
Algorithms and Complexity

Connectivity
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2Algorithms and Programming – Camurati & Quer

Online Connectivity

 Problem definition

 Given a set of N objects (from 0 to N-1)

 Accept as inputs a sequence of integer pairs (p, q)

 Where p∈[0, N-1] and q∈[0, N-1]

 With the meaning that the pair (p, q) indicates that
p must be connected to q

 Produce as outputs

 Null, if p and q are already connected (directly or
indirectly)

 The same pair (p, q), otherwise

3Algorithms and Programming – Camurati & Quer

Online Connectivity

 In other words we want to be able to

 Understand whether two objects are connected
(directly or undirectly)

 Connect objects in case they are not connected

 This implies that we should be able to perform
two possible operations

 Find query

 To find whether two objets are connected

 Union command

 To connects two unconnected objects

4Algorithms and Programming – Camurati & Quer

Online Connectivity

 Notice that

 We do not want to know the path which connect
two objects

 We just want to know whether such a path exists
or not

This is a problem we will
study with graphs

… but we wanto to be
as efficient as possible

5Algorithms and Programming – Camurati & Quer

Applications

 Connectivity has many possibile applications

 Computer networks
 Integers p and q represent computers

 (p, q) connections between computers

 Electrical networks
 Integers p and q represent contact points

 (p, q) wires

 Social networks
 Integers p and q represent subscribers

 (p, q) relationhips

 …

6Algorithms and Programming – Camurati & Quer

Applications: An Example

 Is there a path connecting p and q?

p

q

p

q

Objects Connections
(relationships, friendships, etc.)

 Yes !

7Algorithms and Programming – Camurati & Quer

Modeling the objects

 Applications involve manipulating objects of all
types

 Pixels in a digital photo

 Computers in a network

 Friends in a social network

 Transistors in a computer chip

 …

 When programming, it is convenient to map
objects (whatever they are) to integers

 To represent N object use integer from 0 to N–1

 Use integers as array index

8Algorithms and Programming – Camurati & Quer

Modeling the connections

 Connectivity is an equivalence relation

 Reflexive

 p is connected to p

 Symmetrical

 If p is connected to q, q is connected to p

 Transitive

 If p is connected to q and q is connected to r, then
p is connected to r

 Connectivity can be represented using
connected component

9Algorithms and Programming – Camurati & Quer

Modeling the connections

 A connected component is a

 Maximal subset of mutually reachable nodes

 Where no element is connected to an element
outside its connected component

0 1 32

4 5 6 7

3 connected components
{0}, {1, 4, 5},{2, 3, 6, 7}

Graph: Data structure representing
elements (nodes or vertices) and their
relationships or connections (edges)

A connected component may
have a leader, i.e., a class
member representing all
elements withing the
component

10Algorithms and Programming – Camurati & Quer

Implementing the operations

 Given all connected components the

 Find query

 Check if two objects are in the same component

 Union command

 Replace two connected components with their union

11Algorithms and Programming – Camurati & Quer

Example

 Input Pairs: 3-4, 4-9, 8-0, 2-3, 5-6, 2-9, 5-9, 7-3, 4-8, 6-5, 0-2, 6-1

0

3

6

7

5
4

1

28

9

12Algorithms and Programming – Camurati & Quer

Solution

0

3

6

7

5
4

1

28

9

 Input Pairs: 3-4, 4-9, 8-0, 2-3, 5-6, 2-9, 5-9, 7-3, 4-8, 6-5, 0-2, 6-1

 Output: 3-4, 4-9, 8-0, 2-3, 5-6, 2-9, 5-9, 7-3, 4-8, 6-5, 0-2, 6-1

13Algorithms and Programming – Camurati & Quer

Trivial solutions

 Trivial solutions

 For each pair (p, q)

 Check the connection by visiting the network

 Search q starting from p (or vice-versa)

 Cons

● May require a visit of the entire network for each new
pair

 For each node p

 Store all nodes reachable (transitive closure)

 Cons

● May need a memory size quadratic in the number of
nodes of the network

14Algorithms and Programming – Camurati & Quer

Target solution

 Design efficient data structure for union-find

 Keep into account that

 The number of objects N can be huge

 The number of operations M can be huge

 Find queries and union commands may be
intermixed

 We will analyze two algorithms

 An eager approach (quick-find)

 A lazy approach (quick-union)

15Algorithms and Programming – Camurati & Quer

Quick-find

 Hypothesis

 We do not have the graph (but we can use it to
reason on the problem)

 We work pair by pair

 We keep and update information necessary to find
out connectivity

● Sets S of connected pairs

● Initially S includes as many sets as nodes, each node
being connected just with itself

 Abstract operations

 find: find the set an object belongs to

 union: merge two sets

Slow union

16Algorithms and Programming – Camurati & Quer

Quick-find logic

 Represent sets Si of connected pairs with array id

 Initially all objects point to themselves

 id[i] = i (no connection)

 Find
 If p and q are connected, id[p] = id[q]

 Do nothing and move to the next pair

6, 7 and 8 are
connected

0 1 2 3 4 5 6 7 8 9

id 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

id 0 1 1 3 4 5 6 6 6 9

1 and 2 are
connected

17Algorithms and Programming – Camurati & Quer

Quick-find logic

 Union
 If p and q are not connected (i.e., id[p] ≠ id[q])

 Scan the array, replacing id[p] values with id[q]
values

0 1 2 3 4 5 6 7 8 9

id 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

id 0 1 2 4 4 5 6 7 8 9

(3, 4)
Union 3 and 4

3 4

3 4
4 is the class

leader

Tree
representation

Array
representation

18Algorithms and Programming – Camurati & Quer

Implementation

 Repeat for all pairs (p, q)

 Read the pair (p, q)

 Execute find on p

 Find an connected component Cp such that p∈Cp

 Execute find on q

 Find an connected component Cq such that q∈Cq

 If Cp and Cq coincide

 Do nothing and move on to the next pair

● The pair is already connected

 Otherwise, execute union on Cp and Cq

19Algorithms and Programming – Camurati & Quer

#include <stdio.h>

#define N 10000

int main() {
int i, t, p, q, id[N];
for(i=0; i<N; i++) {
id[i] = i;

}
do {
printf ("Input pair p q: ");
scanf ("%d %d", &p, &q);
if (id[p] != id[q]) {
for (t=id[p], i=0; i<N; i++) {
if (id[i] == t)
id[i] = id[q];

}
printf ("%d-%d\n", p, q);

}
} while (p!=q);

}

Implementation

If id[p]==id[q] then p and
q are already connected.
Nothing has to be done.

Union: replace all id[p]
with id[q]

Store id[p] into variable t to
avoid a nasty bug

Go-on until p!=q

20Algorithms and Programming – Camurati & Quer

Example

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9
3,2

6,4

3,4

5,2

6,2

0,8

9,1

3,8

6,4

0,5

21Algorithms and Programming – Camurati & Quer

Solution

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 2 4 5 6 7 8 9

0 1 2 2 4 5 4 7 8 9

0 1 4 4 4 5 4 7 8 9

0 1 4 4 4 4 4 7 8 9

0 1 4 4 4 4 4 7 8 9

8 1 4 4 4 4 4 7 8 9

8 1 4 4 4 4 4 7 8 1

8 1 8 8 8 8 8 7 8 1

8 1 8 8 8 8 8 7 8 1

8 1 8 8 8 8 8 7 8 1

3,2

6,4

3,4

5,2

6,2

0,8

9,1

3,8

6,4

0,5

22Algorithms and Programming – Camurati & Quer

Tree representation

 Some objects represent the set they belong to

 Other objects point to the object that represents
the set they belong to

 For each pair p,q

 Every id[p] becomes id[q]

 Every node i with id equal to id[p] goes under
node id[q]

23Algorithms and Programming – Camurati & Quer

Tree representation

2 91 3 4 5 6 7 80

2 91

3

4 5 6 7 80

3,4

2 91

3 4

5 6 7 80

4,9
or
3,9

Leader of the connected
component, i.e., class
representative

24Algorithms and Programming – Camurati & Quer

Exercise

 Input Pairs: 3-4, 4-9, 8-0, 2-3, 5-6, 2-9, 5-9, 7-3, 4-8, 6-5, 0-2

0 1 2 3 4 5 6 7 8 9

id 0 1 2 3 4 5 6 7 8 9

2 91 3 4 5 6 7 80

25Algorithms and Programming – Camurati & Quer

Solution

0 1 2 3 4 5 6 7 8 9

id 0 1 0 0 0 0 0 0 0 0

1 0

2 93 4 5 6 7 8

26Algorithms and Programming – Camurati & Quer

Complexity

 Find

 Reference to id[i]

 Unit cost

 Union

 Scan array to replace p values with q values

 Linear (in the array size) cost

 Overall

 Number of operations related to

 # pairs · array size = M · N

 Quadratic cost

 Very slow for real-time applications

do {
...
if (id[p] != id[q]) {

for (t=id[p], i=0; i<N; i++) {
if (id[i] == t)

id[i] = id[q];
}
printf ("%d-%d\n", p, q);

}
} while (p!=q);

27Algorithms and Programming – Camurati & Quer

Quick-union

 As with quick-find, represent sets Si of connected
pairs with an array id

 Initially all objects point to themselves

 id[i] = i (no connection)

 Each object points either to an object to which it is
connected or to itself (no loops)

 We write (id[i])* to indicate id[id[id[… id[i]]]],
going on until id[i]==i

 If objects i are j connected

 (id[i])* = (id[j])*

Not too quick find

0 1 32

4 5 6 7

28Algorithms and Programming – Camurati & Quer

Quick-union

 Connections can be easily followed on the tree
representation, moving from bottom to top

Keep going until
id[i]==i

0 1 2 3 4 5 6 7 8 9

id 0 1 9 4 9 6 6 7 0 9

3

1

2

9 6

4 5

7 0

8

29Algorithms and Programming – Camurati & Quer

Quick-union logic

2 91 3 4 5 6 7 80

3

4

2 91

5 7

6 80

3,7

…

2 91

5 7

6 80

3

4

For each pair p,q root of p
becomes a child of the

root of q

30Algorithms and Programming – Camurati & Quer

Implementation

 Repeat for all the pairs (p, q)

 Read the pair (p, q)

 Execute find on p to find the class leader of p

 Find Lp = (id[p])*

 Execute find on q to find the class leader of q

 Find Lq = ((id[q])*

 If Lp and Lq coincide

 Do nothing and move on to the next pair

● The pair is already connected

 Otherwise, execute union on Lp and Lq

● Lp=Lq, i.e., id[(id[p])*] = (id[q])*

31Algorithms and Programming – Camurati & Quer

#include <stdio.h>

#define N 10000

int main() {
int i, j, p, q, id[N];
for (i=0; i<N; i++) {

id[i] = i;
}
do {

printf ("Input pair p q: ");
scanf ("%d %d", &p, &q);
for (i = p; i!= id[i]; i = id[i]);
for (j = q; j!= id[j]; j = id[j]);
if (i != j) {

id[i] = j;
printf ("%d %d\n", p, q);

}
} while (p!=q);

}

Implementation

Find p

Find q

Union p and q

i = p;
while (i!= id[i]) {
i = id[i];

}

32Algorithms and Programming – Camurati & Quer

Example

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9
0-2

2-4

5-1

4-8

7-3

5-9

9-4

5-6

6-3

3-5

33Algorithms and Programming – Camurati & Quer

Solution

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

2 1 2 3 4 5 6 7 8 9

2 1 4 3 4 5 6 7 8 9

2 1 4 3 4 1 6 7 8 9

2 1 4 3 8 1 6 7 8 9

2 1 4 3 8 1 6 3 8 9

2 9 4 3 8 1 6 3 8 9

2 9 4 3 8 1 6 3 8 8

2 9 4 3 8 1 6 3 6 8

2 9 4 3 8 1 3 3 6 8

2 9 4 3 8 1 3 3 6 8

0-2

2-4

5-1

4-8

7-3

5-9

9-4

5-6

6-3

3-5

34Algorithms and Programming – Camurati & Quer

Exercise

 Input Pairs: 3-4, 4-9, 8-0, 2-3, 5-6, 2-9, 5-9, 7-3, 4-8, 6-5, 0-2

0 1 2 3 4 5 6 7 8 9

id 0 1 2 3 4 5 6 7 8 9

2 91 3 4 5 6 7 80

35Algorithms and Programming – Camurati & Quer

Solution

0 1 2 3 4 5 6 7 8 9

id 1 1 9 4 9 6 9 9 0 0

5

1

2

9

3

4

0

6 7

8

36Algorithms and Programming – Camurati & Quer

Complexity

 Find

 Scan a “chain” of objects

 Upper bound

 Linear cost in the number of objects

 In general well below this value (depending on the
chain length, tree height)

do {
printf ("Input pair p q: ");
scanf ("%d %d", &p, &q);
for (i = p; i!= id[i]; i = id[i]);
for (j = q; j!= id[j]; j = id[j]);
if (i != j) {
id[i] = j;
printf ("%d %d\n", p, q);

}
} while (p!=q);

37Algorithms and Programming – Camurati & Quer

Complexity

 Union

 Simple, as it is enough that an object points to
another object, unit cost

 Overall

 Number of operations related to

 # pairs · chain length = M · chain length

 Still too slow for long chains

do {
printf ("Input pair p q: ");
scanf ("%d %d", &p, &q);
for (i = p; i!= id[i]; i = id[i]);
for (j = q; j!= id[j]; j = id[j]);
if (i != j) {
id[i] = j;
printf ("%d %d\n", p, q);

}
} while (p!=q);

38Algorithms and Programming – Camurati & Quer

Quick union optimizations

 Weighted quick union

 To shorten the chain length

 Keep track of the number of elements in each
tree

 Connect the smaller tree to the larger one

 Use an array (array sz) to store tree size

Union by height or "rank",
i.e., always link the

root of smaller tree
to root of larger tree

39Algorithms and Programming – Camurati & Quer

 Given two trees

 According to which one is the larger, there might
be 2 solutions

 It is irrelevant if p appears at the right or at the
left of q

p

q or

q

p

40Algorithms and Programming – Camurati & Quer

int i, j, p, q, id[N], sz[N];
for(i=0; i<N; i++) {

id[i] = i; sz[i] = 1;
}
do {

printf ("Input pair p q: ");
scanf ("%d %d", &p, &q);
for (i = p; i!= id[i]; i = id[i]);
for (j = q; j!= id[j]; j = id[j]);
if (i == j)

printf ("pair %d %d already connected\n", p,q);
else {

printf ("pair %d %d not yet connected\n", p, q);
if (sz[i] <= sz[j]) {

id[i] = j; sz[j] += sz[i];
} else {

id[j] = i; sz[i] += sz[j];
}

}
} while (p!=q);

Implementation

Find p

Find q

Union: smaller
tree below
larger tree

41Algorithms and Programming – Camurati & Quer

Example

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9
0-2

2-4

5-1

4-8

7-3

5-9

9-4

5-6

6-3

3-5

We need to represent trees
to easily remind the tree size

42Algorithms and Programming – Camurati & Quer

Solution

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

2 1 2 3 4 5 6 7 8 9

2 1 2 3 2 5 6 7 8 9

2 1 2 3 2 1 6 7 8 9

2 1 2 3 2 1 6 7 2 9

2 1 2 3 2 1 6 3 2 9

2 1 2 3 2 1 6 3 2 1

2 2 2 3 2 1 6 3 2 1

2 2 2 3 2 1 2 3 2 1

2 2 2 2 2 1 2 3 2 1

2 2 2 2 2 1 2 3 2 1

0-2

2-4

5-1

4-8

7-3

5-9

9-4

5-6

6-3

3-5

43Algorithms and Programming – Camurati & Quer

Exercise

 Input Pairs: 3-4, 4-9, 8-0, 2-3, 5-6, 2-9, 5-9, 7-3, 4-8, 6-5, 0-2

0 1 2 3 4 5 6 7 8 9

id 0 1 2 3 4 5 6 7 8 9

2 91 3 4 5 6 7 80

44Algorithms and Programming – Camurati & Quer

Solution

0 1 2 3 4 5 6 7 8 9

id 4 1 4 4 4 6 4 4 0 4

8

4

0

1

2 3 6 7 9

5

45Algorithms and Programming – Camurati & Quer

Complexity

 Find

 Linear cost in the chain length

 Union

 Simple, as it is enough that an object points to
another object, unit cost

 Overall

 Number of operations related to

 # pairs · chain length = M · chain length

 But chain length grows logarithmically !

As quick union
… but …

46Algorithms and Programming – Camurati & Quer

Complexity

 Why logarithmically?

 What matters is the maximum distance between a
node and the root

 What matters is the height of the tree

 What matters is the longest path between the root
and a leaf

p

q

T2T1

We connect T2 smaller
with (below) T1 larger

47Algorithms and Programming – Camurati & Quer

Complexity

 If

 Height of T2 < height of T1 (strictly less)

● The overall height does not change

● It remains equal to the height of T1

 Height of T2 = height of T1

● The overall height is increased by 1

p

q

T2T1

The maximum height
is the maximum

between the one of
T1 and the one of T2

plus 1

The worst case
scenario is the one of
union linking trees

of equal size

48Algorithms and Programming – Camurati & Quer

Complexity

 But if the height of T1 is ≥ the height of T2

 Each time we connect a smaller tree to a larger
one we generate a tree whose size is on average
at least twice as big as T2

Because T1, being
higher, should

include, in fact on
average, more
nodes than T2

p

q

T2T1

49Algorithms and Programming – Camurati & Quer

Complexity

 Then

 At each step the number of elements increases by at
least a factor 2

 After i steps there will be at least

● (((1·2)·2)·2 … = 2i

elements

 As 2i cannot exceed N

● 2i ≤ N

must hold

 Thus

● i ≤ log2N

p

q

T2T1

Where i is the
number of steps

