
Algorithms and Complexity

Introduction to complexity analysis
Paolo Camurati and Stefano Quer

Dipartimento di Automatica e Informatica

Politecnico di Torino

2Algorithms and Programming – Camurati & Quer

Complexity Analysis

 Target

 Predict performance

 Compare algorithms

 Provide guarantees

Charles Babbage
(1864)

“ As soon as an Analytic Engine exists, it
will necessarily guide the future course
of the science. Whenever any result is

sought by its aid, the question will arise.
By what course of calculation can these
results be arrived at by the machine in

the shortest time? ”

How many times
do you have to
turn the crank?

3Algorithms and Programming – Camurati & Quer

Complexity Analysis

 The challenge

 Will my program be able to solve large practical
problem?

 "Client gets poor performance because
programmer did not understand performance
characteristics"

Why is my program so slow?
Why does it run out of memory?

4Algorithms and Programming – Camurati & Quer

Complexity Analysis

 Modelling the problem

 Given an algorithm (or a program written in a
specific language)

 Forecast of the resources the algorithm required to
be executed

 Type of resources

 Time

 Memory

 We should be able to prove that

 A lower complexity may compensate hardware
efficiency

5Algorithms and Programming – Camurati & Quer

Complexity Analysis

 To really understand programs behavior we have
to develop a mathematical model

 This model is usually based on the assumption
the program runs on a traditional architecture

 Sequential and single-processor model

 The model has to be

 Independent on the hardware (CPU, memory, etc.)

 Independent of the input data of a particular
instance of the problem

 We may eventually analyze best, average, and worst
cases

6Algorithms and Programming – Camurati & Quer

Complexity Analysis

 Our model will depend on the size n of the
problem

 Examples

 Number of bits of the operands for an integer
multiplication

 Number of data to sort for a sorting algorithm

 Etc.

 Our analysis should give indications on the

 Execution time  T(n)

 Memory occupation  S(n)

Time and Space
complexity

7Algorithms and Programming – Camurati & Quer

Execution Time Analysis

 Donal Knuth (late ’60)

 T(n) = «number of operations» · «operation cost»

 Thus we must

 Evaluates the frequency of all operations

 Evaluates the cost of each operations
Program

dependent

Hardware and
software

dependent

8Algorithms and Programming – Camurati & Quer

A Simple Counting Problem

 Write a program able to

 Read an integer value n

 Print-out the number sum of ordered couples (i, j)
such that the two following conditions hold

 i and j are integer values

 1 ≤ i ≤ j ≤ n

 Example

 Input: n = 4

 Generated couples

 (1,1)(1,2)(1,3)(1,4) (2,2)(2,3)(2,4) (3,3)(3,4) (4,4)

 Output: sum = 10

9Algorithms and Programming – Camurati & Quer

Algorithm 1: Brute-force

It generates all pairs:
1 ≤ i ≤ j ≤ n

int count_ver1 (int n) {
int i, j, sum;

sum = 0;

for (i=1; i<=n; i++) {

for (j=i; j<=n; j++) {

sum++;

}
}

return sum;
}

It returns the result

It counts-them up

Observe that the cycle
for (i=S; i<E, i++)

performs
E-S iterations AND E-S+1 checks

10Algorithms and Programming – Camurati & Quer

Algorithm 1: Brute-force

int count_ver1 (int n) {
int i, j, sum;

sum = 0;

for (i=1; i<=n; i++) {

for (j=i; j<=n; j++) {

sum++;

}
}

return sum;
}

1

1 + � + 1 + �

�[1 + � − � + 2 + � − � + 1)

��

�(� − � + 1)

��

1

We suppose ALL operations have
the same constant cost

(unit cost)

We can evaluate the exact number
of operartions performed

11Algorithms and Programming – Camurati & Quer

1
1 + � + 1 + �

�[1 + � − � + 2 + � − � + 1)

��

�(� − � + 1)

��

1

Algorithm 1: Brute-force

� � = 4 + 2� +� 5+ 3� − 3�

��

� � = 4 + 2� +� 5

��

+� 3�

��

−� 3�

��

� � = 4 + 7� + 3�� − 3��

��

� � = 4 + 7� + 3�� − 3�(� + 1)2

� � = �. ��� + �. �� + �

5� 3��

Finite arithmetic progression

1 + 2 + 3 +⋯+ � = �(� + 1)
2

Quadratic behaviour

12Algorithms and Programming – Camurati & Quer

Algorithm 2: First Refinement

int count_ver2 (int n) {
int i, sum;

sum = 0;

for (i=1; i<=n; i++) {
sum = sum + (n–i+1);

}

return sum;
}

int count_ver1 (int n) {
int i, j, sum;
sum = 0;
for (i=1; i<=n; i++) {

for (j=i; j<=n; j++) {
sum++;

}
}
return sum;

}

It generates all pairs:
1 ≤ i ≤ j ≤ n

13Algorithms and Programming – Camurati & Quer

Algorithm 2: First Refinement

int count_ver2 (int n) {
int i, sum;

sum = 0;

for (i=1; i<=n; i++) {
sum = sum + (n–i+1);

}

return sum;
}

1

1 + � + 1 + �

1

�(4)

��

14Algorithms and Programming – Camurati & Quer

Algorithm 2: First Refinement

� � = 1 + 1 + 1 + 1 + � + � + 4�

� � = �� + �

1

1 + � + 1 + �

1

� 4 = 4�

��

Linear behaviour

15Algorithms and Programming – Camurati & Quer

Algorithm 3: Second Refinement

 The for cycle computes

� � − � + 1

��

= �� + � − � �

��

=� � + 1 −
(

)

�
=
(

)

�

int count_ver2 (int n) {
int i, sum;

sum = 0;

for (i=1; i<=n; i++) {
sum = sum + (n–i+1);

}

return sum;
}

16Algorithms and Programming – Camurati & Quer

Algorithm 3: Second Refinement

int count_ver3 (int n) {
return n * (n+1) / 2;

}

int count_ver2 (int n) {
int i, sum;
sum = 0;
for (i=1; i<=n; i++) {

sum = sum + (n–i+1);
}
return sum;

}

It generates all pairs:
1 ≤ i ≤ j ≤ n

 The for cycle computes

 ∑ � − � + 1 =
��

(

)
�

 Which can be used to substitute the entire cycle

17Algorithms and Programming – Camurati & Quer

Algorithm 3: Second Refinement

� � = �

int count_ver3 (int n) {
return n * (n+1) / 2;

}

4

 The for cycle computes

 ∑ � − � + 1 =
��

(

)
�

 Which can be used to substitute the entire cycle

Constant behaviour

18Algorithms and Programming – Camurati & Quer

Summary

Algorithm T(n) Order of T(n)

Version 1 1.5�� + 5.5� + 4 ��
Version 2 6� + 4 �
Version 3 4 constant

19Algorithms and Programming – Camurati & Quer

Asymptotic
behavior

Algorithm
Class

1 Constant

log n Logarithmic

n Linear

n log n Linearithmic

n2 Quadratic

n3 Cubic

2n Exponential

Algorithm Classification

Complexity
grows much
faster than
the input

size

Practically?

20Algorithms and Programming – Camurati & Quer

Summary

Asymptotic
behavior

�34 �3� �3� �3� �35

n 1µs 10µs 100µs 1ms 10ms

20 n 20µs 200µs 2ms 20ms 200ms

n log n 9.96µs 132µs 1.66ms 19.9ms 232ms

20 n log n 199µs 2.7ms 32ms 398ms 4.6sec

n2 1ms 100ms 10s 17min 1.2day

20 n2 20ms 2s 3.3min 5.6h 23day

n3 1s 17min 12day 32years 32
millenium

 Hypothesis

 1 operation = 1 nsec = 1078 sec

Wall-clock
(elapsed) time

A lower complexity may
really compensate

hardware efficiency !

21Algorithms and Programming – Camurati & Quer

Some more examples

 Discrete Fourier Transform

 Decomposition of a N-sample waveform into
periodic components

 Applications: DVD, JPEG, astrophysics, ….

 Trivial algorithm: Quadratic (n2)

 FFT (Fast Fourier Transform): Linearitmic (n·log n)

 Simulation of N bodies

 Simulates gravity interaction among n bodies

 Trivial algorithm: Quadratic (n2)

 Barnes-Hut algorithm: Linearitmic (n·log n)

22Algorithms and Programming – Camurati & Quer

Asymptotic Analysis

 Goal

 Guess an upper-bound for T(n) for an algorithm on
n data in the worst possible case

 Asymptotic

 For small n, complexity is irrelevant

 Understand behaviour for n → ∞

"Order or growth"
classification is very

important

23Algorithms and Programming – Camurati & Quer

Asymptotic Analysis

 Three main analysis

 Worst case

 Average case

 Best case

 Why worst-case analysis?

 Conservative guess

 Avoid complex hyphotesis on data

 Worst case is very frequent

 Average (and best) case

 Either it coincides with the worst case

 It is not definable, unless we resort to complex
hypothesis on data

Design for the
worst case

Running time is going
somewhere in between

24Algorithms and Programming – Camurati & Quer

Tilde Notation

 Estimate running time (or memory) as a function
of input size n

 Analyze to "within a constant factor"

 Ignore lower order terms

 When n is large, terms are negligible

 When n is small, terms are not negligible but we
do not care about them

 Definition

9 � ~; n ⇔ lim=→?
@(=)
A(=) = 1

25Algorithms and Programming – Camurati & Quer

Tilde Notation

 Examples



B �C + 2� + 16 ~

B �C



B �C + 100�D/C + 16 ~

B �C



B �C + F

� �� + 16 ~

B �C

26Algorithms and Programming – Camurati & Quer

O Asymptotic Notation

 Definition

f(n) = O(g(n)) ⇔ ∃ c>0, ∃ n0>0 such that ∀n ≥ n0

0 ≤ f(n) ≤ cg(n)

g(n) = loose upper bound for f(n)

Big-Oh Notation
Develops upper

bounds

27Algorithms and Programming – Camurati & Quer

O Asymptotic Notation

 Examples

 T(n) = 3n+2 = O(n)

● c=4 and n0=2

 T(n) = 10n2+4n+2 = O(n2)

● c=11 and n0=5

 Theorem

 If T(n) = amnm + …. + a1n + a0

 Then T(n) = O(nm)

28Algorithms and Programming – Camurati & Quer

Ω Asymptotic Notation

 Definition

f(n) = Ω(g(n)) ⇔ ∃ c>0, ∃ n0>0 such that ∀n ≥ n0

0 ≤ c g(n) ≤ f(n)

g(n) = loose lower bound for f(n)

Big-Omega Notation
Develops lower

bounds

29Algorithms and Programming – Camurati & Quer

Ω Asymptotic Notation

 Examples

 T(n) = 3n+3 = Ω(n)

● c=3 and n0=1

 T(n) = 10n2+4n+2 = Ω(n2)

● c=1 and n0=1

 Theorem

 If T(n) = amnm + …. + a1n + a0

 Then T(n) = Ω(nm)

30Algorithms and Programming – Camurati & Quer

Θ Asymptotic Notation

 Definition

f(n) = Θ(g(n)) ⇔ ∃ c1,c2 > 0, ∃ n0 > 0 such that ∀n ≥ n0

0 ≤ c1 g(n) ≤ f(n) ≤ c2 g(n)

g(n) = tight asymptotic bound for f(n)

Big-Theta Notation
Classify algorithms
Asymptotic order of

growth

31Algorithms and Programming – Camurati & Quer

Θ Asymptotic Notation

 Examples

 T(n) = 3n+2 = Θ(n)

● c1=3, c2=4 and n0=2

 T(n) = 3n+2 ≠ Θ(n2)

 T(n) = 10n2+4n+2 ≠ Θ(n)

 Theorem

 If T(n) = amnm + …. + a1n + a0

 Then T(n) = Θ(nm)

32Algorithms and Programming – Camurati & Quer

Theorems

 Given two functions f(n) and g(n)

 lim
→?
@(
)
A(
) = 0  f(n) = O(g(n))

 lim
→?
@(
)
A(
) = ∞  f(n) = Ω(g(n))

 lim
→?
@(
)
A(
) = HI�JK  f(n) = Θ(g(n))

 f(n) = Θ(g(n)) ⇔ g(n) = Θ(f(n))

 f(n) = Θ(g(n)) ⇔
f(n) = O(g(n)) and f(n) = Ω(g(n))

 etc.

33Algorithms and Programming – Camurati & Quer

Exponential growth

 Exponential growth dwarfs technological change

 Example

 The Travelling Salesman Problem Algorithm
on n points needs n! steps using brute force

 Suppose

 We have a giant parallel computing device

● With as many processors as electrons in the universe

 Where each processor has power of today's
supercomputers

 And each processor works for the life of the universe

34Algorithms and Programming – Camurati & Quer

Exponential growth

 Then

 1000 ! >> 101000 >> 1079 · 1013 · 1017

 The parallel machine will not help to
solve a 1000 point TSP problem, via
brute force

Quantity Value

Electrons in universe 1079

Instruction per seconds (supercomputers) 1013

Age of universe (seconds) 1017

·

35Algorithms and Programming – Camurati & Quer

Exponential growth

 Which problems can be solved in practice?

 Those with poly-time algorithms

 Which problems have poly-time algorithms?

 Not so easy to know !

Many known poly-time algorithms for sorting No known poly-time algorithms for TSP

36Algorithms and Programming – Camurati & Quer

The P Class

 Decidable and tractable decision problems

 There exists a polynomial algorithm that solves
them (Edmonds-Cook-Karp thesis, 1970s)

 That is, P problems are solvable in polinomial time

 An algorithm is polynomial iff, working on n data,
given a constant c>0, it terminates in a finite
number of steps upper-bounded by nc

 In practice c should not exceed 2

 Problems in P are supposed to be tractable

Most of the
problems we are
going to consider

are in P

37Algorithms and Programming – Camurati & Quer

The NP Class

 Nondeterministic machine can guess the desired
solution to a problem

 Example
 int v[N] = {0};

 Initializes entries to 0

 A nondeterministic machine may inizialize entries
to the final solution

 NP problems are problems solvable in poly time
on a nondeterministic machine

38Algorithms and Programming – Camurati & Quer

The NP Class

 NP stands for Non-deterministic Polynomial

 There exist decidable problems for which

 We have exponential algorithms, but we don’t
know any polynomial algorithms

 However we can’t rule out the existence of
polynomial algorithms

 We have polynomial verification algorithms, to
check whether a solution (certificate) is really
such

 Sudoku, satisfyability of a boolean function,
factorization, graph isomorphism

39Algorithms and Programming – Camurati & Quer

P versus NP

 Thus

 P = class of search problems solvable in poly-tyme

 NP = class of all search problem

 Does P = NP ?

Copyright © 1990, Matt Groening Copyright © 2000, Twentieth Century Fox

40Algorithms and Programming – Camurati & Quer

P versus NP

 We know that P ⊆ NP

 We don’t know whether P is a proper subset of NP
or it coincides with NP

 It is probable that P is a proper subset of NP

NP

Probable Improbable

NP = P

Millennium prize
$1 million for resolution

P

41Algorithms and Programming – Camurati & Quer

The NP-C Class

 Definition

 An NP problem is NP-complete if every problem in
NP poly-time reduce to it

 Problems in NP-C are the hardest within NP

42Algorithms and Programming – Camurati & Quer

The NP-C Class

 A problem is NP-complete if

 It is NP

 Any other problem in NP may be reduced to it by
means of a polynomial transformation

NP

NP and NP-C
problems are often

considered as
intractable

NP-C

P

SAT

3-COLOR

EXACT COVER

SUBSET-SUM

PARTITION

KNAPSACK BIN-PACKING

IND-SET

ILP

VERTEX-COVER

CLIQUE HAM-CYCLE

TSP HAM-PATH

43Algorithms and Programming – Camurati & Quer

P versus NP versus NP-C

 If we find a polynomial algorithm for any problem
in this class, we could find polynomial algorithms
for all NP problems, through transformations

 This is highly improbable !

 The existence of the NP-C class makes it probable
that P ⊂ NP

 Example of NP-C problem

 Satisfyiability

 Given a Boolean function, find if there exists an
assignment to the input variables such that the
function is true.

 Hamilton Cycle, Clique, Graph Connectivity,
Primality, Determinant

44Algorithms and Programming – Camurati & Quer

The NP-H Class

 A problem is NP-hard if every problem in NP may
be reduced to it in polynomial time (even if it
does not belong to NP)

 Any other problem in NP may be reduced to it by
means of a polynomial transformation

 Permanent of a matrix

NP
NP-C

NP-H

P

45Algorithms and Programming – Camurati & Quer

Memory Occupation

 Memory occupation is as important as time
complexity

 In many algorithms the programmer has to trade-
off time and memory contraints

 Is it better a solution running in 100 seconds and
using 10GBytes or one running in 500 seconds and
using 3 Gbytes?

 Is it better a solution using 5GBytes for all its
running time or une using 10Gbytes for the first
25% of the time an 2Gbytes for the remaining 75%
of the time?

46Algorithms and Programming – Camurati & Quer

Memory Occupation

Basics
Objects

Size

Bit 0 or 1

Byte 8 bits

1KByte 210 Byt2
(1 thousand)

1MByte 220 Bytes
(1 million)

1GByte 230 Byte
(1 billion)

C scalar
Type

sizeof(type)

char 1 byte

int 4 Bytes

float 4 Bytes

double 8 Bytes

etc. etc.

Padding may be used,
i.e., each object uses a
multiple of 4/8 bytes

47Algorithms and Programming – Camurati & Quer

 Memory occupation from aggregate types may be
computed starting from scalar types

 Total memory S(n) usage can be computed
based on those considerations

int vet[N];

struct type {
char id[N];
int i;
float x;

};

N · sizeof (int)

N · sizeof (char) +
sizeof (int) + sizeof (float)

plus padding

Memory Occupation

