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On the importance of sorting

 On an average application 30% of CPU time is
spent on sorting data 

 Example

 CPU scheduling

 Processes pi with duration

● p0 21

● p1 3

● p2 1

● p3 2

 Impact of sorting on average wait time
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On the importance of sorting

 average wait time (0+21+24+25)/4 =17.5

 average wait time (0+3+5+26)/4 =8.5

 average wait time (0+1+3+6)/4 =2.5

0 3 5 26 27

p0p1 p2p3

0 3 6 27

p0p1p2 p3

1

0 21 24 25 27

p1 p2 p3p0

 p0-p1-p2-p3

 p1-p3-p0-p2

 p2-p3-p1-p0

Sorted
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Sorting applications

 Trivial applications

 Sorting a list of names, organizing an MP3 library, 
displaying Google PageRank results, etc.

 Simple problems if data are sorted

 Find the median, binary search in a database, find
duplicates in a mailing list, etc.

 Non trivial applications

 Data compression, computer graphics (e.g., 
convex hull), computational biology, etc.
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Definitions

 Sorting

 Input

 Symbols belonging to a set having an order relation

 a1, a2, …, an

 Output

 Permutation of the input symbols

● a1’, a2’, …, an’

 Such that the order relation

● a1’ ≤ a2’ ≤ …≤ an’

holds
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Definitions

 Order relation ≤
 Binary relation between elements of a set A 

satisfying the following properties

 Reflexivity

● ∀ x ∈ A  x ≤ x

 Antisymmetry

● ∀ x, y ∈ A  x ≤ y ∧ y ≤ x  x = y

 Transitivity

● ∀ x, y, z ∈ A   x ≤ y ∧ y ≤ z  x ≤ z

 A is a partially ordered set (poset)

 If relation ≤ holds ∀ x, y ∈ A, A is totally ordered
set
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Classification

 Internal sorting

 Data are in main memory

 Direct access to elements

 External sorting

 Data are on mass memory

 Completely or at least partially

 Sequential access to elements
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Classification

 In place sorting

 n data in array plus a constant number of auxiliary 
memory locations 

 Stable sorting

 For data with duplicated keys the relative ordering 
is unchanged

 Example

 Record with 2 keys

● Name (key is a string)

● Group (key is an integer)
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Stability: An example

Chiara 3

Barbara 4

Andrea 3

Roberto 2

Giada 4

Franco 1

Lucia 3

Fabio 3

Unsorted data

Second sorting
according to group

NON stable
algorithm

Second sorting
according to 

group
stable algorithm

First sorting
according to string

name

Andrea 3

Barbara 4

Chiara 3

Fabio 3

Franco 1

Giada 4

Lucia 3

Roberto 2

Franco 1

Roberto 2

Chiara 3

Fabio 3

Andrea 3

Lucia 3

Giada 4

Barbara 4

Franco 1

Roberto 2

Andrea 3

Chiara 3

Fabio 3

Lucia 3

Barbara 4

Giada 4
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Classification

 Complexity

 Complexity can be computed in terms of overall 
number of steps, each one with a constant cost

 A more detailed analysis is also possible, 
computing the total number of

 Comparisons

 Exchange operations

 When data is large, exchanging them may be 
expensive and may be better to have more 
comparisons and less exchange operations

 Asymptotic complexity however does not change
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Classification

 O(n2)
 Simple, iterative, based on comparison
 Insertion sort, Selection sort, Exchange

(Bubble) sort

 O(n3/2)
 Shellsort (with certain sequences)

 O(n · log n)
 More complex, recursive, based on comparison
 Merge sort, Quicksort, Heapsort

 O(n)
 Applicable with restrictions on data, based on 

computation
 Counting sort, Radix sort, Bin/Bucket sort
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A lower bound for the complexity

 Algorithms based on comparison
 Elementary operation

 Comparison

● ai : aj

 Outcome

 Decision

● ai>aj or ai≤aj

 Decisions organized as a decision tree
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 Sort array of 3 distinct elements a1, a2 , a3

a1:a2

a2:a3 a1:a3

a1<a2<a3 a1:a3 a2:a3

a3<a1<a2 a3<a2<a1

a2<a1<a3

a1<a3<a2 a2<a3<a1

>

>

>

>

>

<

<

<

<

<

A lower bound for the complexity

n = 3
for the sake of simplicity
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 For n distinct integers

 The number of possible sortings equals the number
of permutations, i.e., is n!

 Each solution

 Sits on a tree leaf

 Complexity

 Number h of comparisons, that is, the tree height h

 For a complete tree

 The number of leaves

is 2h

a1:a2

a2:a3 a1:a3

a1<a2<a3 a1:a3 a2:a3

a3<a1<a2 a3<a2<a1

a2<a1<a3

a1<a3<a2 a2<a3<a1

>

>

>

>

>

<

<

<

<

<

A lower bound for the complexity
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 Then we must have

 2h ≥ n!

The tree has to include 
(generate) all possibile sorting

on the leaves

a1:a2

a2:a3 a1:a3

a1<a2<a3 a1:a3 a2:a3

a3<a1<a2 a3<a2<a1

a2<a1<a3

a1<a3<a2 a2<a3<a1

>

>

>

>

>

<

<

<

<

<

A lower bound for the complexity
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 Then we have

 2h ≥ n!

 2h ≥ n! > (n/e)n

 2h > (n/e)n

 lg 2h > lg (n/e)n

 h > n · lg (n/e)

 h > n (lg n - lg e) = Ω(n lg n)

a1:a2

a2:a3 a1:a3

a1<a2<a3 a1:a3 a2:a3

a3<a1<a2 a3<a2<a1

a2<a1<a3

a1<a3<a2 a2<a3<a1

>

>

>

>

>

<

<

<

<

<

Stirling’s
approximation
n! > (n/e)n

We compute the log 
of both members

A lower bound for the complexity

Log property


