
Discrete mathematics

Graphs, trees, lists
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2Algorithms and Programming – Camurati & Quer

Graphs

 Definition

 G = (V, E)

 V = Finite and non empty set of vertices (simple or
complex data)

 E = Finite set of edges, that define a binary relation on
V

 Directed/Undirected graphs

 Directed

 Edge = sorted pair of vertices (u, v) ∈ E and u, v ∈ V

 Undirected

 Edge = unsorted pair of vertices (u, v) ∈ E and u, v ∈ V

3Algorithms and Programming – Camurati & Quer

Applications

Domain Vertex Edge

communications phone, computer fiber optic, cable

circuits gate, register, processor wire

mechanics joint spring

finance stocks, currencies transactions

transports airoport, station air corridor, railway line

games position on board legal move

social networks person friendship

neural networks neuron synapsis

chemical compounds molecules link

4Algorithms and Programming – Camurati & Quer

Example: Directed graph

d

a

e f

b c

G = {V, E}
V = {a, b, c, d, e, f}
E = {(a,b),(b,b),(b,d),(b,e),

(d,a),(d,e),(e,d),(f,c)}

In some contexts self-loops
may be forbidden.

If the context allows loops,
but the graph is self-loop-
free, it is called simple

Self-loop

5Algorithms and Programming – Camurati & Quer

Example: Undirected graph

d

a

e f

b c

G = {V, E}
V = {a, b, c, d, e, f}
E = {(a,b),(b,d),(b,e),(c,f)}

Self-loop

In some contexts self-loops
may be forbidden.

If the context allows loops,
but the graph is self-loop-
free, it is called simple

6Algorithms and Programming – Camurati & Quer

Edges

 Edges

 An edge (a, b) can be

 Incident from vertex a

 Incident in vertex b

 Incident on vertices a and b

 Vertices a and b are adjacent

 a → b ⇔ (a, b) ∈ E

a b

7Algorithms and Programming – Camurati & Quer

Edges

 Undirected graph

 Degree (a) = number of incident edges

 Directed graph

 In-degree (a) = number of incoming edges

 Out-degree (a) = number of outgoing edges

 Degree (a) = in-degree(a) + out-degree(a)

a
In-degree (a) = 2
Out-degree (a) = 1
Degree (a) = 3

Degree (a) = 3 a

8Algorithms and Programming – Camurati & Quer

Paths

 Paths

 A path p, u →p u', is defined in G = (V, E) as

 ∃(v0,v1,v2,…,vk)  u=v0, u'=vk, ∀i = 1,2,…,k (vi-1,vi) ∈ E

 k = length of the path

 u' is reachable from u ⇔ ∃ p: u →p u'

 Simple path p: distinct (v0,v1,v2,…,vk) ∈ p

d

a

c

b
G = (V, E)
p: a →p d : (a, b), (b, c), (c, d)
k = 3
d is reachable from a
p is a simple path

9Algorithms and Programming – Camurati & Quer

Loops

 Loops

 A loop is defined as a path where

 v0=vk , the starting and arrival vertices do coincide

 Self-loop

 Loops whose length is 1

 A graphs without loops is called

 acyclic

d

a

c

b

Loop, k=4

Self-loop

10Algorithms and Programming – Camurati & Quer

Connection in undirected graphs

 An undirected graph is said to be connected iff

 ∀vi,vj ∈ V there exists a path p such that vi →p vj

 In an undirected graph

 Connected component

 Maximal connected subgraph, that is, there is no
superset including it which is connected

 Connected undirected graph

 Only one connected component

a

e

b c d

hf g

11Algorithms and Programming – Camurati & Quer

Connection in directed graphs

 A directed graph is said to be strongly connected iff

 ∀vi,vj ∈ V there exists two paths p, p’ such that
vi →p vj and vj →p’ vi

 In a directed graph

 Strongly connected component

 Maximal strongly connected subgraph

 Strongly connected directed graph

 Only one strongly

 connected

 component

a

e

b

f

c

g

d

h

12Algorithms and Programming – Camurati & Quer

Dense/sparse graphs

 Given a graph

 G = (V, E)

 with

 |V| = cardinality of set V

 |E| = cardinality of set E

 We define

 Dense graph

 |E| ≅ |V|2

 Sparse graph

 |E| << |V|2

A lot of edges

Few edges

13Algorithms and Programming – Camurati & Quer

Complete graph

 Definition

 ∀vi, vj ∈ V ∃ (vi,vj) ∈ E

 How many edges there are in a complete
undirected graph?

 |E| is given by the number of combinations of
|V| elements taken 2 by 2

 |E| =
� !

� �� ! · �!
=

� · � �� · � �� !

� �� !·�!
=

� · � ��

�

a

c

b

d

Combinations:
Order does not

matter

14Algorithms and Programming – Camurati & Quer

 How many edges there are in a complete directed
graph?

 |E| is the number of dispositions of |V| elements
taken 2 by 2

 |E| =
� !

� �� !
=

� · � �� · � �� !

� �� !
= |V| · (|V|-1)

a

c

b

d

Dispositions:
Order matters

Complete graph

15Algorithms and Programming – Camurati & Quer

Bipartite graph

 Definition

 Undirected graph where the V set may be
partitioned in 2 subsets V1 and V2, such that

 ∀(vi, vj) ∈ E and (vi ∈ V1 and vj ∈ V2) or (vj ∈ V1 and
vi ∈ V2)

a

b

e

f

c

d

g

V1
V2

16Algorithms and Programming – Camurati & Quer

Weighted graph

 A weighted graph is a graph whose edges have a
weight, i.e.,

 ∃ w: E → R  w(u,v) = weight of edge (u, v)

 In practice, weights may be integers, reals,
positive or negative values, etc.

a

e

b

f

c

g

d

h

5

4 1

3

7

8

3

1

2

4

9

10

2

17Algorithms and Programming – Camurati & Quer

Types of Graphs

Directed weighted graphs

Undirected unweighted graphs
∀(u,v)∈ E w(u,v)=1

Undirected weighted graphs
(u,v)∈ E ⇔ (v,u)= ∈ E

Directed unweighted graphs
∀(u,v)∈ E w(u,v)=1

18Algorithms and Programming – Camurati & Quer

Non rooted trees

 A non rooted tree is an

 Undirected, connected, acyclic graph

 A forest is a

 Undirected acyclic graph

19Algorithms and Programming – Camurati & Quer

Properties of non rooted trees

 A non rooted tree G = (V, E) with E edges and
V satisfies the following properties

 Every pair of nodes is connected by a single simple
path

 G is connected

 Removing an edge disconnects the graph

 G connected and E = V - 1

 G acyclic and E = V - 1

 G acyclic

 Adding an edge introduces a loop

20Algorithms and Programming – Camurati & Quer

Rooted trees

 A rooted tree is a tree where there is a node r
called root

 Parent/child relationship

 y is an ancestor of x if y belongs to the path from r
to x. In this case x is a descendant of y

 y is a proper ancestor of x iff x ≠ y

 Parent and a child are adjacent nodes

 The root has no parent

 Leaves have no children

r

b

y a

x

r

y ancestor of di x
x descendant of y

a parent of b
b child of a

21Algorithms and Programming – Camurati & Quer

Properties of a rooted tree

 Given a rooted tree T the following are common
definitions

 Degree (T) = maximum number of children

 Depth (x) = length of the path from the root to x

 Height (T) = maximum depth of a node

depth= 0

depth= 1

depth= 2

depth= 3

Degree = 3
Height = 3

22Algorithms and Programming – Camurati & Quer

 There are at least two representations for nodes
of a tree of degree k

 Each node may store a pointer to the parent, the
key, and k pointers to k children

 Unefficient if only few nodes have indeed degree k

● Space is allocated for all k pointers, but many are
NULL)

Representation of a tree

Pointer to parent

key

…

Pointers to k children.
Possibly NULL

The pointers to the
father is optional

23Algorithms and Programming – Camurati & Quer

 Each node may also store a pointer to parent, the
key, 1 pointer to left child, 1 pointer to right sibling

 Efficient, as each node specifies always 2 pointers,
no matter the degree of the tree

Representation of a tree

Pointer to parent

key

Pointer to left child

Pointer to
right sibling

The pointers to the
father is optional

24Algorithms and Programming – Camurati & Quer

NULL

NULL

NULL

NULL NULL NULL NULL NULL NULL

NULL

Representation of a tree

Left-child
right-sibling

representation

Standard
representation

25Algorithms and Programming – Camurati & Quer

Binary trees

 Definition

 Tree of degree 2

 Recursively T is

 Empty set of nodes

 Root, left subtree, right subtree
r

left right

26Algorithms and Programming – Camurati & Quer

 A complete binary tree must satisty two
conditions

 All leaves have the same depth

 Every node is either a leaf or it has 2 children

 In a complete binary tree of height h

 The number of leaves is 2h

 The number of nodes is

 Σ0≤ i ≤ h 2i = 20 + 21 + 22 … + 2h

 = 2h+1 –1

Complete Binary Trees

Finite geometric
progression with ratio = 2

h = 3
8 leaves
15 nodes

27Algorithms and Programming – Camurati & Quer

 In a balanced binary tree all paths root-leaves
have the same length

 If T is complete, then T is also balanced

 The opposite is not necessarily true

Balanced binary trees

28Algorithms and Programming – Camurati & Quer

 A binary tree is said to be almost balanced if the
length of all paths from root to leaves differs at
most by 1

Balanced binary trees

29Algorithms and Programming – Camurati & Quer

Linear Sequences

 A linear sequence is a finite set of consecutive
elements

 A unique index is associated to each element

 a0, a1, … , ai, …, an-1

 A predecessor/successor relation is defined on
couples of elements

 ai+1 = succ (ai)

 ai = pred (ai+1)

 A linear sequence can be stored using different
underlying data structures

 Array

 List

30Algorithms and Programming – Camurati & Quer

 An array stores element contiguously in memory

 Array enables direct access
 Given index i, we access element ai without any

need for scanning the whole sequence

 The cost of an access does not depend on the
position of the element in the linear sequence,
thus it is O(1)

Linear Sequences

One unique chunk
of memory

31Algorithms and Programming – Camurati & Quer

p

 A list stores element non contiguously in
memory

 List only allows sequential access

 Given index i, we access element ai scanning the
linear sequence starting from one of its
boundaries, usually the left one

 The access cost depends on the position of the
element in the linear sequence, thus it is O(n) in
the worst case

Linear Sequences

One chunk of memory
for each element

Element of the list
Pointers

32Algorithms and Programming – Camurati & Quer

 Operations on lists

 Search

 Scan the list looking for an element whose key field
equals a given key

 Insert an element

 At the head of an unsorted list

 At the tail of an unsorted list

 At a position such as to guarantee that the
invariance property of a sorted list is satisfied

 Extract an element

 From the head of an unsorted list

 That has a field whose contents equals a deletion
key (such an operation usually requires a search for
the element to be deleted)

Lists

33Algorithms and Programming – Camurati & Quer

 Lists can be generalized into collections of data

 Data are inserted and deleted using different
logics suited to obtained the desired result

 Among collections we recall

 Stacks

 Queues

 Priority Queues

Lists

34Algorithms and Programming – Camurati & Quer

 Criteria to extract elements

 Extract the most-recently inserted element

 LIFO policy: Last-In First-Out

 Insertions are usually referred as push

 Extractions are usually referred as pop

 Pushes and pops are performend onto the structure
head, usually referred as top of the stack or tos

 The data structure is manipulated using an index (or
a pointer) to the tos

Stacks

35Algorithms and Programming – Camurati & Quer

Initial
configuration

push(15)

15
push(3)

15

3

push(2)

15

3

2

pop

15

3

2Extracted
Element

Stacks

 A stack is usually represented as a pile of objects

 A stack usually grows upward (towards smaller
memory addresses)

push pop

36Algorithms and Programming – Camurati & Quer

 Criteria to extract elements

 Extract the least-recently inserted element

 FIFO policy: First-In First-Out

 Insertions are usually referred as enqueue

 Extractions are usually referred as dequeue

 Enqueues are performend onto the structure tail,
usually referred as tail

 Dequeues are performend onto the structure head,
usually referred as head

 The data structure is manipulated using two indexes
(or pointers) to the head and tail

Queues

dequeue enqueue

37Algorithms and Programming – Camurati & Quer

enqueue(15)

15enqueue(3) 3

head tail

15enqueue(2) 3

head

2

tail

15

dequeue 3

head

2

tail

init

Extracted
Element

Queues

15

head tail

dequeue

3

2

head tail

Extracted
Element

head tail

38Algorithms and Programming – Camurati & Quer

 Criteria to extract elements

 Each element as an associated priority value

 During each extraction, the highest (or lowest)
priority element is extracted

 The insertion logic and the used structure have to
guarantees that property

Priority Queues

Max (min) priority
queue

39Algorithms and Programming – Camurati & Quer

insert(Black, 2)

priority queue

insert(Smith, 15)

insert(Jones, 5)

extract()

Smith 15

Priority Queues

Jones 5

Jones 5

Smith 15

Jones 5

Black 2

Jones 5

Smith 15 Black 2

init

Extracted
element

Data field + Priority field

