

Connectivity

Paolo Camurati and Stefano Quer Dipartimento di Automatica e Informatica

Politecnico di Torino

Online Connectivity

* Problem definition
$>$ Given a set of N objects (from 0 to $\mathrm{N}-1$)
$>$ Accept as inputs a sequence of integer pairs (p, q)
- Where $\mathrm{p} \in[0, \mathrm{~N}-1]$ and $\mathrm{q} \in[0, \mathrm{~N}-1]$
- With the meaning that the pair (p, q) indicates that p must be connected to q
> Produce as outputs
- Null, if p and q are already connected (directly or indirectly)
- The same pair (p, q), otherwise

Online Connectivity

* In other words we want to be able to
> Understand whether two objects are connected (directly or undirectly)
$>$ Connect objects in case they are not connected
This implies that we should be able to perform two possible operations
\Rightarrow Find query
- To find whether two objets are connected
$>$ Union command
- To connects two unconnected objects

Online Connectivity

* Notice that
$>$ We do not want to know the path which connect two objects

This is a problem we will study with graphs
> We just want to know whether such a path exists or not

Applications

Connectivity has many possibile applications
> Computer networks

- Integers p and q represent computers
- (p, q) connections between computers
> Electrical networks
- Integers p and q represent contact points
- (p, q) wires
$>$ Social networks
- Integers p and q represent subscribers
- (p, q) relationhips

Applications: An Example

Is there a path connecting p and q ?

Modeling the objects

* Applications involve manipulating objects of all types
$>$ Pixels in a digital photo
\Rightarrow Computers in a network
$>$ Friends in a social network
$>$ Transistors in a computer chip
* When programming, it is convenient to map objects (whatever they are) to integers
$>$ To represent \mathbf{N} object use integer from $\mathbf{0}$ to $\mathbf{N} \mathbf{- 1}$
> Use integers as array index

Modeling the connections

* Connectivity is an equivalence relation
> Reflexive
- p is connected to p
$>$ Symmetrical
- If p is connected to q, q is connected to p
> Transitive
- If p is connected to q and q is connected to r, then p is connected to r
* Connectivity can be represented using connected component

Modeling the connections

* A connected component is a

> Maximal subset of mutually reachable nodes
$>$ Where no element is connected to an element outside its connected component

Implementing the operations

* Given all connected components the
$>$ Find query
- Check if two objects are in the same component
> Union command
- Replace two connected components with their union

Example

(Input Pairs: 3-4, 4-9, 8-0, 2-3, 5-6, 2-9, 5-9, 7-3, 4-8, 6-5, 0-2, 6-1

8

7
7
8

1

2

3

Solution

Input Pairs: 3-4, 4-9, 8-0, 2-3, 5-6, 2-9, 5-9, 7-3, 4-8, 6-5, 0-2, 6-1
Output: 3-4, 4-9, 8-0, 2-3, 5-6, - , 5-9, 7-3, 4-8, - , - , 6-1

Trivial solutions

* Trivial solutions
$>$ For each pair (p, q)
- Check the connection by visiting the network
- Search q starting from p (or vice-versa)
- Cons
- May require a visit of the entire network for each new pair
$>$ For each node p
- Store all nodes reachable (transitive closure)
- Cons
- May need a memory size quadratic in the number of nodes of the network

Target solution

Design efficient data structure for union-find

* Keep into account that
$>$ The number of objects N can be huge
> The number of operations M can be huge
* Find queries and union commands may be intermixed
*We will analyze two algorithms
> An eager approach (quick-find)
>A lazy approach (quick-union)

Quick-find

Slow union

* Hypothesis
$>$ We do not have the graph (but we can use it to reason on the problem)
$>$ We work pair by pair
- We keep and update information necessary to find out connectivity
- Sets S of connected pairs
- Initially S includes as many sets as nodes, each node being connected just with itself
\Rightarrow Abstract operations
- find: find the set an object belongs to
- union: merge two sets

Quick-find logic

Represent sets S_{i} of connected pairs with array id
> Initially all objects point to themselves

- id[i] = i (no connection)

	0	1	2	3	4	5	6	7	8	9
id	0	1	2	3	4	5	6	7	8	9

\Rightarrow Find

- If p and q are connected, id[p] = id[q]
- Do nothing and move to the next pair

> Union
- If p and q are not connected (i.e., id[p] $\neq \mathrm{id}[\mathrm{q}]$)
- Scan the array, replacing id[p] values with id[q] values

Implementation

Repeat for all pairs (p, q)
> Read the pair (p, q)
\Rightarrow Execute find on p

- Find an connected component C_{p} such that $p \in C_{p}$
> Execute find on q
- Find an connected component C_{q} such that $\mathrm{q} \in \mathrm{C}_{\mathrm{q}}$
$>$ If C_{p} and C_{q} coincide
- Do nothing and move on to the next pair
- The pair is already connected
- Otherwise, execute union on C_{p} and C_{q}

Implementation

```
#include <stdio.h>
#define N 10000
int main() {
    int i, t, p, q, id[N];
    for(i=0; i<N; i++) {
        id[i] = i;
    }
    do {
        printf ("Input pair p q: ");
        scanf ("%d %d", &p, &q);
        if (id[p] != id[q]) {
            for (t=id[p], i=0; i<N; i++) {
                    if (id[i] == t)
                    id[i] = id[q];
            }
            printf ("%d-%d\n", p, q);
        }
    } while (p!=q);
}

\section*{Example}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline  & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline 3,4 & & & & & & & & & & \\
\hline 5,2 & & & & & & & & & & \\
\hline 6,2 & & & & & & & & & & \\
\hline 0,8 & & & & & & & & & & \\
\hline 9,1 & & & & & & & & & & \\
\hline 3,8 & & & & & & & & & & \\
\hline 6,4 & & & & & & & & & & \\
\hline 0,5 & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Solution}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{3,2} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline & 0 & 1 & 2 & 2 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 6,4 & 0 & 1 & 2 & 2 & 4 & 5 & 4 & 7 & 8 & 9 \\
\hline 3,4 & 0 & 1 & 4 & 4 & 4 & 5 & 4 & 7 & 8 & 9 \\
\hline 5,2 & 0 & 1 & 4 & 4 & 4 & 4 & 4 & 7 & 8 & 9 \\
\hline 6,2 & 0 & 1 & 4 & 4 & 4 & 4 & 4 & 7 & 8 & 9 \\
\hline 0,8 & 8 & 1 & 4 & 4 & 4 & 4 & 4 & 7 & 8 & 9 \\
\hline 9,1 & 8 & 1 & 4 & 4 & 4 & 4 & 4 & 7 & 8 & 1 \\
\hline 3,8 & 8 & 1 & 8 & 8 & 8 & 8 & 8 & 7 & 8 & 1 \\
\hline 6,4 & 8 & 1 & 8 & 8 & 8 & 8 & 8 & 7 & 8 & 1 \\
\hline 0,5 & 8 & 1 & 8 & 8 & 8 & 8 & 8 & 7 & 8 & 1 \\
\hline
\end{tabular}

\section*{Tree representation}
* Some objects represent the set they belong to
* Other objects point to the object that represents the set they belong to
* For each pair p,q
\(>\) Every id[p] becomes id[q]
\(>\) Every node i with id equal to id[p] goes under node id[q]


\section*{Exercise}

Input Pairs: 3-4, 4-9, 8-0, 2-3, 5-6, 2-9, 5-9, 7-3, 4-8, 6-5, 0-2

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline id & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}


\section*{Complexity}

Find
\(>\) Reference to id[i]
\(\Rightarrow\) Unit cost
* Union
```

do
if (id[p] != id[q]) \{
for ($t=i d[p], i=0 ; i<N ; i++$) $\{$
if (id[i] == t)
id[i] = id[q]
\}
printf ("\%d-\%d\n", p, q);
\}
\} while ($p!=q$);

```
\(>\) Scan array to replace \(p\) values with \(q\) values
> Linear (in the array size) cost
- Overall
> Number of operations related to
- \# pairs • array size = M • N
> Quadratic cost
> Very slow for real-time applications

\section*{Quick-union}

Not too quick find
* As with quick-find, represent sets \(\mathrm{S}_{\mathrm{i}}\) of connected pairs with an array id
> Initially all objects point to themselves
- id[i] = i (no connection)
\(>\) Each object points either to an object to which it is connected or to itself (no loops)
- We write (id[i])* to indicate id[id[id[... id[i]]]], going on until id[i]==i
> If objects i are j connected
- (id[i])* = (id[j])*


\section*{Quick-union}
* Connections can be easily followed on the tree representation, moving from bottom to top
\begin{tabular}{c|l|l|l|l|l|l|l|l|l|l|}
\multicolumn{2}{c}{} & \multicolumn{2}{c}{0} & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\end{tabular}


\section*{Quick-union logic}


\section*{Implementation}

Repeat for all the pairs (p,q)
\(\rightarrow\) Read the pair ( \(\mathrm{p}, \mathrm{q}\) )
\(\Rightarrow\) Execute find on \(p\) to find the class leader of \(p\)
- Find \(L_{p}=(i d[p]) *\)
\(>\) Execute find on q to find the class leader of q
- Find \(L_{q}=((i d[q]) *\)
\(>\) If \(\mathrm{L}_{\mathrm{p}}\) and \(\mathrm{L}_{\mathrm{q}}\) coincide
- Do nothing and move on to the next pair
- The pair is already connected
- Otherwise, execute union on \(L_{p}\) and \(L_{q}\)
- \(L_{p}=L_{q}\), i.e., \(i d\left[(i d[p])^{*}\right]=(i d[q]) *\)

\section*{Implementation}
```

\#include <stdio.h>
\#define N 10000
int main() {
int i, j, p, q, id[N];
for (i=0; i<N; i++) {
id[i] = i;
}
do {
printf ("Input pair p q: ");
scanf ("%d %d", \&p, \&q);
for (i = p; i!= id[i]; i = id[i]);
for (j = q; j!= id[j]; j = id[j]);
if (i != j) {
id[i] = j;
Union p and q
printf ("%d %d\n", p, q);
}
} while (p!=q);
}

```

\section*{Example}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline & 0 & 1 & 2 & 3 & & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 2-4 & & & & & & & & & & & \\
\hline 5-1 & & & & & & & & & & & \\
\hline 4-8 & & & & & & & & & & & \\
\hline 7-3 & & & & & & & & & & & \\
\hline 9 & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline 9-4 & & & & & & & & & & & \\
\hline 5-6 & & & & & & & & & & & \\
\hline 6-3 & & & & & & & & & & & \\
\hline 3-5 & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Solution}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{0-2} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline \multirow{2}{*}{2-4} & 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline & 2 & 1 & 4 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 5-1 & 2 & 1 & 4 & 3 & 4 & 1 & 6 & 7 & 8 & 9 \\
\hline 4-8 & 2 & 1 & 4 & 3 & 8 & 1 & 6 & 7 & 8 & 9 \\
\hline 7-3 & 2 & 1 & 4 & 3 & 8 & 1 & 6 & 3 & 8 & 9 \\
\hline & 2 & 9 & 4 & 3 & 8 & 1 & 6 & 3 & 8 & 9 \\
\hline 9-4 & 2 & 9 & 4 & 3 & 8 & 1 & 6 & 3 & 8 & 8 \\
\hline 5-6 & 2 & 9 & 4 & 3 & 8 & 1 & 6 & 3 & 6 & 8 \\
\hline 6-3 & 2 & 9 & 4 & 3 & 8 & 1 & 3 & 3 & 6 & 8 \\
\hline 3-5 & 2 & 9 & 4 & 3 & 8 & 1 & 3 & 3 & 6 & 8 \\
\hline
\end{tabular}

\section*{Exercise}

Input Pairs: 3-4, 4-9, 8-0, 2-3, 5-6, 2-9, 5-9, 7-3, 4-8, 6-5, 0-2

\begin{tabular}{cc|l|l|l|l|l|l|l|l|l|}
\multicolumn{2}{c}{} & \multicolumn{1}{c}{0} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\end{tabular}


\section*{Complexity}
* Find
> Scan a "chain" of objects
> Upper bound
- Linear cost in the number of objects
- In general well below this value (depending on the chain length, tree height)
```

do {
printf ("Input pair p q: ");
scanf ("%d %d", \&p, \&q);
for (i = p; i!= id[i]; i = id[i]);
for (j = q; j!= id[j]; j = id[j]);
if (i != j) {
id[i] = j;
printf ("%d %d\n", p, q);
}
} while (p!=q);

```

\section*{Complexity}

\section*{* Union}
> Simple, as it is enough that an object points to another object, unit cost
* Overall
> Number of operations related to
- \# pairs • chain length = M • chain length
\(>\) Still too slow for long chains
```

do {
printf ("Input pair p q: ");
scanf ("%d %d", \&p, \&q);
for (i = p; i!= id[i]; i = id[i]);
for (j = q; j!= id[j]; j = id[j]);
if (i != j) {
id[i] = j;
printf ("%d %d\n", p, q);
}
} while (p!=q);

```

\section*{Quick union optimizations}
*Weighted quick union
\(>\) To shorten the chain length
- Keep track of the number of elements in each tree
- Connect the smaller tree to the larger one
\(>\) Use an array (array sz) to store tree size

Union by height or "rank", i.e., always link the root of smaller tree to root of larger tree
- Given two trees
\(>\) According to which one is the larger, there might be 2 solutions

\(>\) It is irrelevant if \(p\) appears at the right or at the left of q

\section*{Implementation}
```

int i, j, p, q, id[N], sz[N];
for(i=0; i<N; i++) {
id[i] = i; sz[i] = 1;
}
do {
printf ("Input pair p q: ");
scanf ("%d %d", \&p, \&q);
for (i = p; i!= id[i]; i = id[i]);
for (j = q; j!= id[j]; j = id[j]);
if (i == j)
printf ("pair %d %d already connected\n", p,q);
else {
printf ("pair %d %d not yet connected\n", p, q);
if (sz[i] <= sz[j]) {
id[i] = j; sz[j] += sz[i];
} else {
id[j] = i; sz[i] += sz[j];
}
}
} while (p!=q);

```

We need to represent trees Example to easily remind the tree size


\section*{Solution}


\section*{Exercise}

Input Pairs: 3-4, 4-9, 8-0, 2-3, 5-6, 2-9, 5-9, 7-3, 4-8, 6-5, 0-2
id \begin{tabular}{lll|l|l|l|l|l|l|l|l|l|} 
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
\end{tabular}


\section*{Complexity}
* Find
\(>\) Linear cost in the chain length
* Union
> Simple, as it is enough that an object points to another object, unit cost
* Overall
\(>\) Number of operations related to
- \# pairs * chain length \(=M\) • chain length

As quick union but ...
But chain length grows logarithmically !

\section*{Complexity}
*Why logarithmically?
\(>\) What matters is the maximum distance between a node and the root
- What matters is the height of the tree
- What matters is the longest path between the root and a leaf


\section*{Complexity}

\section*{\(>\) If}
- Height of \(T_{2}<\) height of \(T_{1}\) (strictly less)
- The overall height does not change
- It remains equal to the height of \(\mathrm{T}_{1}\)
- Height of \(T_{2}=\) height of \(T_{1}\)
- The overall height is increased by 1


The worst case scenario is the one of union linking trees of equal size

The maximum height is the maximum between the one of \(\mathrm{T}_{1}\) and the one of \(\mathrm{T}_{2}\) plus 1

\section*{Complexity}
* But if the height of \(T_{1}\) is \(\geq\) the height of \(T_{2}\)
\(>\) Each time we connect a smaller tree to a larger one we generate a tree whose size is on average at least twice as big as \(\mathrm{T}_{2}\)


Because \(\mathrm{T}_{1}\), being higher, should include, in fact on average, more nodes than \(T_{2}\)

\section*{Complexity}

\section*{> Then}
- At each step the number of elements increases by at least a factor 2
- After isteps there will be at least
- \(\left(((1 \cdot 2) \cdot 2) \cdot 2 \ldots=2^{i}\right.\)
elements
- As \(2^{i}\) cannot exceed \(N\)
- \(2^{i} \leq N\) must hold
- Thus
- \(\mathbf{i} \leq \log _{2} \mathrm{~N}\)

Where \(i\) is the number of steps
```

