#include <ddiibh>
#include <slving h>
#include <clype.h>

#define MAXPAROLA 30
#define MANRGA 80

Int main(int orge, chor *orgv(l)
{

e A
Sorting algorithms

Classification
Paolo Camurati and Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

Algorithms and Programming - Camurati & Quer 2

On the importance of sorting

< On an average application 30% of CPU time is
spent on sorting data

s Example
» CPU scheduling

= Processes pi with duration
® py21
®p;3
° p,1
® p;32
= Impact of sorting on average wait time

Algorithms and Programming - Camurati & Quer 3

On the importance of sorting

Po P1 P2 Ps3

ettt 3> D-P;-P,-P3
0 21 242527

> average wait time (0+21+24+25)/4 =17.5
Pi Ps3 Po P2
A —————————> ~ P17P3"PoP;
0 3 5 26 27

e S—————————————— G o Y

013 6 27 N
Sorted

» average wait time (0+1+3+6)/4 =2.5

Algorithms and Programming - Camurati & Quer 4

Sorting applications

% Trivial applications
» Sorting a list of hames, organizing an MP3 library,
displaying Google PageRank results, etc.

% Simple problems if data are sorted

> Find the median, binary search in a database, find
duplicates in a mailing list, etc.

%+ Non trivial applications

» Data compression, computer graphics (e.q.,
convex hull), computational biology, etc.

—
Algorithms and Programming - Camurati & Q »5 s 5

Definitions

% Sorting
» Input
= Symbols belonging to a set having an order relation
" 3y, @y, ..., Ay
» Output
= Permutation of the input symbols

4

e a,,a), ..., a,
= Such that the order relation
e 3,/<a,=<..<a,

holds

Algorithms and Programming - Camurati & Quer 6

Definitions

% Order relation <
> Binary relation between elements of a set A
satisfying the following properties

= Reflexivity
o UXIOA>X<X

= Antisymmetry
e X, YyUA>X<sylysx=x=y
= Transitivity
e X, ¥,ZUA 2 x<ylly<sz=Xx<z
% A'is a partially ordered set (poset)

% If relation < holds O x, y O A, A is totally ordered
set

&

Algorithms and Programming - Camurati & Que : i

Classification

% Internal sorting
» Data are in main memory
> Direct access to elements
% External sorting

» Data are on mass memory
= Completely or at least partially

» Sequential access to elements

"/ -

Algorithms and Programming - Camurati & Que U 8

Classification

% In place sorting
> n data in array plus a constant number of auxiliary
memory locations
++ Stable sorting

» For data with duplicated keys the relative ordering
is unchanged

» Example

= Record with 2 keys
e Name (key is a string)
e Group (key is an integer)

Algorithms and Programming - Camurati & Quen 9

Stability: An example

Second sorting
First sorting according to group
according to string
name

Second sorting
according to

group
stable algorithm

NON stable
algorithm

Unsorted data \

Chiara | 3 Andrea | 3 Franco | 1 Franco | 1
Bar bara | 4 Barbara | 4 Roberto | 2 Roberto | 2
Andrea | 3 Chiara | 3 Chiara | 3 Andrea | 3
Roberto | 2 Fabio |3 Fabio | 3 Chiara | 3
Gada |4 Franco | 1 Andrea | 3 Fabio |3
Franco | 1 Gada |4 Lucia |3 Lucia |3
Lucia |3 Lucia |3 G ada |4 Bar bara | 4
Fabio | 3 Roberto | 2 Barbara | 4 Gada |4

Algorithms and Programming - Camurati & Quer 10

Classification

s+ Complexity
» Complexity can be computed in terms of overall
number of steps, each one with a constant cost
» A more detailed analysis is also possible,
computing the total number of
= Comparisons
= Exchange operations
» When data is large, exchanging them may be

expensive and may be better to have more
comparisons and less exchange operations

» Asymptotic complexity however does not change

;/’/'

Algorithms and Programming - Camurati & Que ; 1

Classification

> 0(n?)
= Simple, iterative, based on comparison
= Insertion sort, Selection sort, Exchange
(Bubble) sort
> 0O(n3/2)
= Shellsort (with certain sequences)
» O(n - log n)
= More complex, recursive, based on comparison
= Merge sort, Quicksort, Heapsort
> 0O(n)
= Applicable with restrictions on data, based on
computation
= Counting sort, Radix sort, Bin/Bucket sort

&

Algorithms and Programming - Camurati & Que ' . 12

A lower bound for the complexity

% Algorithms based on comparison
» Elementary operation
= Comparison
® g;. aj
» Outcome
= Decision
® 3;>3; Or a<q,
= Decisions organized as a decision tree

Algorithms and Programming - Camurati & Quer 13

A lower bound for the complexity

< Sort array of 3 distinct elements a,, a,, a,

=3
< @ > for the sake of simplicity J

< > < >

Algorithms and Programming - Camurati & Quen I

A lower bound for the complexity

> For n distinct integers

= The number of possible sortings equals the number
of permutations, i.e., is n!

» Each solution

= Sits on a tree leaf
» Complexity

= Number h of comparisons, that is, the tree height h
» For a complete tree

= The number of leaves
is 2h

&

Algorithms and Programming - Camurati & Que i . 15

A lower bound for the complexity

The tree has to include
» Then we must have ((generate) all possibile sorting

= 2h >l —~_ on the leaves

;/’/'

Algorithms and Programming - Camurati & Quer 16

A lower bound for the complexity

» Then we have
. Stirling’s
2"z n! Q approximation
2 > n! > (n/e)" n! > (n/e)n

2" > (n/e)"
G

Ig 2" > Ig (n/e)" Q We compute the log
h>n-lIg(n/e) of both members

h>n(lgn-Ige)=Q(nlgn)

Log property

