }
    printf ("%c", *s);
    print (s+1);
    return;
}
```

Printing a string:
There are no instructions that follow the recursive call. The compiler may understand this and it may avoid the stack. This function is tail recursive.

```
void reverse_print (char *s) {
    if (*s == '\0') {
        return;
    }
    reverse_print(s+1);
    printf ("%c", *s);
    return;
}
```

Reverse printing a string: There are instructions that follow the recursive call. The stack cannot be avoided. This function is not tail recursive.

Limits of the recursion

* Disadvantages

$>$ The number of recursions is limited by the stack size - The stack consume memory
$>$ Sub-problems may not be independent, and recomputations may occur leading to inefficiency

Limits

* An alternative paradigm is Dynamic Programming
$>$ Stores solutions to subproblems as soon as they are found
$>$ Before it solves a subproblem, it checks whether it has already been solved
> Better than divide and conquer for shared subproblems
* Dynamic Programming procedes
$>$ Bottom-up, whereas divide and conquer is top-down
$>$ Dynamic programming is called recursion with storage or memoization

Fibonacci with Dynamic Programming

```
int main (void) {
    int *known, i, n;
    fprintf(stdout, "Input n: ");
    scanf("%d", &n);
    known = (int *) malloc ((n+1)*sizeof(int));
    if (known==NULL) {
        fprintf (stderr, "Memory allocation error.\n");
        exit(EXIT_FAILURE);
    }
    for (i=0; i<=n; i++) {
        known[i] = -1;
                                    We define an array
                                    know
    }
    fprintf(stdout, "Fibonacci %d-th term = %d\n",
        n, fib_dp(n, known));
    free(known);
    return EXIT_SUCCESS;
}
```


Fbonacci with Dynamic Programming

```
int fib_dp (int n, int *known) {
    if (known[n] < 0) {
            if ( }n==0 || n==1) 
                known[n] = n; recomputations
```

 \} else \{
 known[n] = fib_dp (n-1, known) +
 fib_dp (n-2, known);
 \}
 \}
 return known[n];
 \}

