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Graphs

 Definition

 G = (V, E)

 V = Finite and non empty set of vertices (simple or 
complex data)

 E = Finite set of edges, that define a binary relation on 
V

 Directed/Undirected graphs

 Directed

 Edge = sorted pair of vertices (u, v) ∈ E and u, v ∈ V

 Undirected

 Edge = unsorted pair of vertices (u, v) ∈ E and u, v ∈ V
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Applications

Domain Vertex Edge

communications phone, computer fiber optic, cable

circuits gate, register, processor wire

mechanics joint spring

finance stocks, currencies transactions

transports airoport, station air corridor, railway line

games position on board legal move

social networks person friendship

neural networks neuron synapsis

chemical compounds molecules link
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Example: Directed graph

d

a

e f

b c

G = {V, E}
V = {a, b, c, d, e, f}
E = {(a,b),(b,b),(b,d),(b,e),

(d,a),(d,e),(e,d),(f,c)}

In some contexts self-loops
may be forbidden.

If the context allows loops, 
but the graph is self-loop-
free, it is called simple

Self-loop



5Algorithms and Programming – Camurati & Quer

Example: Undirected graph

d

a

e f

b c

G = {V, E}
V = {a, b, c, d, e, f}
E = {(a,b),(b,d),(b,e),(c,f)}

Self-loop

In some contexts self-loops
may be forbidden.

If the context allows loops, 
but the graph is self-loop-
free, it is called simple
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Edges

 Edges

 An edge (a, b) can be

 Incident from vertex a

 Incident in vertex b

 Incident on vertices a and b

 Vertices a and b are adjacent

 a → b ⇔ (a, b) ∈ E

a b
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Edges

 Undirected graph

 Degree (a) = number of incident edges

 Directed graph

 In-degree (a) = number of incoming edges

 Out-degree (a) = number of outgoing edges

 Degree (a) = in-degree(a) + out-degree(a)

a
In-degree (a) = 2
Out-degree (a) = 1
Degree (a) = 3

Degree (a) = 3 a
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Paths

 Paths

 A path p, u →p u', is defined in G = (V, E) as

 ∃(v0,v1,v2,…,vk)  u=v0, u'=vk, ∀i = 1,2,…,k (vi-1,vi) ∈ E

 k = length of the path

 u' is reachable from u ⇔ ∃ p: u →p u'

 Simple path p: distinct (v0,v1,v2,…,vk) ∈ p

d

a

c

b
G = (V, E)
p:  a →p d : (a, b), (b, c), (c, d) 
k = 3
d  is reachable from a
p is a simple path
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Loops

 Loops

 A loop is defined as a path where

 v0=vk , the starting and arrival vertices do coincide 

 Self-loop

 Loops whose length is 1

 A graphs without loops is called

 acyclic

d

a

c

b

Loop, k=4

Self-loop
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Connection in undirected graphs

 An undirected graph is said to be connected iff

 ∀vi,vj ∈ V there exists a path p such that vi →p vj

 In an undirected graph

 Connected component

 Maximal connected subgraph, that is, there is no 
superset including it which is connected

 Connected undirected graph

 Only one connected component

a

e

b c d

hf g
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Connection in directed graphs

 A directed graph is said to be strongly connected iff

 ∀vi,vj ∈ V there exists two paths p, p’ such that
vi →p vj and  vj →p’ vi

 In a directed graph

 Strongly connected component

 Maximal strongly connected subgraph

 Strongly connected directed graph

 Only one strongly

 connected

 component

a

e

b

f

c

g

d

h
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Dense/sparse graphs

 Given a graph

 G = (V, E)

 with

 |V| = cardinality of set V 

 |E| = cardinality of set E

 We define

 Dense graph

 |E| ≅ |V|2

 Sparse graph

 |E| << |V|2

A lot of edges

Few edges



13Algorithms and Programming – Camurati & Quer

Complete graph

 Definition

 ∀vi, vj ∈ V ∃ (vi,vj) ∈ E

 How many edges there are in a complete 
undirected graph? 

 |E| is given by the number of combinations of 
|V| elements taken 2 by 2 

 |E| = 
� !

� �� ! · �!
= 

� · � �� · � �� !

� �� !·�!
= 

� · � ��

�

a

c

b

d

Combinations: 
Order does not 

matter
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 How many edges there are in a complete directed
graph? 

 |E| is the number of dispositions of |V| elements
taken 2 by 2

 |E| = 
� !

� �� !
= 

� · � �� · � �� !

� �� !
= |V| · (|V|-1)

a

c

b

d

Dispositions: 
Order matters

Complete graph
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Bipartite graph

 Definition

 Undirected graph where the V set may be 
partitioned in 2 subsets V1 and V2, such that

 ∀(vi, vj) ∈ E and (vi ∈ V1 and vj ∈ V2) or (vj ∈ V1 and 
vi ∈ V2)

a

b

e

f

c

d

g

V1
V2
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Weighted graph

 A weighted graph is a graph whose edges have a 
weight, i.e.,

 ∃ w: E → R  w(u,v) = weight of edge (u, v)

 In practice, weights may be integers, reals, 
positive or negative values, etc.

a

e

b

f

c

g

d

h

5

4 1

3

7

8

3

1

2

4

9

10
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Types of Graphs

Directed weighted graphs

Undirected unweighted graphs
∀(u,v)∈ E   w(u,v)=1

Undirected weighted graphs
(u,v)∈ E ⇔ (v,u)= ∈ E

Directed unweighted graphs
∀(u,v)∈ E   w(u,v)=1
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Non rooted trees

 A non rooted tree is an

 Undirected, connected, acyclic graph

 A forest is a

 Undirected acyclic graph
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Properties of non rooted trees

 A non rooted tree G = (V, E) with E edges and
V satisfies the following properties

 Every pair of nodes is connected by a single simple
path

 G is connected

 Removing an edge disconnects the graph

 G connected and E = V - 1

 G acyclic and E = V - 1

 G acyclic

 Adding an edge introduces a loop
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Rooted trees

 A rooted tree is a tree where there is a node r 
called root

 Parent/child relationship

 y is an ancestor of x if y belongs to the path from r
to x. In this case x is a descendant of y

 y is a proper ancestor of x iff x ≠ y

 Parent and a child are adjacent nodes

 The root has no parent

 Leaves have no children

r

b

y a

x

r

y ancestor of di x
x descendant of  y

a parent of b
b child of a
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Properties of a rooted tree

 Given a rooted tree T the following are common 
definitions

 Degree (T) = maximum number of children

 Depth (x) = length of the path from the root to x

 Height (T) = maximum depth of a node

depth= 0

depth= 1

depth= 2

depth= 3

Degree = 3
Height = 3
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 There are at least two representations for nodes
of a tree of degree k

 Each node may store a pointer to the parent, the 
key, and k pointers to k children

 Unefficient if only few nodes have indeed degree k

● Space is allocated for all k pointers, but many are 
NULL)

Representation of a tree

Pointer to parent

key

…

Pointers to k children.
Possibly NULL

The pointers to the 
father is optional
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 Each node may also store a pointer to parent, the 
key, 1 pointer to left child, 1 pointer to right sibling

 Efficient, as each node specifies always 2 pointers, 
no matter the degree of the tree

Representation of a tree

Pointer to parent

key

Pointer to left child

Pointer to 
right sibling

The pointers to the 
father is optional



24Algorithms and Programming – Camurati & Quer

NULL

NULL

NULL

NULL NULL NULL NULL NULL NULL

NULL

Representation of a tree

Left-child
right-sibling

representation

Standard
representation
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Binary trees

 Definition

 Tree of degree 2

 Recursively T is

 Empty set of nodes

 Root, left subtree, right subtree
r

left right
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 A complete binary tree must satisty two
conditions

 All leaves have the same depth

 Every node is either a leaf or it has 2 children

 In a complete binary tree of height h

 The number of leaves is 2h

 The number of nodes is

 Σ0≤ i ≤ h 2i = 20 + 21 + 22 … + 2h 

 = 2h+1 –1

Complete Binary Trees

Finite geometric
progression with ratio = 2

h = 3
8 leaves
15 nodes
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 In a balanced binary tree all paths root-leaves
have the same length

 If T is complete, then T is also balanced

 The opposite is not necessarily true

Balanced binary trees
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 A binary tree is said to be almost balanced if the 
length of all paths from root to leaves differs at
most by 1

Balanced binary trees
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Linear Sequences

 A linear sequence is a finite set of consecutive 
elements

 A unique index is associated to each element

 a0, a1, … , ai, …, an-1

 A predecessor/successor relation is defined on 
couples of  elements

 ai+1 = succ (ai)

 ai = pred (ai+1)

 A linear sequence can be stored using different
underlying data structures

 Array

 List
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 An array stores element contiguously in memory

 Array enables direct access
 Given index i, we access element ai without any

need for scanning the whole sequence

 The cost of an access does not depend on the 
position of the element in the linear sequence, 
thus it is O(1)

Linear Sequences

One unique chunk
of memory
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p

 A list stores element non contiguously in 
memory

 List only allows sequential access

 Given index i, we access element ai scanning the 
linear sequence starting from one of its
boundaries, usually the left one

 The access cost depends on the position of the 
element in the linear sequence, thus it is O(n) in 
the worst case

Linear Sequences

One chunk of memory
for each element

Element of the list
Pointers
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 Operations on lists

 Search

 Scan the list looking for an element whose key field
equals a given key

 Insert an element

 At the head of an unsorted list 

 At the tail of an unsorted list 

 At a position such as to guarantee that the 
invariance property of a sorted list is satisfied

 Extract an element

 From the head of an unsorted list 

 That has a field whose contents equals a deletion
key (such an operation usually requires a search for 
the element to be deleted)

Lists
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 Lists can be generalized into collections of data

 Data are inserted and deleted using different
logics suited to obtained the desired result

 Among collections we recall

 Stacks

 Queues

 Priority Queues

Lists
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 Criteria to extract elements

 Extract the most-recently inserted element

 LIFO policy: Last-In First-Out

 Insertions are usually referred as push

 Extractions are usually referred as pop

 Pushes and pops are performend onto the structure
head, usually referred as top of the stack or tos

 The data structure is manipulated using an index (or 
a pointer) to the tos

Stacks
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Initial
configuration

push(15)

15
push(3)

15

3

push(2)

15

3

2

pop

15

3

2Extracted
Element

Stacks

 A stack is usually represented as a pile of objects

 A stack usually grows upward (towards smaller
memory addresses)

push pop
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 Criteria to extract elements

 Extract the least-recently inserted element

 FIFO policy: First-In First-Out

 Insertions are usually referred as enqueue

 Extractions are usually referred as dequeue

 Enqueues are performend onto the structure tail, 
usually referred as tail

 Dequeues are performend onto the structure head, 
usually referred as head

 The data structure is manipulated using two indexes
(or pointers) to the head and tail

Queues

dequeue enqueue
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enqueue(15)

15enqueue(3) 3

head tail

15enqueue(2) 3

head

2

tail

15

dequeue 3

head

2

tail

init

Extracted
Element

Queues

15

head tail

dequeue

3

2

head tail

Extracted
Element

head tail
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 Criteria to extract elements

 Each element as an associated priority value

 During each extraction, the highest (or lowest) 
priority element is extracted

 The insertion logic and the used structure have to 
guarantees that property

Priority Queues

Max (min) priority
queue
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insert(Black, 2)

priority queue

insert(Smith, 15)

insert(Jones, 5)

extract()

Smith 15

Priority Queues

Jones 5

Jones 5

Smith 15

Jones 5

Black 2

Jones 5

Smith 15 Black 2

init

Extracted
element

Data field + Priority field


