

Discrete mathematics

Graphs, trees, lists

Paolo Camurati and Stefano Quer Dipartimento di Automatica e Informatica Politecnico di Torino

Graphs

2

Definition

≻ G = (V, E)

- V = Finite and non empty set of vertices (simple or complex data)
- E = Finite set of edges, that define a binary relation on V
- Directed/Undirected graphs
 - Directed
 - Edge = sorted pair of vertices (u, v) \in E and u, v \in V
 - Undirected
 - Edge = unsorted pair of vertices $(u, v) \in E$ and $u, v \in V$

Applications

Domain	Vertex	Edge
communications	phone, computer	fiber optic, cable
circuits	gate, register, processor	wire
mechanics	joint	spring
finance	stocks, currencies	transactions
transports	airoport, station	air corridor, railway line
games	position on board	legal move
social networks	person	friendship
neural networks	neuron	synapsis
chemical compounds	molecules	link

b

е

C

f

а

d

In some contexts self-loops may be forbidden. If the context allows loops, but the graph is self-loopfree, it is called **simple**

Edges

6

Edges

> An edge (a, b) can be

- Incident from vertex a
- Incident in vertex b
- Incident on vertices a and b

> Vertices a and b are adjacent

•
$$a \rightarrow b \Leftrightarrow (a, b) \in E$$

Undirected graph

Degree (a) = number of incident edges

Degree (a) = 3

Directed graph

- In-degree (a) = number of incoming edges
- Out-degree (a) = number of outgoing edges
- Degree (a) = in-degree(a) + out-degree(a)

7

Edges

a

Paths

8

Paths

- > A path p, $u \rightarrow_p u'$, is defined in G = (V, E) as
 - $\exists (v_0, v_1, v_2, ..., v_k) \mid u = v_0, u' = v_k, \forall i = 1, 2, ..., k (v_{i-1}, v_i) \in E$
- > k = length of the path
- \succ u' is reachable from $u \Leftrightarrow \exists p: u \rightarrow_p u'$
- > Simple path p: distinct $(v_0, v_1, v_2, ..., v_k) \in p$

Loops

9

Loops

> A loop is defined as a path where

v₀=v_k, the starting and arrival vertices do coincide

Self-loop

- Loops whose length is 1
- A graphs without loops is called acyclic

Connection in undirected graphs

An undirected graph is said to be connected iff

 $\succ \forall v_i, v_j \in V$ there exists a path p such that $v_i \rightarrow_p v_j$

In an undirected graph

- Connected component
 - Maximal connected subgraph, that is, there is no superset including it which is connected
- Connected undirected graph
 - Only one connected component

Connection in directed graphs

A directed graph is said to be strongly connected iff

 $\succ \forall v_i, v_i \in V$ there exists two paths p, p' such that

 $v_i \rightarrow_p v_j$ and $v_j \rightarrow_{p'} v_i$

- In a directed graph
 - Strongly connected component
 - Maximal strongly connected subgraph
 - Strongly connected directed graph
 - Only one strongly

connected component

Dense/sparse graphs

12

Given a graph

≻ G = (V, E)

with

> |V| = cardinality of set V

 \geq |E| = cardinality of set E

We define

Complete graph

13

Definition

$$\succ \forall v_i, v_j \in V \quad \exists (v_i, v_j) \in E$$

How many edges there are in a complete undirected graph?

|E| is given by the number of combinations of
|V| elements taken 2 by 2

•
$$|\mathsf{E}| = \frac{|V|!}{(|V|-2)! \cdot 2!} = \frac{|V| \cdot (|V|-1) \cdot (|V|-2)!}{(|V|-2)! \cdot 2!} = \frac{|V| \cdot (|V|-1)}{2}$$

Combinations: Order does not matter

Types of Graphs

17

Directed weighted graphs

Undirected weighted graphs $(u,v) \in E \Leftrightarrow (v,u) = \in E$

Undirected unweighted graphs $\forall (u,v) \in E \quad w(u,v)=1$

Directed unweighted graphs $\forall (u,v) \in E \quad w(u,v)=1$

Properties of non rooted trees

- A non rooted tree G = (V, E) with |E| edges and |V| satisfies the following properties
 - Every pair of nodes is connected by a single simple path
 - ➤ G is connected
 - Removing an edge disconnects the graph
 - > G connected and |E| = |V| 1
 - > G acyclic and |E| = |V| 1
 - ➤ G acyclic
 - Adding an edge introduces a loop

- Unefficient if only few nodes have indeed degree k
 - Space is allocated for all k pointers, but many are NULL)

no matter the degree of the tree

Binary trees

25

Definition

- Tree of degree 2
- Recursively T is
 - Empty set of nodes
 - Root, left subtree, right subtree

Lists

32

Operations on lists

- Search
 - Scan the list looking for an element whose key field equals a given key

Insert an element

- At the head of an unsorted list
- At the tail of an unsorted list
- At a position such as to guarantee that the invariance property of a sorted list is satisfied

Extract an element

- From the head of an unsorted list
- That has a field whose contents equals a deletion key (such an operation usually requires a search for the element to be deleted)

Lists can be generalized into collections of data

- Data are inserted and deleted using different logics suited to obtained the desired result
- Among collections we recall
 - Stacks
 - > Queues
 - Priority Queues

Lists

Stacks

34

Criteria to extract elements

- Extract the most-recently inserted element
 - LIFO policy: Last-In First-Out
 - Insertions are usually referred as push
 - Extractions are usually referred as pop
 - Pushes and pops are performend onto the structure head, usually referred as top of the stack or tos
 - The data structure is manipulated using an index (or a pointer) to the tos

Criteria to extract elements

- Extract the least-recently inserted element
 - **FIFO** policy: First-In First-Out
 - Insertions are usually referred as enqueue
 - Extractions are usually referred as dequeue
 - Enqueues are performend onto the structure tail, usually referred as tail
 - Dequeues are performend onto the structure head, usually referred as head
 - The data structure is manipulated using two indexes (or pointers) to the head and tail

Queues

Priority Queues

38

Criteria to extract elements

- > Each element as an associated priority value
- During each extraction, the highest (or lowest) priority element is extracted
 - The insertion logic and the used structure have to guarantees that property

Max (min) priority queue

