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On the importance of sorting

 On an average application 30% of CPU time is
spent on sorting data 

 Example

 CPU scheduling

 Processes pi with duration

● p0 21

● p1 3

● p2 1

● p3 2

 Impact of sorting on average wait time
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On the importance of sorting

 average wait time (0+21+24+25)/4 =17.5

 average wait time (0+3+5+26)/4 =8.5

 average wait time (0+1+3+6)/4 =2.5

0 3 5 26 27

p0p1 p2p3

0 3 6 27

p0p1p2 p3

1

0 21 24 25 27

p1 p2 p3p0

 p0-p1-p2-p3

 p1-p3-p0-p2

 p2-p3-p1-p0

Sorted
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Sorting applications

 Trivial applications

 Sorting a list of names, organizing an MP3 library, 
displaying Google PageRank results, etc.

 Simple problems if data are sorted

 Find the median, binary search in a database, find
duplicates in a mailing list, etc.

 Non trivial applications

 Data compression, computer graphics (e.g., 
convex hull), computational biology, etc.
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Definitions

 Sorting

 Input

 Symbols belonging to a set having an order relation

 a1, a2, …, an

 Output

 Permutation of the input symbols

● a1’, a2’, …, an’

 Such that the order relation

● a1’ ≤ a2’ ≤ …≤ an’

holds
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Definitions

 Order relation ≤
 Binary relation between elements of a set A 

satisfying the following properties

 Reflexivity

● ∀ x ∈ A  x ≤ x

 Antisymmetry

● ∀ x, y ∈ A  x ≤ y ∧ y ≤ x  x = y

 Transitivity

● ∀ x, y, z ∈ A   x ≤ y ∧ y ≤ z  x ≤ z

 A is a partially ordered set (poset)

 If relation ≤ holds ∀ x, y ∈ A, A is totally ordered
set
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Classification

 Internal sorting

 Data are in main memory

 Direct access to elements

 External sorting

 Data are on mass memory

 Completely or at least partially

 Sequential access to elements
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Classification

 In place sorting

 n data in array plus a constant number of auxiliary 
memory locations 

 Stable sorting

 For data with duplicated keys the relative ordering 
is unchanged

 Example

 Record with 2 keys

● Name (key is a string)

● Group (key is an integer)
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Stability: An example

Chiara 3

Barbara 4

Andrea 3

Roberto 2

Giada 4

Franco 1

Lucia 3

Fabio 3

Unsorted data

Second sorting
according to group

NON stable
algorithm

Second sorting
according to 

group
stable algorithm

First sorting
according to string

name

Andrea 3

Barbara 4

Chiara 3

Fabio 3

Franco 1

Giada 4

Lucia 3

Roberto 2

Franco 1

Roberto 2

Chiara 3

Fabio 3

Andrea 3

Lucia 3

Giada 4

Barbara 4

Franco 1

Roberto 2

Andrea 3

Chiara 3

Fabio 3

Lucia 3

Barbara 4

Giada 4
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Classification

 Complexity

 Complexity can be computed in terms of overall 
number of steps, each one with a constant cost

 A more detailed analysis is also possible, 
computing the total number of

 Comparisons

 Exchange operations

 When data is large, exchanging them may be 
expensive and may be better to have more 
comparisons and less exchange operations

 Asymptotic complexity however does not change
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Classification

 O(n2)
 Simple, iterative, based on comparison
 Insertion sort, Selection sort, Exchange

(Bubble) sort

 O(n3/2)
 Shellsort (with certain sequences)

 O(n · log n)
 More complex, recursive, based on comparison
 Merge sort, Quicksort, Heapsort

 O(n)
 Applicable with restrictions on data, based on 

computation
 Counting sort, Radix sort, Bin/Bucket sort
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A lower bound for the complexity

 Algorithms based on comparison
 Elementary operation

 Comparison

● ai : aj

 Outcome

 Decision

● ai>aj or ai≤aj

 Decisions organized as a decision tree
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 Sort array of 3 distinct elements a1, a2 , a3

a1:a2

a2:a3 a1:a3

a1<a2<a3 a1:a3 a2:a3

a3<a1<a2 a3<a2<a1

a2<a1<a3

a1<a3<a2 a2<a3<a1

>

>

>

>

>

<

<

<

<

<

A lower bound for the complexity

n = 3
for the sake of simplicity
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 For n distinct integers

 The number of possible sortings equals the number
of permutations, i.e., is n!

 Each solution

 Sits on a tree leaf

 Complexity

 Number h of comparisons, that is, the tree height h

 For a complete tree

 The number of leaves

is 2h

a1:a2

a2:a3 a1:a3

a1<a2<a3 a1:a3 a2:a3

a3<a1<a2 a3<a2<a1

a2<a1<a3

a1<a3<a2 a2<a3<a1

>

>

>

>

>

<

<

<

<

<

A lower bound for the complexity
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 Then we must have

 2h ≥ n!

The tree has to include 
(generate) all possibile sorting

on the leaves

a1:a2

a2:a3 a1:a3

a1<a2<a3 a1:a3 a2:a3

a3<a1<a2 a3<a2<a1

a2<a1<a3

a1<a3<a2 a2<a3<a1

>

>

>

>

>

<

<

<

<

<

A lower bound for the complexity
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 Then we have

 2h ≥ n!

 2h ≥ n! > (n/e)n

 2h > (n/e)n

 lg 2h > lg (n/e)n

 h > n · lg (n/e)

 h > n (lg n - lg e) = Ω(n lg n)

a1:a2

a2:a3 a1:a3

a1<a2<a3 a1:a3 a2:a3

a3<a1<a2 a3<a2<a1

a2<a1<a3

a1<a3<a2 a2<a3<a1

>

>

>

>

>

<

<

<

<

<

Stirling’s
approximation
n! > (n/e)n

We compute the log 
of both members

A lower bound for the complexity

Log property


