
Recursion

The divide and conquer paradigm
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2Algorithms and Programming – Camurati & Quer

Definition

 Recursive procedure
 Direct recursion

 Inside its definition there is a
call to the procedure itself

 Indirect recursion
 Inside its definition

there is a call to at
least one procedure
that, directly or
indirectly, calls the
procedure itself

...

3Algorithms and Programming – Camurati & Quer

Definition

 Recursive algorithm
 Based on recursive procedures

 The solution to a problem S applied to data D is
recursive if we can express it as

S(Dn) = f(S(D n-1)) iff D n-1 ≠ D0

S(D0) = S 0 otherwise

Termination condition

Dn-1 simpler than Dn

Generic function (f)
of …

4Algorithms and Programming – Camurati & Quer

Rationale

 Recursive solutions
 Are mathematically elegant
 Generate nice and neat procedures

 The nature of many problems is by itself
recursive
 Solution of many sub-problems may be similar to

the initial one, though simpler and smaller
 Combination of partial solutions may be used to

obtain the solution of the initial problem

 Recursion is the basis for the problem-solving
paradigm known as divide and conquer

5Algorithms and Programming – Camurati & Quer

The divide and conquer paradigm

 The divide and conquer paradigm is based on 3
phases
 Divide

 The recursion should generate simpler and solvable
sub-problems, until the sub-problems are

● Trivial
● Valid choices exhausted

 Process
● Starting from a problem of size n

● We partition it into a≥1 independent problems
● Each of these problems has a smaller size n’

o n’ < n

6Algorithms and Programming – Camurati & Quer

The divide and conquer paradigm

 Conquer
 Solve an elementary problem
 This part is the algorithm termination condition

 All algorithms must eventually terminate
 The recursion must be finite

 Combine
 Build a global solution combining partial solutions

7Algorithms and Programming – Camurati & Quer

The divide and conquer paradigm

solve (problem){
if (problem is elementary) {

solution = solve_trivial (problem)
} else {

subproblem 1,2,3,…,a = divide (problem)

for each s ∈ subproblem 1,2,3,…,a

subsolution s = solve (subproblem s)

solution = combine (subsolution 1,2,3,…,a)
}
return solution

}

Termination condition

Recursive call

a subproblems of size n’
Each subproblem is smaller
than the original one (n’<n)

Divide

Conquer

Combine

The else part is often
avoided inserting one

more return

8Algorithms and Programming – Camurati & Quer

The divide and conquer paradigm

 Given
 The original problem size n

 The number of subproblems a of size n’

we may define
 Linear recursion

 a = 1

 Multi-way recursion
 a > 1

9Algorithms and Programming – Camurati & Quer

The divide and conquer paradigm

 The size of
 The original problem n

 The generated ones n’

may be related by
 A constant factor b, in general the same for all

subproblems
 b = n / n’ and n’ = n / b

 A constant value k, not always the same for all
subproblems
 n’ = n - k

 A variable quantity β, often difficult to estimate
 n’ = n - β

10Algorithms and Programming – Camurati & Quer

The divide and conquer paradigm

 When the reduction is a constant factor

 b = n / n’

the following terminology can be used
 Divide and conquer

 b>1

 Decrease and conquer
 b=1
 With (in general) a constant reduction value ki

● n’ = n - ki

11Algorithms and Programming – Camurati & Quer

Complexity Analysis

 A recursion equation expresses the time
asymptotic cost T(n) in terms of
 D(n)

 Cost of dividing the problem
 T(n’)

 Cost of the execution time for smaller inputs
(recursion phase)

 C(n)
 Cost of recombining the partial solutions

 The cost of the teminale cases
 We often assume unit cost for solving the

elementary problems Θ(1)

12Algorithms and Programming – Camurati & Quer

Complexity Analysis

 When we have a constant factor b

 a is the number of subproblems originating from
the "divide" phase

 b is the reduction factor, thus n’ = n/b is the size
of each generated subproblem

 The recurrence equation has the following form

 T(n) = D(n) + a · T(n/b) + C(n) n > const
 T(n) = Θ(1) n ≤ const

Divide
Recur
T(n’) Combine

Conquer

13Algorithms and Programming – Camurati & Quer

Complexity Analysis

 When we have a constant value ki

 a is the number of subproblems originating from
the "divide" phase

 Reduction amounts to ki, an amount that may vary
at each step

 The recurrence equation has the following form

 T(n) = D(n) + ∑ �(� − ��)	
��� + C(n) n > const
 T(n) = Θ(1) n ≤ const

Conquer

Divide Combine
Recur
T(n’)

14Algorithms and Programming – Camurati & Quer

A first example: Array split

 Specifications
 Given an array of n=2k integers
 Recursively partition it in sub-arrays half the size,

until the termination condition is reached
 The termination conditions is reached when sub-

arrays have only 1 cell

 Print-out all generated partitions on standard
output

Divide and conquer
At each step we generate a=2 subproblems

Each subproblem has a size equal to n’=n/2, i.e., b=n/n’=2

Simple case
(complete tree of height k)

15Algorithms and Programming – Camurati & Quer

Solution

0
l

1 2 3 4 5 6 7
r

V 1 2 3 4 5 6 7 8

0 1 2 3

v 1 2 3 4

4 5 6 7

v 5 6 7 8

0 1

v 1 2

6 7

v 7 8

2 3

v 3 4

4 5

v 5 6

1

2

0

1

2

3

3

4

4

5

5

6

6

7

7

8

Recursion tree
(complete)

16Algorithms and Programming – Camurati & Quer

Solution 1

void show (int v[], int l, int r) {
int i, c;

printf (“v = ");
for (i=l; i<=r; i++)

printf ("%d ", v[i]);
printf ("\n");

if (l >= r) {
return;

}

c = (r+l)/2;

show (v, l, c);
show (v, c+1, r);

return;
}

Termination
condition

Array print
(from element l to r)

Recursion:
Left recursion
Right recursion

17Algorithms and Programming – Camurati & Quer

Solution 1

void show (
int v[], int l, int r

) {
int i, c;

printf (“v = ");
...

if (l >= r) {
return;

}

c = (r+l)/2;

show (v, l, c);
show (v, c+1, r);

return;
}

1 2 3 4 5 6 7 8v

1 2 3 4v

1 2v

1 2 3 4 5 6 7 8

3 4v 5 6v 7 8v

5 6 7 8v

Array print
(from element l to r)

Recursion tree
(visited depth-first)

18Algorithms and Programming – Camurati & Quer

Solution 2

void show (
int v[], int l, int r

) {
int i, c;

if (l >= r) {
return;

}

printf (“v = ");
...

c = (r+l)/2;

show (v, l, c);
show (v, c+1, r);

return;
}

1 2 3 4 5 6 7 8v

1 2 3 4v

1 2v

1 2 3 4 5 6 7 8

3 4v 5 6v 7 8v

5 6 7 8v

Not printed

Termination
condition

Array print
(from element l to r)

Recursion tree
(visited depth-first)

19Algorithms and Programming – Camurati & Quer

Solution 2

void show (
int v[], int l, int r

) {
int i, c;

if (l >= r) {
return;

}
c = (r+l)/2;
printf (“v = ");
for (i=l; i<=c; i++)

printf ...
show (v, l, c);
printf (“v = ");
for (i=c+1; i<=r; i++)

printf ...
show (v, c+1, r);
return;

}

1 2 3 4 5 6 7 8v

1 2 3 4v

1 2v

1 2 3 4 5 6 7 8

3 4v 5 6v 7 8v

5 6 7 8v

Not printed

Recursion tree
(visited depth-first)

Termination
condition

20Algorithms and Programming – Camurati & Quer

Example 1: Complexity Analysis

 Divide and conquer problem with
 Number of subproblems

 a = 2

 Reduction factor
 b = n/n’= 2

 Division cost
 D(n) = Θ(1)

 Recombination cost
 C(n) = Θ(1)

void show (
int v[], int l, int r

) {
int i, c;
if (l >= r) {

return;
}
c = (r+l)/2;
show (v, l, c);
show (v, c+1, r);
return;

}

21Algorithms and Programming – Camurati & Quer

Example 1: Complexity Analysis

 Recurrence equation
 T(n) = D(n) + a · T(n/b) + C(n)

 That is
 T(n) = 2·T(n/2) + 1 n > 1
 T(1) = 1 n = 1

Divide, conquer,
combine

void show (
int v[], int l, int r

) {
int i, c;
if (l >= r) {

return;
}
c = (r+l)/2;
show (v, l, c);
show (v, c+1, r);
return;

}

No cost for the
combination

phase

22Algorithms and Programming – Camurati & Quer

Example 1: Complexity Analysis

 Resolution by unfolding
 T(n) = 1 + 2·T(n/2)
 T(n/2) = 1 + 2·T(n/4)
 T(n/4) = 1 + 2·T(n/8)
 …

Termination condition�
2� = 1

� = ���2 �

23Algorithms and Programming – Camurati & Quer

Example 1: Complexity Analysis

 We replace T(n/2) in T(n)
 T(n) = 1 + 2 + 4 · T(n/4)

then we replace T(n/4) in T(n/2)
 T(n) = 1 + 2 + 4 + 23 · T(n/8)

etc.

 T(n) = ∑ 2i ��� �
�� = �log n +1
�

�
� = 2 · 2log n - 1

= 2n-1
= O(n) ∑ ����� =(���
�)

(�
�)

24Algorithms and Programming – Camurati & Quer

 Specifications
 Given an array of n=2k integers
 Find its maximum and print it on standard output

A second example: Maximum of an array

25Algorithms and Programming – Camurati & Quer

 If the array size n is equal to 1 (n=1)
 Find maximum explicitly

 If the array size n is larger than 1 (n>1)
 Divide array in 2 subarrays, each being half the

original array
 Recursively search for maximum in the left

subarray and return the maximum value in it
 Recursively search for maximum in the right

subarray and return the maximum value in it
 Compare maximum values returned and return

bigger one

Solution

Termination
condition

26Algorithms and Programming – Camurati & Quer

int max(int a[],int l,int r){
int u, v, c;
if (l >= r)

return a[l];
c = (l + r)/2;
u = max (a, l, c);
v = max (a, c+1, r);
if (u > v)

return u;
else

return v;
}

result = max (a, 0, 3);

Initial call
l=0, r=3, n = 2k

Solution

Implementation

0 1 2 3

a 10 3 40 6

27Algorithms and Programming – Camurati & Quer

int max(int a[],int l,int r){
int u, v, c;
if (l >= r)

return a[l];
c = (l + r)/2;
u = max (a, l, c);
v = max (a, c+1, r);
if (u > v)

return u;
else

return v;
}

0
l

3
r

result = max (a, 0, 3);

Solution

Recursion tree
(visited depth-first)

0 1 2 3

a 10 3 40 6

10 3 40 6

10 3 40 6

Implementation

28Algorithms and Programming – Camurati & Quer

Example 2: Complexity Analysis

 Divide and conquer problem with
 Number of subproblems

 a = 2

 Reduction factor
 b = n/n’= 2

 Division cost
 D(n) = Θ(1)

 Recombination cost
 C(n) = Θ(1)

int max(int a[],int l,int r){
int u, v, c;
if (l >= r)

return a[l];
c = (l + r)/2;
u = max (a, l, c);
v = max (a, c+1, r);
if (u > v)

return u;
else

return v;
}

29Algorithms and Programming – Camurati & Quer

Example 2: Complexity Analysis

 Recurrence equation
 T(n) = D(n) + a · T(n/b) + C(n)

 That is
 T(n) = 2·T(n/2) + 1 n > 1
 T(1) = 1 n = 1

 Time complexity
 T (n) = O(n)

Divide, conquer,
combine

As for
example 1 ...

int max(int a[],int l,int r){
int u, v, c;
if (l >= r)

return a[l];
c = (l + r)/2;
u = max (a, l, c);
v = max (a, c+1, r);
if (u > v)

return u;
else

return v;
}

30Algorithms and Programming – Camurati & Quer

 Factorial
 Iterative definition

 n! = ∏ � − � = � · � − 1 · … · 2 · 1�
���
 Recursive definition

 n! = n · � − 1 ! ��1
 0! = 1

 Examples
 3! = 6
 5! = 120

Factorial

31Algorithms and Programming – Camurati & Quer

0! = 1

5! = 5 · 4! = 120

4! = 4 · 3! = 24

3! = 3 · 2! = 6

2! = 2 · 1! = 2

1! = 1 · 0! = 1

An exampleRecursion tree
(complete)

n! = n · � − 1 ! ��1
0! = 1

32Algorithms and Programming – Camurati & Quer

Solution

#include <stdio.h>

long int fact(int n);

main() {
long int n;
printf("Input n: ");
scanf("%d", &n);
printf("%d ! = %d\n",

n, fact(n));
}

long int fact (long int n)
{

if (n == 0)
return (1);

return (n * fact(n-1));
}

long int fact (long int n)
{

long int f;
if (n == 0)

return (1);
f = fact (n-1);
return (n * f);

}

Alternative
implementation

Complete program
(main and function)

Recursion
Recursion

33Algorithms and Programming – Camurati & Quer

Complexity Analysis

 Divide and conquer problem with
 Number of subproblems

 a = 1

 Reduction value
 ki = 1

 Division cost
 D(n) = Θ(1)

 Recombination cost
 C(n) = Θ(1)

long int fact (long int n) {
if (n == 0)

return (1);
return (n * fact(n-1));

}

34Algorithms and Programming – Camurati & Quer

Complexity Analysis

 Recurrence equation
 T(n) = D(n) + ∑ �(* − ��)	
��� + C(n)

 That is
 T(n) = 1 + T(n-1) n > 1
 T(1) = 1 n = 1

long int fact (long int n) {
if (n == 0)

return (1);
return (n * fact(n-1));

}

35Algorithms and Programming – Camurati & Quer

Complexity Analysis

 Resolution by unfolding
 T(n) = 1 + T(n-1)
 T(n-1) = 1 + T(n-2)
 T(n-2) = 1 + T(n-3)
 ...

 Replacing in T(n)
 T(n) = 1 + 1 + 1 + T(n-3)

= ∑ 1�
���
= 1 + 1 + 1 + …

= n
= O(n)

Termination
n-i = 1
i = n-1

long int fact (long int n) {
if (n == 0)

return (1);
return (n * fact(n-1));

}

36Algorithms and Programming – Camurati & Quer

 Fibonacci numbers
 Iterative and recursive definition

 F(n) = F(n-2) + F(n-1) n>1
 F(0) = 0
 F(1) = 1

 Example
 F(0) = 0
 F(1) = 1
 F(2) = 0+1 = 1
 F(3) = 1+1 = 2
 etc.
 That is

● 0 1 1 2 3 5 8 13 21 34 …

Fibonacci Numbers

37Algorithms and Programming – Camurati & Quer

F(5)

F(4)F(3)

F(1) F(2)

F(0) F(1)

F(2)

F(0) F(1)

F(3)

F(1) F(2)

F(0) F(1)

An Example: Computing F(5)Recursion tree
(complete)

F(n) = F(n-2) + F(n-1) n>1
F(0) = 0
F(1) = 1

...

38Algorithms and Programming – Camurati & Quer

Solution

#include <stdio.h>

long int fib(long int n);

main() {
long int n;

printf("Input n: ");
scanf("%d", &n);
printf(“Fibonacci of %d is: %d \n", n, fib(n));

}

long int fib (long int n) {
if (n == 0 || n == 1)

return (n);
return (fib(n-2) + fib(n-1));

}

39Algorithms and Programming – Camurati & Quer

Solution

long int fib (long int n) {
if (n == 0 || n == 1)

return (n);
return (fib(n-2) + fib(n-1));

}

long int fib (long int n) {
long int f1, f2;

if (n == 0 || n == 1)
return (n);

f1 = fib (n-2);
f2 = fib (n-1)
return (f1 + f2);

}

Alternative
implementation

40Algorithms and Programming – Camurati & Quer

Complexity Analysis

 Decrease and conquer problem with
 Number of subproblems

 a = 2

 Reduction value
 ki = 1
 ki-1 = 2

 Division cost
 D(n) = Θ(1)

 Recombination cost
 C(n) = Θ(1)

long int fib (long int n) {
if (n == 0 || n == 1)

return (n);
return (fib(n-2) + fib(n-1));

}

41Algorithms and Programming – Camurati & Quer

 Recurrence equation
 T(n) = D(n) + ∑ �(* − ��)	
��� + C(n)

 That is
 T(n) = 1 + T(n-1) + T(n-2) n > 1
 T(0) = 1
 T(1) = 1

Complexity Analysis

long int fib (long int n) {
if (n == 0 || n == 1)

return (n);
return (fib(n-2) + fib(n-1));

}

42Algorithms and Programming – Camurati & Quer

 We can make the following conservative
approximation
 T(n-2) ≤ T(n-1)

 Thus, we can replace T(n-2) with T(n-1), and we
obtain
 T(n) = 1 + 2·T(n-1) n > 1
 T(n) = 1 n = 1

Complexity Analysis

long int fib (long int n) {
if (n == 0 || n == 1)

return (n);
return (fib(n-2) + fib(n-1));

}

43Algorithms and Programming – Camurati & Quer

 Resolution by unfolding
 T(n) = 1 + 2·T(n-1)
 T(n-1) = 1 + 2·T(n-2)
 T(n-2) = 1 + 2·T(n-3)
 …

 Replacing in T(n)
 T(n) = 1 + 2 + 4 · T(n-2)

= 1 + 2 + 4 + 2+ · T(n-3)
= ∑ 2i�
���
= 2�-1
= ,(2�)

Complexity Analysis

Termination
n-i = 1
i = n-1

∑ ����� =(���
�)
(�
�)

Not linear.
Why?

44Algorithms and Programming – Camurati & Quer

 Binary search
 Does key k belong to the sorted array v[n]?
 Yes/No

 Approach
 Start with (sub-)array of extremes l and r
 At each step

 Find middle element c=(int)((l+r)/2)
 Compare k with middle element in the array

● =: termination with success
● <: search continues on left subarray
● >: search continues on right subarray

Binary Search
Assumption

n = 2p

45Algorithms and Programming – Camurati & Quer

y = middle element

r = rightmost index

l = leftmost index

m = index of middle element

Example

0
l

1 2 3 4 5 6 7 8 9
r

v 2 4 6 8 10 12 14 16 18 20

k 8 0
l

1 2 3
r

4 5 6 7 8 9
r

v 2 4 6 8 10 12 14 16 18 20

0
l

1 2
l

3
r

4 5 6 7 8 9
r

v 2 4 6 8 10 12 14 16 18 20

0
l

1 2 3
lr

4 5 6 7 8 9
r

v 2 4 6 8 10 12 14 16 18 20

k = key to search
l = leftmost index

r = rightmost index
c = index of the
middle element

46Algorithms and Programming – Camurati & Quer

Solution

int bin_search (int v[], int l, int r, int k){
int c;

if (l > r)
return(-1);

c = (l+r) / 2;

if (k < v[c])
return(bin_search (v, l, c-1, k));

if (k > v[c])
return(bin_search (v, c+1, r, k));

return c;
}

Skip ther element
already checked

Termination
condition

47Algorithms and Programming – Camurati & Quer

Complexity Analysis

 Decrease and conquer problem with
 Number of subproblems

 a = 1

 Reduction factor
 b = n/n’= 2

 Division cost
 D(n) = Θ(1)

 Recombination cost
 C(n) = Θ(1)

int bin_search (...){
int c;
if (l > r)

return(-1);
c = (l+r) / 2;
if (k < v[c])

return(bin_search (...));
if (k > v[c])

return(bin_search (...));
return c;

}

48Algorithms and Programming – Camurati & Quer

 Recurrence equation
 T(n) = D(n) + a · T(n/b) + C(n)

 That is
 T(n) = T(n/2) + 1 n > 1
 T(1) = 1 n = 1

Complexity Analysis

int bin_search (...){
int c;
if (l > r)

return(-1);
c = (l+r) / 2;
if (k < v[c])

return(bin_search (...));
if (k > v[c])

return(bin_search (...));
return c;

}

49Algorithms and Programming – Camurati & Quer

int bin_search (...){
int c;
if (l > r)

return(-1);
c = (l+r) / 2;
if (k < v[c])

return(bin_search (...));
if (k > v[c])

return(bin_search (...));
return c;

}

 Resolution by unfolding
 T(n/2) = T(n/4) +1
 T(n/4) = T(n/8) +1
 T(n/8) = …

 Replacing in T(n)
 T(n) = 1 + 1 + 1 + T(n/8)

= ∑ 1-./��
��

= 1 + log2n
 T(n) = O(log n)

Complexity Analysis

Termination condition
n/2i = 1
i= log2n

50Algorithms and Programming – Camurati & Quer

 Read a string from standard input
 Print it in reverse order

 Start printing from last character and move back to
first one

Reverse printing

51Algorithms and Programming – Camurati & Quer

Solution

int main() {
char str[max+1];
printf ("Input string: ");
scanf ("%s", str);
printf ("Reverse string is: ");
reverse_print (str);

}

void reverse_print (char *s) {
if (*s == '\0') {

return;
}
reverse_print (s+1);
printf (“%c”, *s);
return;

}

52Algorithms and Programming – Camurati & Quer

Complexity Analysis

 Decrease and conquer problem with
 Number of subproblems

 a = 1

 Reduction value
 ki = 1

 Division cost
 D(n) = Θ(1)

 Recombination cost
 C(n) = Θ(1)

void reverse_print (char *s) {
if (*s == '\0') {

return;
}
reverse_print (s+1);
printf (“%c”, *s);
return;

}

53Algorithms and Programming – Camurati & Quer

Complexity Analysis

 Recurrence equation
 T(n) = D(n) + ∑ �(* − ��)	
��� + C(n)

 That is
 T(n) = 1 + T(n-1) n > 1
 T(1) = 1 n = 1

 Time complexity
 T(n) = O(n)

void reverse_print (char *s) {
if (*s == '\0') {

return;
}
reverse_print (s+1);
printf (“%c”, *s);
return;

}

As for the
factorial ...

54Algorithms and Programming – Camurati & Quer

List processing

 Recursive list processing
 Count the number of elements in a list
 Traverse a list in order
 Traverse a list in reverse order
 Delete an element (of a given item) from the list

Linked list

x

item next

typedef struct node *link;
struct node {

int item;
link next;

};

55Algorithms and Programming – Camurati & Quer

int count (link x) {
if (x == NULL)

return 0;
return (1 + count(x->next));

}

Solution

Linked list

x

item next
Count number
of elements

56Algorithms and Programming – Camurati & Quer

void traverse (link h) {
if (h == NULL)

return;
printf ("%d", h->item);
traverse (h->next);

}

Solution

Linked list

x

item next
Traverse
forward

57Algorithms and Programming – Camurati & Quer

void traverse_reverse (link h) {
if (h == NULL)

return;
traverse_reverse (h->next);
printf ("%d", h->item);

}

Solution

Linked list

x

item next
Traverse
backward

58Algorithms and Programming – Camurati & Quer

Solution

link delete(link x, Item v) {
if (x == NULL)

return NULL;
if (x->item == v) {

link t = x->next;
free(x);
return t;

}
x->next = delete (x->next, v);
return x;

}

Create (re-create) link
on the way back

Linked list

x

item next
Dispose an

element of the
list

59Algorithms and Programming – Camurati & Quer

Complexity Analysis

 Decrease and conquer problem with
 Number of subproblems

 a = 1

 Reduction value
 ki = 1

 Division cost
 D(n) = Θ(1)

 Recombination cost
 C(n) = Θ(1)

int count (link x) {
if (x == NULL)

return 0;
return (1 + count(x->next));

}

60Algorithms and Programming – Camurati & Quer

Complexity Analysis

 Recurrence equation
 T(n) = D(n) + ∑ �(* − ��)	
��� + C(n)

 That is
 T(n) = 1 + T(n-1) n > 1
 T(1) = 1 n = 1

 Time complexity
 T(n) = O(n)

int count (link x) {
if (x == NULL)

return 0;
return (1 + count(x->next));

}

As for the
factorial ...

61Algorithms and Programming – Camurati & Quer

 The greatest common divisor gcd of 2 non 0
integers x and y is the greatest among the
common divisors of x and y

 Inefficient algorithm are based on decomposition
in prime factors of x and y

 More efficient methods are base on Euclid’s
algorithm

Greatest Common Divisor

x = 0�1�⋅ 0�1�⋅ ⋅ ⋅ 0313
y = 0�

4�⋅ 0�
4�⋅ ⋅ ⋅ 03

43

gcd(x,y) = 0�
567 (1�,4�)⋅ 0�

9��(1�,4�)⋅ ⋅ ⋅ 03
567 (13,43)

Common factors with
the minimum exponent

62Algorithms and Programming – Camurati & Quer

 Version number 1 is based on subtraction

 Termination

Euclid’s Algorithm: Version 1

if x > y
gcd(x, y) = gcd(x-y, y)

else
gcd(x, y) = gcd(x, y-x)

if x == y
return x

63Algorithms and Programming – Camurati & Quer

Euclid’s Algorithm: Version 1

 Examples
 gcd (20, 8) =

= gcd (20-8, 8) = gcd (12, 8)
= gcd (12-8, 8) = gcd (4, 8)
= gcd (4, 8-4) = gcd (4, 4)
= 4 return 4

 gcd (600, 54) =
= gcd (600-54, 54) = gcd (546, 54)
= gcd (546-54, 54) = gcd (492, 54) …
= gcd (6,54) = gcd (6, 54-6) …
= gcd (6, 12) = gcd (6,6)
= 6 return 6

if x > y
gcd(x, y) = gcd(x-y, y)

else
gcd(x, y) = gcd(x, y-x)

64Algorithms and Programming – Camurati & Quer

Solution 1

#include <stdio.h>

int gcd (int x, int y);

main() {
int x, y;
printf("Input x and y: ");
scanf("%d%d", &x, &y);
printf("gcd of %d and %d: %d \n", x, y, gcd(x, y));

}

int gcd (int x, int y) {
if (x == y)

return (x);
if (x > y)

return gcd (x-y, y);
else

return gcd (x, y-x);
}

65Algorithms and Programming – Camurati & Quer

 Version number 2 is based on the remainder of
integer divisions

 Termination

Euclid’s Algorithm: Version 2

if y > x
swap (x, y)
// that is; tmp=x; x=y; y=tmp;

gcd (x, y) = gcd(y, x%y)

if y == 0
return x

66Algorithms and Programming – Camurati & Quer

Euclid’s Algorithm: Version 2

 Examples
 gcd (20, 8) =

= gcd (8, 20%8) = gcd (8, 4)
= gcd (4, 8%4) = gcd (4, 0)
= 4 return 4

 gcd (600, 54) =
= gcd (54, 600%54) = gcd (54, 6)
= gcd (6, 54%6) = gcd (6, 0)
= 6 return 6

if y > x
swap (x, y)

gcd (x, y) = gcd(y, x%y)

67Algorithms and Programming – Camurati & Quer

Euclid’s Algorithm: Version 2

 gcd (314159, 271828)=
= gcd (271828, 314159%271828) =

= gcd (271828,42331)
= gcd (42331, 271828%42331)= gcd(42331,17842)
= gcd (17842, 42331%17842) = gcd (17842, 6647)
= gcd (6647, 17842%6647) = gcd (6647, 4548)
= gcd (4548, 6647%4548) = gcd (4548, 2099)
= gcd (2099, 4548%2099) = gcd (2099, 350)
= gcd (350, 2099%350) = gcd (350, 349)
= gcd (349, 350%349), gcd (349, 1)
= gcd (1,349%1) = gcd (1, 0)
= 1 return 1

if y > x
swap (x, y)

gcd (x, y) = gcd(y, x%y)
In fact 314159 and 271828 are

mutually prime

68Algorithms and Programming – Camurati & Quer

Solution 2

#include <stdio.h>

int gcd (int m, int n);

main() {
int m, n, r;
printf("Input m and n: ");
scanf("%d%d", &m, &n);
if (m>n)

r = gcd(m, n);
else

r = gcd(n, m);
printf("gcd of (%d, %d) = %d\n", m, n, r);

}

int gcd (int m, int n) {
if(n == 0)

return(m);
return gcd(n, m % n);

}

69Algorithms and Programming – Camurati & Quer

Complexity Analysis

 Decrease and conquer problem with
 Number of subproblems

 a = 1

 Reduction value
 ki variable

 Division cost
 D(x,y) = Θ(1)

 Recombination cost
 C(x,y) = Θ(1)

 Demonstration beyond the scope of this course
 T(n) = O(log y)

70Algorithms and Programming – Camurati & Quer

 Laplace Algorithm with unfolding on row I
 Square matrix M (n·n) with indices from 1 to n

 Computation

 Where Mminor i, j is obtained from M ruling-out row i
and column j

Determinant

:;< = = >(−?)(@AB) · = @ B · :;<(=C@DEF @, B)
D

B?

71Algorithms and Programming – Camurati & Quer

Example

 Given the matrix

 Compute its determinant as

-2 2 -3

M= -1 1 3

2 0 -1

:;< = = (−?)(?A?) · −G · :;< =C@DEF?, ?+ (−?)(?AG) · G · :;< =C@DEF ?, G + (−?)(?AI) · −I · :;< =C@DEF ?, I

72Algorithms and Programming – Camurati & Quer

Example

M minor 1,1 =

-2 2 -3

-1 1 3 = 1 3

2 0 -1 0 -1

M minor 1,2 =

-2 2 -3

-1 1 3 = -1 3

2 0 -1 2 -1

M minor 1,3 =

-2 2 -3

-1 1 3 = -1 1

2 0 -1 2 0

 Minor computation

73Algorithms and Programming – Camurati & Quer

 Termination condition (terminal case)
 Square matrix M 2x2

 det(M) = M[0][0] ⋅ M[1][1] - M[0][1] ⋅ M[1][0]

 That is
 det () = - 1 - 0 = -1

 det () = 1 - 6 = -5

 det () = 0 - 2 = -2

1 3
0 -1

-1 3
2 -1

-1 1
2 0

Example

74Algorithms and Programming – Camurati & Quer

 Then

Example

-2 2 -3

M= -1 1 3

2 0 -1

:;< = = (−?)(?A?) · −G · :;< =C@DEF?, ?+ (−?)(?AG) · G · :;< =C@DEF ?, G + (−?)(?AI) · −I · :;< =C@DEF ?, I

:;< = = ? · −G · −? + −? · G · −J + ? · −I · −G = ?K

75Algorithms and Programming – Camurati & Quer

 Recursive algorithm
 If M has size n, indice ranges between 0 and n-1

 If n = 2
 Compute the trivial solution

 det(M) = M[0][0] ⋅ M[1][1] - M[0][1] ⋅ M[1][0]

 If n>2
 With row=0 and column ranging from 0 and n-1
 Store in tmp the minor Mminor 0, j

 Recursively compute det(Mminor i, j)
 Store result results in

 sum = sum + M[0][k] · pow (-1,k) · det (tmp, n-1)

Solution

76Algorithms and Programming – Camurati & Quer

Solution

int det (int m[][MAX], int n) {
int sum, c;
int tmp[MAX][MAX];
sum = 0;

if (n == 2)
return (det2x2(m));

for (c=0; c<n; c++) {
minor (m, 0, c, n, tmp);
sum = sum + m[0][c] * pow(-1,c) * det (tmp,n-1);

}

return (sum);
}

Recur on minor
computation

Create minor

77Algorithms and Programming – Camurati & Quer

Solution

int det2x2(int m[][MAX]) {
return(m[0][0]*m[1][1] - m[0][1]*m[1][0]);

}

void minor(
int m[][MAX],int i,int j,int n,int m2[][MAX]

){
int r, c, rr, cc;

for (rr = 0, r = 0; r < n; r++)
if (r != i) {

for (cc = 0, c = 0; c < n; c++) {
if (c != j) {

m2[rr][cc] = m[r][c];
cc++;

}
rr++;

}
}

}

78Algorithms and Programming – Camurati & Quer

Complexity Analysis

 Decrease and conquer problem with
 Number of subproblems

 a = n

 Reduction value
 ki = 2·n-1

 Division cost
 D(n) = Θ(1)

 Recombination cost
 C(n) = Θ(1)

 Demonstration beyond the scope of this course
 T(n) = O(n!)

79Algorithms and Programming – Camurati & Quer

Tower of Hanoi

 By the French mathematician Édouard Lucas (1883)
 Initial configuration

 3 pegs
 Pegs are identified with 0, 1, 2

 3 disks
 Disks of decreasing size on first peg

 Final configuration
 3 disks on third peg

80Algorithms and Programming – Camurati & Quer

 Rules
 Access only to the top disk
 On each disk overalp only smaller disks

 Generalization
 Work with n
 disks and k pegs

Tower of Hanoi

4 disks, 3 pegs

81Algorithms and Programming – Camurati & Quer

 Divide and Conquer strategy
 Initial problem

 Move n disks from 0 to 2

 Reduction to subproblems
• Move n-1 disks from 0 to 1, 2 temporary storage
• Move last disk from 0 to 2
• Move n-1 disks from 1 to 2, 0 temporary storage

 Termination condition
 Move just 1 disk

Solution

82Algorithms and Programming – Camurati & Quer

0 1 2

0 2

0 1 2

0 1

0 1 2

2 1

0 1 2

0 2

0 1 2

1 0

0 1 2

1 2

0 1 2

0 2

0 1 2

ExampleMedium
and small
disks from

0 to 1

All disks
from 0 to

2

Large disk
from 0 to

2

Medium
and small
disks from

1 to 2

83Algorithms and Programming – Camurati & Quer

000 222

000 011 011 211 211 222

000

002

002

012

012

011

211

210

210

220

220

222

Recursion tree

 The previous divide and conquer strategy
generates the following recursion tree

XXX stands for Large-Medium-Small
disk0,1 ,2

individuate
the peg

84Algorithms and Programming – Camurati & Quer

void hanoi (int n, int src, int dest) {
int aux;

aux = 3 - (src + dest);

if (n == 1) {
printf("src %d -> dest %d \n", src, dest);
return;

}

hanoi (n-1, src, aux);
printf("src %d -> dest %d \n", src, dest);
hanoi (n-1, aux, dest);

return;
}

Solution

Termination
condition

Recursion

Recursion

Elementary
solution

Divide

Divide

85Algorithms and Programming – Camurati & Quer

 Decrease and conquer problem with
 Number of subproblems

 a = 2

 Reduction value
 ki = 1

 Divide
 Consider n-1 disks
 D(n) = Θ(1)

Complexity Analysis

void hanoi(...) {
int aux;
aux = 3 - (src + dest);
if (n == 1) {

printf(...);
return;

}
hanoi(n-1, src, aux);
printf(...);
hanoi(n-1, aux, dest);
return;

}

86Algorithms and Programming – Camurati & Quer

 Solve
 Solve 2 subproblems whose size is n-1 each
 T(n) = 2·T(n-1)

 Termination
 Move 1 disk
 T(1) = Θ(1)

 Combine
 No action
 C(n) = Θ(1)

Complexity Analysis

void hanoi(...) {
int aux;
aux = 3 - (src + dest);
if (n == 1) {

printf(...);
return;

}
hanoi(n-1, src, aux);
printf(...);
hanoi(n-1, aux, dest);
return;

}

87Algorithms and Programming – Camurati & Quer

 Recurrence equation
 T(n) = D(n) + ∑ �(* − ��)	
��� + C(n)

 That is
 T(n) = 2·T(n-1) + 1 n > 1
 T(1) = 1 n = 1

 Timec complexity
 T(n) = O(2�)

Complexity Analysis

As for the
fibonacci

sequence ...

void hanoi(...) {
int aux;
aux = 3 - (src + dest);
if (n == 1) {

printf(...);
return;

}
hanoi(n-1, src, aux);
printf(...);
hanoi(n-1, aux, dest);
return;

}

