
Algorithms and Complexity

Connectivity
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2Algorithms and Programming – Camurati & Quer

Online Connectivity

 Problem definition

 Given a set of N objects (from 0 to N-1)

 Accept as inputs a sequence of integer pairs (p, q)

 Where p∈[0, N-1] and q∈[0, N-1]

 With the meaning that the pair (p, q) indicates that
p must be connected to q

 Produce as outputs

 Null, if p and q are already connected (directly or
indirectly)

 The same pair (p, q), otherwise

3Algorithms and Programming – Camurati & Quer

Online Connectivity

 In other words we want to be able to

 Understand whether two objects are connected
(directly or undirectly)

 Connect objects in case they are not connected

 This implies that we should be able to perform
two possible operations

 Find query

 To find whether two objets are connected

 Union command

 To connects two unconnected objects

4Algorithms and Programming – Camurati & Quer

Online Connectivity

 Notice that

 We do not want to know the path which connect
two objects

 We just want to know whether such a path exists
or not

This is a problem we will
study with graphs

… but we wanto to be
as efficient as possible

5Algorithms and Programming – Camurati & Quer

Applications

 Connectivity has many possibile applications

 Computer networks
 Integers p and q represent computers

 (p, q) connections between computers

 Electrical networks
 Integers p and q represent contact points

 (p, q) wires

 Social networks
 Integers p and q represent subscribers

 (p, q) relationhips

 …

6Algorithms and Programming – Camurati & Quer

Applications: An Example

 Is there a path connecting p and q?

p

q

p

q

Objects Connections
(relationships, friendships, etc.)

 Yes !

7Algorithms and Programming – Camurati & Quer

Modeling the objects

 Applications involve manipulating objects of all
types

 Pixels in a digital photo

 Computers in a network

 Friends in a social network

 Transistors in a computer chip

 …

 When programming, it is convenient to map
objects (whatever they are) to integers

 To represent N object use integer from 0 to N–1

 Use integers as array index

8Algorithms and Programming – Camurati & Quer

Modeling the connections

 Connectivity is an equivalence relation

 Reflexive

 p is connected to p

 Symmetrical

 If p is connected to q, q is connected to p

 Transitive

 If p is connected to q and q is connected to r, then
p is connected to r

 Connectivity can be represented using
connected component

9Algorithms and Programming – Camurati & Quer

Modeling the connections

 A connected component is a

 Maximal subset of mutually reachable nodes

 Where no element is connected to an element
outside its connected component

0 1 32

4 5 6 7

3 connected components
{0}, {1, 4, 5},{2, 3, 6, 7}

Graph: Data structure representing
elements (nodes or vertices) and their
relationships or connections (edges)

A connected component may
have a leader, i.e., a class
member representing all
elements withing the
component

10Algorithms and Programming – Camurati & Quer

Implementing the operations

 Given all connected components the

 Find query

 Check if two objects are in the same component

 Union command

 Replace two connected components with their union

11Algorithms and Programming – Camurati & Quer

Example

 Input Pairs: 3-4, 4-9, 8-0, 2-3, 5-6, 2-9, 5-9, 7-3, 4-8, 6-5, 0-2, 6-1

0

3

6

7

5
4

1

28

9

12Algorithms and Programming – Camurati & Quer

Solution

0

3

6

7

5
4

1

28

9

 Input Pairs: 3-4, 4-9, 8-0, 2-3, 5-6, 2-9, 5-9, 7-3, 4-8, 6-5, 0-2, 6-1

 Output: 3-4, 4-9, 8-0, 2-3, 5-6, 2-9, 5-9, 7-3, 4-8, 6-5, 0-2, 6-1

13Algorithms and Programming – Camurati & Quer

Trivial solutions

 Trivial solutions

 For each pair (p, q)

 Check the connection by visiting the network

 Search q starting from p (or vice-versa)

 Cons

● May require a visit of the entire network for each new
pair

 For each node p

 Store all nodes reachable (transitive closure)

 Cons

● May need a memory size quadratic in the number of
nodes of the network

14Algorithms and Programming – Camurati & Quer

Target solution

 Design efficient data structure for union-find

 Keep into account that

 The number of objects N can be huge

 The number of operations M can be huge

 Find queries and union commands may be
intermixed

 We will analyze two algorithms

 An eager approach (quick-find)

 A lazy approach (quick-union)

15Algorithms and Programming – Camurati & Quer

Quick-find

 Hypothesis

 We do not have the graph (but we can use it to
reason on the problem)

 We work pair by pair

 We keep and update information necessary to find
out connectivity

● Sets S of connected pairs

● Initially S includes as many sets as nodes, each node
being connected just with itself

 Abstract operations

 find: find the set an object belongs to

 union: merge two sets

Slow union

16Algorithms and Programming – Camurati & Quer

Quick-find logic

 Represent sets Si of connected pairs with array id

 Initially all objects point to themselves

 id[i] = i (no connection)

 Find
 If p and q are connected, id[p] = id[q]

 Do nothing and move to the next pair

6, 7 and 8 are
connected

0 1 2 3 4 5 6 7 8 9

id 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

id 0 1 1 3 4 5 6 6 6 9

1 and 2 are
connected

17Algorithms and Programming – Camurati & Quer

Quick-find logic

 Union
 If p and q are not connected (i.e., id[p] ≠ id[q])

 Scan the array, replacing id[p] values with id[q]
values

0 1 2 3 4 5 6 7 8 9

id 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

id 0 1 2 4 4 5 6 7 8 9

(3, 4)
Union 3 and 4

3 4

3 4
4 is the class

leader

Tree
representation

Array
representation

18Algorithms and Programming – Camurati & Quer

Implementation

 Repeat for all pairs (p, q)

 Read the pair (p, q)

 Execute find on p

 Find an connected component Cp such that p∈Cp

 Execute find on q

 Find an connected component Cq such that q∈Cq

 If Cp and Cq coincide

 Do nothing and move on to the next pair

● The pair is already connected

 Otherwise, execute union on Cp and Cq

19Algorithms and Programming – Camurati & Quer

#include <stdio.h>

#define N 10000

int main() {
int i, t, p, q, id[N];
for(i=0; i<N; i++) {
id[i] = i;

}
do {
printf ("Input pair p q: ");
scanf ("%d %d", &p, &q);
if (id[p] != id[q]) {
for (t=id[p], i=0; i<N; i++) {
if (id[i] == t)
id[i] = id[q];

}
printf ("%d-%d\n", p, q);

}
} while (p!=q);

}

Implementation

If id[p]==id[q] then p and
q are already connected.
Nothing has to be done.

Union: replace all id[p]
with id[q]

Store id[p] into variable t to
avoid a nasty bug

Go-on until p!=q

20Algorithms and Programming – Camurati & Quer

Example

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9
3,2

6,4

3,4

5,2

6,2

0,8

9,1

3,8

6,4

0,5

21Algorithms and Programming – Camurati & Quer

Solution

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 2 4 5 6 7 8 9

0 1 2 2 4 5 4 7 8 9

0 1 4 4 4 5 4 7 8 9

0 1 4 4 4 4 4 7 8 9

0 1 4 4 4 4 4 7 8 9

8 1 4 4 4 4 4 7 8 9

8 1 4 4 4 4 4 7 8 1

8 1 8 8 8 8 8 7 8 1

8 1 8 8 8 8 8 7 8 1

8 1 8 8 8 8 8 7 8 1

3,2

6,4

3,4

5,2

6,2

0,8

9,1

3,8

6,4

0,5

22Algorithms and Programming – Camurati & Quer

Tree representation

 Some objects represent the set they belong to

 Other objects point to the object that represents
the set they belong to

 For each pair p,q

 Every id[p] becomes id[q]

 Every node i with id equal to id[p] goes under
node id[q]

23Algorithms and Programming – Camurati & Quer

Tree representation

2 91 3 4 5 6 7 80

2 91

3

4 5 6 7 80

3,4

2 91

3 4

5 6 7 80

4,9
or
3,9

Leader of the connected
component, i.e., class
representative

24Algorithms and Programming – Camurati & Quer

Exercise

 Input Pairs: 3-4, 4-9, 8-0, 2-3, 5-6, 2-9, 5-9, 7-3, 4-8, 6-5, 0-2

0 1 2 3 4 5 6 7 8 9

id 0 1 2 3 4 5 6 7 8 9

2 91 3 4 5 6 7 80

25Algorithms and Programming – Camurati & Quer

Solution

0 1 2 3 4 5 6 7 8 9

id 0 1 0 0 0 0 0 0 0 0

1 0

2 93 4 5 6 7 8

26Algorithms and Programming – Camurati & Quer

Complexity

 Find

 Reference to id[i]

 Unit cost

 Union

 Scan array to replace p values with q values

 Linear (in the array size) cost

 Overall

 Number of operations related to

 # pairs · array size = M · N

 Quadratic cost

 Very slow for real-time applications

do {
...
if (id[p] != id[q]) {

for (t=id[p], i=0; i<N; i++) {
if (id[i] == t)

id[i] = id[q];
}
printf ("%d-%d\n", p, q);

}
} while (p!=q);

27Algorithms and Programming – Camurati & Quer

Quick-union

 As with quick-find, represent sets Si of connected
pairs with an array id

 Initially all objects point to themselves

 id[i] = i (no connection)

 Each object points either to an object to which it is
connected or to itself (no loops)

 We write (id[i])* to indicate id[id[id[… id[i]]]],
going on until id[i]==i

 If objects i are j connected

 (id[i])* = (id[j])*

Not too quick find

0 1 32

4 5 6 7

28Algorithms and Programming – Camurati & Quer

Quick-union

 Connections can be easily followed on the tree
representation, moving from bottom to top

Keep going until
id[i]==i

0 1 2 3 4 5 6 7 8 9

id 0 1 9 4 9 6 6 7 0 9

3

1

2

9 6

4 5

7 0

8

29Algorithms and Programming – Camurati & Quer

Quick-union logic

2 91 3 4 5 6 7 80

3

4

2 91

5 7

6 80

3,7

…

2 91

5 7

6 80

3

4

For each pair p,q root of p
becomes a child of the

root of q

30Algorithms and Programming – Camurati & Quer

Implementation

 Repeat for all the pairs (p, q)

 Read the pair (p, q)

 Execute find on p to find the class leader of p

 Find Lp = (id[p])*

 Execute find on q to find the class leader of q

 Find Lq = ((id[q])*

 If Lp and Lq coincide

 Do nothing and move on to the next pair

● The pair is already connected

 Otherwise, execute union on Lp and Lq

● Lp=Lq, i.e., id[(id[p])*] = (id[q])*

31Algorithms and Programming – Camurati & Quer

#include <stdio.h>

#define N 10000

int main() {
int i, j, p, q, id[N];
for (i=0; i<N; i++) {

id[i] = i;
}
do {

printf ("Input pair p q: ");
scanf ("%d %d", &p, &q);
for (i = p; i!= id[i]; i = id[i]);
for (j = q; j!= id[j]; j = id[j]);
if (i != j) {

id[i] = j;
printf ("%d %d\n", p, q);

}
} while (p!=q);

}

Implementation

Find p

Find q

Union p and q

i = p;
while (i!= id[i]) {
i = id[i];

}

32Algorithms and Programming – Camurati & Quer

Example

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9
0-2

2-4

5-1

4-8

7-3

5-9

9-4

5-6

6-3

3-5

33Algorithms and Programming – Camurati & Quer

Solution

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

2 1 2 3 4 5 6 7 8 9

2 1 4 3 4 5 6 7 8 9

2 1 4 3 4 1 6 7 8 9

2 1 4 3 8 1 6 7 8 9

2 1 4 3 8 1 6 3 8 9

2 9 4 3 8 1 6 3 8 9

2 9 4 3 8 1 6 3 8 8

2 9 4 3 8 1 6 3 6 8

2 9 4 3 8 1 3 3 6 8

2 9 4 3 8 1 3 3 6 8

0-2

2-4

5-1

4-8

7-3

5-9

9-4

5-6

6-3

3-5

34Algorithms and Programming – Camurati & Quer

Exercise

 Input Pairs: 3-4, 4-9, 8-0, 2-3, 5-6, 2-9, 5-9, 7-3, 4-8, 6-5, 0-2

0 1 2 3 4 5 6 7 8 9

id 0 1 2 3 4 5 6 7 8 9

2 91 3 4 5 6 7 80

35Algorithms and Programming – Camurati & Quer

Solution

0 1 2 3 4 5 6 7 8 9

id 1 1 9 4 9 6 9 9 0 0

5

1

2

9

3

4

0

6 7

8

36Algorithms and Programming – Camurati & Quer

Complexity

 Find

 Scan a “chain” of objects

 Upper bound

 Linear cost in the number of objects

 In general well below this value (depending on the
chain length, tree height)

do {
printf ("Input pair p q: ");
scanf ("%d %d", &p, &q);
for (i = p; i!= id[i]; i = id[i]);
for (j = q; j!= id[j]; j = id[j]);
if (i != j) {
id[i] = j;
printf ("%d %d\n", p, q);

}
} while (p!=q);

37Algorithms and Programming – Camurati & Quer

Complexity

 Union

 Simple, as it is enough that an object points to
another object, unit cost

 Overall

 Number of operations related to

 # pairs · chain length = M · chain length

 Still too slow for long chains

do {
printf ("Input pair p q: ");
scanf ("%d %d", &p, &q);
for (i = p; i!= id[i]; i = id[i]);
for (j = q; j!= id[j]; j = id[j]);
if (i != j) {
id[i] = j;
printf ("%d %d\n", p, q);

}
} while (p!=q);

38Algorithms and Programming – Camurati & Quer

Quick union optimizations

 Weighted quick union

 To shorten the chain length

 Keep track of the number of elements in each
tree

 Connect the smaller tree to the larger one

 Use an array (array sz) to store tree size

Union by height or "rank",
i.e., always link the

root of smaller tree
to root of larger tree

39Algorithms and Programming – Camurati & Quer

 Given two trees

 According to which one is the larger, there might
be 2 solutions

 It is irrelevant if p appears at the right or at the
left of q

p

q or

q

p

40Algorithms and Programming – Camurati & Quer

int i, j, p, q, id[N], sz[N];
for(i=0; i<N; i++) {

id[i] = i; sz[i] = 1;
}
do {

printf ("Input pair p q: ");
scanf ("%d %d", &p, &q);
for (i = p; i!= id[i]; i = id[i]);
for (j = q; j!= id[j]; j = id[j]);
if (i == j)

printf ("pair %d %d already connected\n", p,q);
else {

printf ("pair %d %d not yet connected\n", p, q);
if (sz[i] <= sz[j]) {

id[i] = j; sz[j] += sz[i];
} else {

id[j] = i; sz[i] += sz[j];
}

}
} while (p!=q);

Implementation

Find p

Find q

Union: smaller
tree below
larger tree

41Algorithms and Programming – Camurati & Quer

Example

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9
0-2

2-4

5-1

4-8

7-3

5-9

9-4

5-6

6-3

3-5

We need to represent trees
to easily remind the tree size

42Algorithms and Programming – Camurati & Quer

Solution

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

2 1 2 3 4 5 6 7 8 9

2 1 2 3 2 5 6 7 8 9

2 1 2 3 2 1 6 7 8 9

2 1 2 3 2 1 6 7 2 9

2 1 2 3 2 1 6 3 2 9

2 1 2 3 2 1 6 3 2 1

2 2 2 3 2 1 6 3 2 1

2 2 2 3 2 1 2 3 2 1

2 2 2 2 2 1 2 3 2 1

2 2 2 2 2 1 2 3 2 1

0-2

2-4

5-1

4-8

7-3

5-9

9-4

5-6

6-3

3-5

43Algorithms and Programming – Camurati & Quer

Exercise

 Input Pairs: 3-4, 4-9, 8-0, 2-3, 5-6, 2-9, 5-9, 7-3, 4-8, 6-5, 0-2

0 1 2 3 4 5 6 7 8 9

id 0 1 2 3 4 5 6 7 8 9

2 91 3 4 5 6 7 80

44Algorithms and Programming – Camurati & Quer

Solution

0 1 2 3 4 5 6 7 8 9

id 4 1 4 4 4 6 4 4 0 4

8

4

0

1

2 3 6 7 9

5

45Algorithms and Programming – Camurati & Quer

Complexity

 Find

 Linear cost in the chain length

 Union

 Simple, as it is enough that an object points to
another object, unit cost

 Overall

 Number of operations related to

 # pairs · chain length = M · chain length

 But chain length grows logarithmically !

As quick union
… but …

46Algorithms and Programming – Camurati & Quer

Complexity

 Why logarithmically?

 What matters is the maximum distance between a
node and the root

 What matters is the height of the tree

 What matters is the longest path between the root
and a leaf

p

q

T2T1

We connect T2 smaller
with (below) T1 larger

47Algorithms and Programming – Camurati & Quer

Complexity

 If

 Height of T2 < height of T1 (strictly less)

● The overall height does not change

● It remains equal to the height of T1

 Height of T2 = height of T1

● The overall height is increased by 1

p

q

T2T1

The maximum height
is the maximum

between the one of
T1 and the one of T2

plus 1

The worst case
scenario is the one of
union linking trees

of equal size

48Algorithms and Programming – Camurati & Quer

Complexity

 But if the height of T1 is ≥ the height of T2

 Each time we connect a smaller tree to a larger
one we generate a tree whose size is on average
at least twice as big as T2

Because T1, being
higher, should

include, in fact on
average, more
nodes than T2

p

q

T2T1

49Algorithms and Programming – Camurati & Quer

Complexity

 Then

 At each step the number of elements increases by at
least a factor 2

 After i steps there will be at least

● (((1·2)·2)·2 … = 2i

elements

 As 2i cannot exceed N

● 2i ≤ N

must hold

 Thus

● i ≤ log2N

p

q

T2T1

Where i is the
number of steps

