

Algorithms and Complexity

Introduction to complexity analysis

Paolo Camurati and Stefano Quer Dipartimento di Automatica e Informatica Politecnico di Torino

Complexity Analysis

2

Target

- Predict performance
- Compare algorithms
- Provide guarantees

"As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise. By what course of calculation can these results be arrived at by the machine in the shortest time? "

Charles Babbage (1864)

Complexity Analysis

3

The challenge

Will my program be able to solve large practical problem?

Why is my program so slow? Why does it run out of memory?

> "Client gets poor performance because programmer did not understand performance characteristics"

Complexity Analysis

Modelling the problem

- Given an algorithm (or a program written in a specific language)
- Forecast of the resources the algorithm required to be executed
- > Type of resources
 - Time
 - Memory
- We should be able to prove that
 - A lower complexity may compensate hardware efficiency

Complexity Analysis

- To really understand programs behavior we have to develop a mathematical model
- This model is usually based on the assumption the program runs on a traditional architecture
 - Sequential and single-processor model
- The model has to be
 - > Independent on the hardware (CPU, memory, etc.)
 - Independent of the input data of a particular instance of the problem
 - We may eventually analyze best, average, and worst cases

A Simple Counting Problem

8

Write a program able to

- Read an integer value n
- Print-out the number sum of ordered couples (i, j) such that the two following conditions hold
 - i and j are integer values
 - 1 ≤ i ≤ j ≤ n
- Example
 - ➢ Input: **n** = 4
 - Generated couples
 - (1,1)(1,2)(1,3)(1,4) (2,2)(2,3)(2,4) (3,3)(3,4) (4,4)

Output: sum = 10

Algorithm 1: Brute-force

Algorithm 1: Brute-force

Algorithm 2: First Refinement

```
int count_ver1 (int n) {
                                               int i, j, sum;
                                               sum = 0;
                                               for (i=1; i<=n; i++) {</pre>
                                                 for (j=i; j<=n; j++) {</pre>
                                                   sum++;
int count_ver2 (int n) {
  int i, sum;
                                               return sum;
                                             }
  sum = 0;
  for (i=1; i<=n; i++) {</pre>
                                                   It generates all pairs:
     sum = sum + (n-i+1);
                                                       1 \le i \le j \le n
  return sum;
}
```

Algorithm 2: First Refinement

Algorithm 3: Second Refinement

```
The for cycle computes

\sum_{i=1}^{n} (n-i+1)
int count_ver2 (int n) {

int i, sum;

sum = 0;

for (i=1; i<=n; i++) {

sum = sum + (n-i+1);

}

return sum;

}

The for cycle computes

\sum_{i=1}^{n} (n-i+1)
= n^{2} + n - \sum_{i=1}^{n} i
= n (n+1) - \frac{n(n+1)}{2}
= \frac{n(n+1)}{2}
```

Algorithm 3: Second Refinement

16

The for cycle computes

- $\succ \sum_{i=1}^{n} (n-i+1) = \frac{n(n+1)}{2}$
- > Which can be used to substitute the entire cycle

Algorithm 3: Second Refinement

17

The for cycle computes

$$\succ \sum_{i=1}^{n} (n-i+1) = \frac{n(n+1)}{2}$$

> Which can be used to substitute the entire cycle

Summary

Algorithm	T(n)	Order of T(n)		
Version 1	$1.5n^2 + 5.5n + 4$	n^2		
Version 2	6n + 4	n		
Version 3	4	constant		

Algorithm Classification

- 112									
	Asymptotic behavior	Algorithm Class							
	1	Constant							
	log n	Logarithmic					ſ	Pract	Practically
	n	Linear							
	n log n	Linearithmic				т			
	n ²	Quadratic	14) -		1	/	nlog(n)	
	n ³	Cubic	12	0		/		n ³ 2'	n ³
	2 ⁿ	Exponential	(u 8	D -		/			
	Complexity	/	₆) -					
g	rows much		4)					
f	aster than the input		2) -					
	size			0	2	2 4	2 4 6	2 4 6 8	2 4 6 8
						n	n	n	n

Noro S	Algorithms and P	rogramming - C	amurati & Quer	lay		20			
	A lower complexity may really compensate hardware efficiency !					Summary			
	✤ Hypot▶ 1 o	hesis peration =	= 1 nsec =	$1 \text{ nsec} = 10^{-9} \text{ sec}$			Wall-clock (elapsed) time		
	Asymptotic behavior	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷			
	n	1µs	10µs	100µs	1ms	10ms			
	20 n	20us	200us	2ms	20ms	200ms			

Asymptotic behavior	10 ³	10*	10 ⁵	10°	10'
n	1µs	10µs	100µs	1ms	10ms
20 n	20µs	200µs	2ms	20ms	200ms
n log n	9.96µs	132µs	1.66ms	19.9ms	232ms
20 n log n	199µs	2.7ms	32ms	398ms	4.6sec
n ²	1ms	100ms	10s	17min	1.2day
20 n ²	20ms	2s	3.3min	5.6h	23day
n ³	1s	17min	12day	32years	32 millenium

Some more examples

- Discrete Fourier Transform
 - Decomposition of a N-sample waveform into periodic components
 - > Applications: DVD, JPEG, astrophysics,
 - Trivial algorithm: Quadratic (n²)
 - FFT (Fast Fourier Transform): Linearitmic (n·log n)
- Simulation of N bodies
 - Simulates gravity interaction among n bodies
 - Trivial algorithm: Quadratic (n²)
 - Barnes-Hut algorithm: Linearitmic (n·log n)

Asymptotic Analysis

22

Goal

- Guess an upper-bound for T(n) for an algorithm on n data in the worst possible case
- > Asymptotic
 - For small n, complexity is irrelevant
 - Understand behaviour for $n \to \infty$

"Order or growth" classification is very important

$$f(n) \sim g(n) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$$

Tilde Notation

Examples

$$\frac{1}{6}n^3 + 2n + 16 \sim \frac{1}{6}n^3$$

$$\frac{1}{6}n^3 + 100n^{4/3} + 16 \sim \frac{1}{6}n^3$$

$$\frac{1}{6}n^3 + \frac{5}{12}n^2 + 16 \sim \frac{1}{6}n^3$$

26

Definition

 $\begin{array}{l} f(n) = O(g(n)) \iff \exists c > 0, \exists n_0 > 0 \text{ such that } \forall n \ge n_0 \\ 0 \le f(n) \le cg(n) \end{array}$

g(n) = loose upper bound for f(n)

O Asymptotic Notation

27

Examples

- T(n) = 3n+2 = O(n)
 - c=4 and $n_0=2$
- $T(n) = 10n^2 + 4n + 2 = O(n^2)$
 - c=11 and $n_0=5$

Theorem

- > If $T(n) = a_m n^m + + a_1 n + a_0$
 - Then $T(n) = O(n^m)$

28

Definition

$$\begin{split} f(n) &= \Omega(g(n)) \Leftrightarrow \exists \ c {>} 0, \ \exists \ n_0 {>} 0 \ \text{such that} \ \forall n \geq n_0 \\ 0 \leq c \ g(n) \leq f(n) \end{split}$$

g(n) = loose lower bound for f(n)

Ω Asymptotic Notation

Examples

- $T(n) = 3n+3 = \Omega(n)$
 - c=3 and $n_0=1$
- $T(n) = 10n^2 + 4n + 2 = \Omega(n^2)$
 - c=1 and $n_0=1$

Theorem

- > If $T(n) = a_m n^m + + a_1 n + a_0$
 - Then $T(n) = \Omega(n^m)$

Θ Asymptotic Notation

30

Definition

 $\begin{array}{l} f(n) = \Theta(g(n)) \Leftrightarrow \exists \ c_1, c_2 \ > 0, \ \exists \ n_0 > 0 \ \text{such that} \ \forall n \ge \ n_0 \\ 0 \le c_1 \ g(n) \le f(n) \le c_2 \ g(n) \end{array}$

g(n) = tight asymptotic bound for f(n)

Θ Asymptotic Notation

31

Examples

- $T(n) = 3n+2 = \Theta(n)$
 - c1=3, c2=4 and n₀=2
- $T(n) = 3n+2 \neq \Theta(n^2)$
- $T(n) = 10n^2 + 4n + 2 \neq \Theta(n)$

Theorem

- > If $T(n) = a_m n^m + + a_1 n + a_0$
 - Then $T(n) = \Theta(n^m)$

Theorems \Leftrightarrow Given two functions f(n) and g(n) $\geq \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \Rightarrow f(n) = O(g(n))$ $\geq \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \Rightarrow f(n) = \Omega(g(n))$ $\geq \lim_{n \to \infty} \frac{f(n)}{g(n)} = const \Rightarrow f(n) = \Theta(g(n))$ \succ f(n) = $\Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$ \succ f(n) = $\Theta(q(n)) \Leftrightarrow$ f(n) = O(q(n)) and $f(n) = \Omega(q(n))$ > etc.

Exponential growth

- Exponential growth dwarfs technological change
- Example
 - The Travelling Salesman Problem Algorithm on n points needs n! steps using brute force
 - Suppose
 - We have a giant parallel computing device
 - With as many processors as electrons in the universe
 - Where each processor has power of today's supercomputers
 - And each processor works for the life of the universe

Exponential growth

Quantity	Value	
Quantity	Value	
Electrons in universe	10 ⁷⁹	
Instruction per seconds (supercomputers)	10 ¹³	(30, 2 ³⁰)
Age of universe (seconds)	1017	

Then

 $> 1000 ! >> 10^{1000} >> 10^{79} \cdot 10^{13} \cdot 10^{17}$

The parallel machine will not help to solve a 1000 point TSP problem, via brute force

 $(20, 2^{20})$

Many known poly-time algorithms for sorting No k

No known poly-time algorithms for TSP

The P Class

Decidable and tractable decision problems

- There exists a polynomial algorithm that solves them (Edmonds-Cook-Karp thesis, 1970s)
- > That is, P problems are solvable in polinomial time
 - An algorithm is polynomial iff, working on n data, given a constant c>0, it terminates in a finite number of steps upper-bounded by n^c
 - In practice c should not exceed 2
- Problems in P are supposed to be tractable

Most of the problems we are going to consider are in P

- A nondeterministic machine may inizialize entries to the final solution
- NP problems are problems solvable in poly time on a nondeterministic machine

The NP Class

- NP stands for Non-deterministic Polynomial
- There exist decidable problems for which
 - We have exponential algorithms, but we don't know any polynomial algorithms
 - However we can't rule out the existence of polynomial algorithms
- We have polynomial verification algorithms, to check whether a solution (certificate) is really such
 - Sudoku, satisfyability of a boolean function, factorization, graph isomorphism

Copyright © 1990, Matt Groening

Copyright $\ensuremath{\textcircled{C}}$ 2000, Twentieth Century Fox

P versus NP versus NP-C

- If we find a polynomial algorithm for any problem in this class, we could find polynomial algorithms for all NP problems, through transformations
- > This is **highly improbable** !
- > The existence of the NP-C class makes it probable that $P \subset NP$
- Example of NP-C problem
 - Satisfyiability
 - Given a Boolean function, find if there exists an assignment to the input variables such that the function is true.
 - Hamilton Cycle, Clique, Graph Connectivity, Primality, Determinant

Memory Occupation

- Memory occupation is as important as time complexity
 - In many algorithms the programmer has to tradeoff time and memory contraints
 - Is it better a solution running in 100 seconds and using 10GBytes or one running in 500 seconds and using 3 Gbytes?
 - Is it better a solution using 5GBytes for all its running time or une using 10Gbytes for the first 25% of the time an 2Gbytes for the remaining 75% of the time?

Memory Occupation

Basics Objects	Size		C scalar Type	sizeof(type)
Bit	0 or 1		char	1 byte
Byte	8 bits		int	4 Bytes
1KByte	2 ¹⁰ Byt2		float	4 Bytes
	(1 thousand)		double	8 Bytes
1MByte	2 ²⁰ Bytes (1 million)		etc.	etc.
1GByte	2 ³⁰ Byte (1 billion)			
		Padding may i.e., each obje multiple of 4	be used, ect uses a /8 bytes	

Total memory S(n) usage can be computed based on those considerations