#include <ddiibh>
#include <slving h>
#include <clype.h>

#define MAXPAROLA 30
#define MANRGA 80

Int main(int orge, char *orgv(])
{

P k _
Algorithms and Complexity

Connectivity
Paolo Camurati and Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

"/

Algorithms and Programming - Camurati & Que U 2

Online Connectivity

s+ Problem definition
> Given a set of N objects (from 0 to N-1)
> Accept as inputs a sequence of integer pairs (p, q)
= Where pJ[0, N-1] and gqJ[0, N-1]

= With the meaning that the pair (p, q) indicates that
p must be connected to g

» Produce as outputs

= Null, if p and g are already connected (directly or
indirectly)

= The same pair (p, q), otherwise

Algorithms and Programming - Camurati & Quer 3

Online Connectivity

*+» In other words we want to be able to

» Understand whether two objects are connected
(directly or undirectly)

» Connect objects in case they are not connected
% This implies that we should be able to perform
two possible operations
» Find query
= To find whether two objets are connected

» Union command
= To connects two unconnected objects

"/

Algorithms and Programming - Camurati & Que U 4

Online Connectivity

* Notice that
» We do not want to know the path which connect

two objects
This is a problem we will
study with graphs

» We just want to know whether such a path exists

or not
... but we wanto to be
as efficient as possible

Algorithms and Programming - Camurati & Quer 5

Applications

%+ Connectivity has many possibile applications
» Computer networks
= Integers p and q represent computers
= (p, q) connections between computers
> Electrical networks
= Integers p and g represent contact points
= (p, q) wires
» Social networks
= Integers p and g represent subscribers
= (p, q) relationhips
> ...

Algorithms and Programming - Camurati & Quer 6

Applications: An Example

% Is there a path connecting p and g?

Connections
(relationships, friendships, etc.)

1L I M |
N

J-
.IIf'I. ‘1

I !

R Rprelgatrescaisas [los i IR 1IN
[H'I-L“E‘l:a‘“' 15t 1.“1:‘:.4:]:L ,;/
G e R

Algorithms and Programming - Camurati & Quer 7

Modeling the objects

< Applications involve manipulating objects of all

types
> Pixels in a digital photo

» Computers in a network
> Friends in a social network
» Transistors in @ computer chip
> ...
<+ When programming, it is convenient to map
objects (whatever they are) to integers
> To represent N object use integer from 0 to N—1
» Use integers as array index

Algorithms and Programming - Camurati & Quer 8

Modeling the connections

%+ Connectivity is an equivalence relation
> Reflexive
= pis connected to p
» Symmetrical
= If p is connected to q, q is connected to p

> Transitive

= If p is connected to q and q is connected to r, then
p is connected to r

%+ Connectivity can be represented using
connected component

Algorithms and Programming - Camurati & Quer 9

Modeling the connections

% A connected component is a
» Maximal subset of mutually reachable nodes

» Where no element is connected to an element
outside its connected component

2

@ 0 Q 3 connected components
{O}I {ll 4[5}I{2I 3’ 6[7}

(O—0G)

A connected component may

_ have a leader, i.e., a class
Graph: Data structure representing member representing all

elements (nodes or vertices) and their elements withing the
relationships or connections (edges) component

&

Algorithms and Programming - Camurati & Que _ 10

Implementing the operations

% Given all connected components the
» Find query
= Check if two objects are in the same component

» Union command
= Replace two connected components with their union

-
Algorithms and Programming - Camurati & Que B 11

Example

% Input Pairs: 3-4, 4-9, 8-0, 2-3, 5-6, 2-9, 5-9, 7-3, 4-8, 6-5, 0-2, 6-1

® 90

"/

Algorithms and Programming - Camurati & Quer 12

% Input Pairs: 3-4, 4-9, 8-0, 2-3, 5-6, 2-9, 5-9, 7-3, 4-8, 6-5, 0-2, 6-1
% Output: 3-4,4-9, 8-0, 2-3, 56, - ,59,7-3,48, -, -,6-1

&

Algorithms and Programming - Camurati & Que _ 13

Trivial solutions

2 Trivial solutions

» For each pair (p, q)
= Check the connection by visiting the network
= Search q starting from p (or vice-versa)

= Cons
e May require a visit of the entire network for each new
pair
» For each node p
= Store all nodes reachable (transitive closure)

= Cons

e May need a memory size quadratic in the number of
nodes of the network

Algorithms and Programming - Camurati & Quer 14

Target solution

% Design efficient data structure for union-find

% Keep into account that

» The number of objects N can be huge

» The number of operations M can be huge
%+ Find queries and union commands may be

intermixed

“» We will analyze two algorithms

» An eager approach (quick-find)

> A lazy approach (quick-union)

"/

Algorithms and Programming - Camurati & Quer 15

Slow union

%+ Hypothesis
» We do not have the graph (but we can use it to
reason on the problem)
» We work pair by pair

= We keep and update information necessary to find
out connectivity

e Sets S of connected pairs

e Initially S includes as many sets as nodes, each node
being connected just with itself

> Abstract operations
= find: find the set an object belongs to
= union: merge two sets

Algorithms and Programming - Camurati & Quer 16

Quick-find logic

< Represent sets S; of connected pairs with array id
> Initially all objects point to themselves
= id[i] =i (no connection)
o 1 2 3 4 5 6 7 8 9
id| O 1 2 3 4 5 6 7 8 9

> Find
= If p and q are connected, id[p] = id[q]

= Do nothing and move to the next pair
1 2 3 4) 6 7 8 9

1 1| 3 4 5 6 6 6 9

AR

id

0

0
1 and 2 are 6 7 and 8 are
connected connected

Algorithms and Programming - Camurati & Quer 74

Quick-find logic

» Union
= If p and q are not connected (i.e., id[p] # id[q])
= Scan the array, replacing id[p] values with id[q]

values
Tree
representatlon

id| O 1 |2 | 3| 4 5 6 | 7| 8| 9

Array
representation

id| O 1 1214]| 4|5 6 | 7 | 8 | 9

3,4 ﬁ 4 is the cIassJ
Union 3 and 4 leader

;/’/'

Algorithms and Programming - Camurati & Que ; 18

Implementation

%+ Repeat for all pairs (p, q)
» Read the pair (p, q)
> Execute find on p
= Find an connected component C, such that pOC,
> Execute find on @
= Find an connected component C, such that qOC,

> If G and G, coincide

= Do nothing and move on to the next pair
e The pair is already connected

= Otherwise, execute union on C, and C,

Algorithms and Programming - Camurati & Quen 19

Implementation

@i ncl ude <stdio. h> \

#defi ne N 10000

int main() {
int i, t, p, g, id[N;

for(i=0; i<N i++) { If id[p]==id[q] then p and
idli] =1; q are already connected.
310 { Nothing has to be done.

it (idfp] !'=1d[q]) { avoid a nasty bug

printf ("lInput pair p qg: ");
scanf ("% %", &p, &q); Store id[p] intovariabletto}
for (t=id[p], i=0; i<N i++) {

it (id[i] == t)
id[i] =id[d];
i)rintf ("od-%\n", p, q); Un'on:vf,?tﬂ?gfq?" dip]

}\}Nhile(p!=q);\ J
}
K [Go-on until p!'=q }

Algorithms and Programming - Camurati & Quer 20

ol1l21314[s5 167810
3,2 D
6,4

3,4
5,2
6,2
0,8
91
3,8
6,4
0,5

21

Algorithms and Programming - Camurati & Quen

3,2

6,4

3,4

5,2

6,2

0,8
91

3,8

6,4
0,5

Algorithms and Programming - Camurati & Quer 22

Tree representation

%+ Some objects represent the set they belong to

%+ Other objects point to the object that represents
the set they belong to
s+ For each pair p,q
» Every id[p] becomes id[q]

» Every node i with id equal to id[p] goes under
node id[q]

"/ -

Algorithms and Programming - Camurati & Que U 23

Tree representation

OOOOOOOOO®

0]0]0J0]0,

Leader of the connectedJ

Y0010

component, i.e., class
representative

OO0 O0006L
&) @

or
3,9

;/’/'

Algorithms and Programming - Camurati &Qi 2 i 24

*» Input Pairs: 3-4, 4-9, 8-0, 2-3, 5-6, 2-9, 5-9, 7-3, 4-8, 6-5, 0-2
o 1 2 3 4 5 6 7 8 9

OOOOOOOOOO

i d

&

Algorithms and Programming - Camurati & Qu: . 25

® D

Algorithms and Programming - Camurati & Quer 26

Complexity
(do {)
*» Find it (id[p] '=id[q]) {
. for (t=id[p], 1=0; i<N;, i++) {
» Reference to id[i] if (id[i] ==t)
_ [=
» Unit cost) printf ("%-%\n", p, Q);
«» Union) while (p!=a);)

» Scan array to replace p values with g values
> Linear (in the array size) cost

% Overall
» Number of operations related to
= # pairs - array size=M" N
» Quadratic cost
> Very slow for real-time applications

Algorithms and Programming - Camurati & Quer 2

Not too quick find

< As with quick-find, represent sets S, of connected
pairs with an array id
> Initially all objects point to themselves
= id[i] = i (no connection)
» Each object points either to an object to which it is
connected or to itself (no loops)
= We write (id[i])* to indicate id[id[id[... id[i]]]],
going on until id[i]==i
> If objects i are j connected
= (id[iD)* = (id[j])*

Algorithms and Programming - Camurati & Quer 28

% Connections can be easily followed on the tree
representation, moving from bottom to top

o 1 2 3 4 5 6 7 8 9
id| O 1194 9 6 6 | 7| 0| 9

O @ Q@
® O\

e Keep going until
id[i]==i

"/ -

Algorithms and Programming - Camurati & Que U 29

Quick-union logic

@@@@@@@@@

@O0 ® ® ©®
, Q@@@ :

{For each pair p,q root of p

becomes a child of the
root of q

Algorithms and Programming - Camurati & Quen 30

Implementation

% Repeat for all the pairs (p, q)
» Read the pair (p, q)
> Execute find on p to find the class leader of p
= Find L, = (id[p])*
» Execute find on g to find the class leader of g
= Find L, = ((id[q])*
> If L, and L, coincide

= Do nothing and move on to the next pair
e The pair is already connected
= Otherwise, execute union on L, and L,

o L=l ie., id[(id[p])*] = (id[q])*

Algorithms and Programming - Camurati & Quer 31

Implementation
/“#i ncl ude <stdio. h>
#define N 10000
int main() { '
int i, j, p, 9, 1d[N;
for (i=0; i<N i++) {
id[i] =1i;
}
do {
printf ("Input pair p q: ");

scanf ("% %", &p, &Qq);
for (i =p; i'=id[i]; i

f Lz - idiill i = idli _
ii?r(i(lejq)J{ SUEE | Findg
id[i] =j; JUnionpandq]

orintf ("% %\n", p, q):

} \}Nhile (p!=q);

N /

(Git=id[i]) {
idfi];

Algorithms and Programming - Camurati & Quer B2

59

Algorithms and Programming - Camurati & Quen

0-2

2-4
5-1
4-8
7-3
5-9
9-4

5-6
6-3
3-5

;/’/'

Algorithms and Programming - Camurati &Qi 2 i 34

*» Input Pairs: 3-4, 4-9, 8-0, 2-3, 5-6, 2-9, 5-9, 7-3, 4-8, 6-5, 0-2
o 1 2 3 4 5 6 7 8 9

OOOOOOOOOO

i d

&

Algorithms and Programming - Camurati & Qu: o 35

Algorithms and Programming - Camurati & Quer 36

Complexity

% Find
» Scan a “chain” of objects
» Upper bound

= Linear cost in the number of objects

= In general well below this value (depending on the
chain length, tree height)

“do { D

printf ("Input pair p q: ");
scanf ("% %", &p, &Q);

for (i =p; il=id[i]; i =id[i]);
for (j =q; jl=1d[j]; j =1id[j]);
if (i t=17) {

idfi] =7j;
printf ("% %\n", p, q);

)
} while (p!=q);)

Algorithms and Programming - Camurati & Quer S

Complexity

*» Union
» Simple, as it is enough that an object points to
another object, unit cost
% Overall
» Number of operations related to
= # pairs * chain length = M - chain length

> Still too slow for long chains
do {)

printf ("Input pair p q: ");
scanf ("% %", &p, &Q);

for (i =p; il=id[i]; i =id[i]);
for (j =q; jl=1d[j]; j =1id[j]);
if (i t=17) {

idfi] =7j;
printf ("% %\n", p, q);

}
_} while (p!=q);)

Algorithms and Programming - Camurati & Quer 38

Quick union optimizations

%+ Weighted quick union
» To shorten the chain length

= Keep track of the number of elements in each
tree

= Connect the smaller tree to the larger one
» Use an array (array sz) to store tree size

Union by height or "rank",
i.e., always link the
root of smaller tree
to root of larger tree

")

"/

Algorithms and Programming - Camurati & Quer 39

2+ Given two trees

» According to which one is the larger, there might
be 2 solutions

(P)
i
> It is irrelevant if p appears at the right or at the
left of

or

Algorithms and Programming - Camurati & Quen 40

Implementation

Aint i, j, p g id[N, sz[N; N

for(i=0: i<N i++) {

id[i] =1i; sz[i] = 1;
}
do {
printf ("lInput pair p qg: ");
scanf ("% %", &p, &Q);
for (i =p; i!'=1id[i]; i =id[i]);
f]?r(_(j - d jt=idljl; j =id[jl);
I | == |
printf ("pair % % al ready connected\n", p,q);
el se {

printf ("pair % % not yet connected\n", p, Qq);
if (sz[i] <= sz[j]) {

idfi] =J; sz[]] += sz[i]; Union: smaller
} else { _ _ tree below
id[j] =1i; sz[i] += sz[]]; larger tree

}

}
Qwhile(p!zq); /

Algorithms and Programming - Camurati & Quer 41

We need to represent trees

to easily remind the tree size

42

Algorithms and Programming - Camurati & Quen

0-2

2-4
5-1
4-8
7-3
5-9
9-4

5-6
6-3
3-5

;/’/'

Algorithms and Programming - Camurati &Qi 2 i 43

*» Input Pairs: 3-4, 4-9, 8-0, 2-3, 5-6, 2-9, 5-9, 7-3, 4-8, 6-5, 0-2
o 1 2 3 4 5 6 7 8 9

OOOOOOOOOO

i d

o

Algorithms and Programming - Camurati & Qu: S 44

Algorithms and Programming - Camurati & Quen 45

Complexity

% Find
> Linear cost in the chain length
“ Union
» Simple, as it is enough that an object points to
another object, unit cost

+»» QOverall

» Number of operations related to
= # pairs * chain length = M - chain length

As quick union
... but ...

» But chain length grows logarithmically !

Algorithms and Programming - Camurati & Quer

Complexity

“» Why logarithmically?
» What matters is the maximum distance between a
node and the root
= What matters is the height of the tree

= What matters is the longest path between the root
and a leaf

We connect T, smaller
with (below) T, larger

5

Algorithms and Programming - Camurati & Quer

Complexity

> If
= Height of T, < height of T, (strictly less)
e The overall height does not change
e It remains equal to the height of T,

= Height of T, = height of T, The worst case
e The overall height is increased biscenario is the one of

union linking trees
of equal size

The maximum height

T, is the maximum
between the one of
T, and the one of T,

plus 1
J

Algorithms and Programming - Camurati & Quer 48

Complexity

< But if the height of T, is = the height of T,

» Each time we connect a smaller tree to a larger
one we generate a tree whose size is on average

at least twice as bigas T, x
\ B

ecause T,, being
higher, should
include, in fact on
average, more
_ nodes than T,)

&

Algorithms and Programming - Camurati & Que _ 49

Complexity

> Then

= At each step the number of elements increases by at
least a factor 2

= After i steps there will be at least
o (((1°2)72)2..=2
elements
= As 2! cannot exceed N
e 2I< N
must hold

= Thus
e i <log,N

Where i is the
number of steps

