
Sorting algorithms

Classification
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2Algorithms and Programming – Camurati & Quer

On the importance of sorting

 On an average application 30% of CPU time is
spent on sorting data

 Example

 CPU scheduling

 Processes pi with duration

● p0 21

● p1 3

● p2 1

● p3 2

 Impact of sorting on average wait time

3Algorithms and Programming – Camurati & Quer

On the importance of sorting

 average wait time (0+21+24+25)/4 =17.5

 average wait time (0+3+5+26)/4 =8.5

 average wait time (0+1+3+6)/4 =2.5

0 3 5 26 27

p0p1 p2p3

0 3 6 27

p0p1p2 p3

1

0 21 24 25 27

p1 p2 p3p0

 p0-p1-p2-p3

 p1-p3-p0-p2

 p2-p3-p1-p0

Sorted

4Algorithms and Programming – Camurati & Quer

Sorting applications

 Trivial applications

 Sorting a list of names, organizing an MP3 library,
displaying Google PageRank results, etc.

 Simple problems if data are sorted

 Find the median, binary search in a database, find
duplicates in a mailing list, etc.

 Non trivial applications

 Data compression, computer graphics (e.g.,
convex hull), computational biology, etc.

5Algorithms and Programming – Camurati & Quer

Definitions

 Sorting

 Input

 Symbols belonging to a set having an order relation

 a1, a2, …, an

 Output

 Permutation of the input symbols

● a1’, a2’, …, an’

 Such that the order relation

● a1’ ≤ a2’ ≤ …≤ an’

holds

6Algorithms and Programming – Camurati & Quer

Definitions

 Order relation ≤
 Binary relation between elements of a set A

satisfying the following properties

 Reflexivity

● ∀ x ∈ A x ≤ x

 Antisymmetry

● ∀ x, y ∈ A x ≤ y ∧ y ≤ x x = y

 Transitivity

● ∀ x, y, z ∈ A x ≤ y ∧ y ≤ z x ≤ z

 A is a partially ordered set (poset)

 If relation ≤ holds ∀ x, y ∈ A, A is totally ordered
set

7Algorithms and Programming – Camurati & Quer

Classification

 Internal sorting

 Data are in main memory

 Direct access to elements

 External sorting

 Data are on mass memory

 Completely or at least partially

 Sequential access to elements

8Algorithms and Programming – Camurati & Quer

Classification

 In place sorting

 n data in array plus a constant number of auxiliary
memory locations

 Stable sorting

 For data with duplicated keys the relative ordering
is unchanged

 Example

 Record with 2 keys

● Name (key is a string)

● Group (key is an integer)

9Algorithms and Programming – Camurati & Quer

Stability: An example

Chiara 3

Barbara 4

Andrea 3

Roberto 2

Giada 4

Franco 1

Lucia 3

Fabio 3

Unsorted data

Second sorting
according to group

NON stable
algorithm

Second sorting
according to

group
stable algorithm

First sorting
according to string

name

Andrea 3

Barbara 4

Chiara 3

Fabio 3

Franco 1

Giada 4

Lucia 3

Roberto 2

Franco 1

Roberto 2

Chiara 3

Fabio 3

Andrea 3

Lucia 3

Giada 4

Barbara 4

Franco 1

Roberto 2

Andrea 3

Chiara 3

Fabio 3

Lucia 3

Barbara 4

Giada 4

10Algorithms and Programming – Camurati & Quer

Classification

 Complexity

 Complexity can be computed in terms of overall
number of steps, each one with a constant cost

 A more detailed analysis is also possible,
computing the total number of

 Comparisons

 Exchange operations

 When data is large, exchanging them may be
expensive and may be better to have more
comparisons and less exchange operations

 Asymptotic complexity however does not change

11Algorithms and Programming – Camurati & Quer

Classification

 O(n2)
 Simple, iterative, based on comparison
 Insertion sort, Selection sort, Exchange

(Bubble) sort

 O(n3/2)
 Shellsort (with certain sequences)

 O(n · log n)
 More complex, recursive, based on comparison
 Merge sort, Quicksort, Heapsort

 O(n)
 Applicable with restrictions on data, based on

computation
 Counting sort, Radix sort, Bin/Bucket sort

12Algorithms and Programming – Camurati & Quer

A lower bound for the complexity

 Algorithms based on comparison
 Elementary operation

 Comparison

● ai : aj

 Outcome

 Decision

● ai>aj or ai≤aj

 Decisions organized as a decision tree

13Algorithms and Programming – Camurati & Quer

 Sort array of 3 distinct elements a1, a2 , a3

a1:a2

a2:a3 a1:a3

a1<a2<a3 a1:a3 a2:a3

a3<a1<a2 a3<a2<a1

a2<a1<a3

a1<a3<a2 a2<a3<a1

>

>

>

>

>

<

<

<

<

<

A lower bound for the complexity

n = 3
for the sake of simplicity

14Algorithms and Programming – Camurati & Quer

 For n distinct integers

 The number of possible sortings equals the number
of permutations, i.e., is n!

 Each solution

 Sits on a tree leaf

 Complexity

 Number h of comparisons, that is, the tree height h

 For a complete tree

 The number of leaves

is 2h

a1:a2

a2:a3 a1:a3

a1<a2<a3 a1:a3 a2:a3

a3<a1<a2 a3<a2<a1

a2<a1<a3

a1<a3<a2 a2<a3<a1

>

>

>

>

>

<

<

<

<

<

A lower bound for the complexity

15Algorithms and Programming – Camurati & Quer

 Then we must have

 2h ≥ n!

The tree has to include
(generate) all possibile sorting

on the leaves

a1:a2

a2:a3 a1:a3

a1<a2<a3 a1:a3 a2:a3

a3<a1<a2 a3<a2<a1

a2<a1<a3

a1<a3<a2 a2<a3<a1

>

>

>

>

>

<

<

<

<

<

A lower bound for the complexity

16Algorithms and Programming – Camurati & Quer

 Then we have

 2h ≥ n!

 2h ≥ n! > (n/e)n

 2h > (n/e)n

 lg 2h > lg (n/e)n

 h > n · lg (n/e)

 h > n (lg n - lg e) = Ω(n lg n)

a1:a2

a2:a3 a1:a3

a1<a2<a3 a1:a3 a2:a3

a3<a1<a2 a3<a2<a1

a2<a1<a3

a1<a3<a2 a2<a3<a1

>

>

>

>

>

<

<

<

<

<

Stirling’s
approximation
n! > (n/e)n

We compute the log
of both members

A lower bound for the complexity

Log property

