Comparing different variants of IC3 for Hardware Model Checking

Alberto Griggio, Marco Roveri
Fondazione Bruno Kessler – Trento, Italy
Introduction

- IC3 very successful SAT-based model checking algorithm
 - Very effective on hardware designs

- Many variants and optimizations proposed in the literature
 - Different implementations, different sets of benchmarks
 - Difficult to compare/evaluate

This work: a comprehensive evaluation of IC3 variants

- A single implementation platform (nuXmv)
- A common set of benchmarks (HWMCC '11, '12, '13)
- Some interesting results
A (very) high level view of IC3

- Given a symbolic transition system and invariant property P, build an inductive invariant F s.t. $F \models P$

- Trace of formulae $F_0(X) \equiv I, \ldots, F_k(X)$ s.t:
 - for $i > 0$, F_i is a set of clauses
 - overapproximation of states reachable in up to i steps
 - $F_{i+1} \subseteq F_i$ (so $F_i \models F_{i+1}$)
 - $F_i \land T \models F'_i$
 - for all $i < k$, $F_i \models P$
A (very) high level view of IC3

- **Blocking phase**: incrementally strengthen trace until $F_k \models P$
- Get bad cube s
- Call SAT solver on $F_{k-1} \land \neg s \land T \land s'$
 (i.e., check if $F_{k-1} \land \neg s \land T \models \neg s'$)
A (very) high level view of IC3

- **Blocking phase:** incrementally strengthen trace until $F_k \models P$
 - Get bad cube s
 - Call SAT solver on $F_{k-1} \land \neg s \land T \land s'$ (i.e., check if $F_{k-1} \land \neg s \land T \models \neg s'$)

Check if s is inductive relative to F_{k-1}
A (very) high level view of IC3

- **Blocking phase:** incrementally strengthen trace until $F_k \models P$
 - Get bad cube s
 - Call SAT solver on $F_{k-1} \land \neg s \land T \land s'$
 (i.e., check if $F_{k-1} \land \neg s \land T \models \neg s'$)
A (very) high level view of IC3

- **Blocking phase:** incrementally strengthen trace until $F_k \models P$
- Get bad cube s
- Call SAT solver on $F_{k-1} \land \neg s \land T \land s'$
 - **SAT:** s is reachable from $F_{k-1} \land \neg s$ in 1 step
 - Get a cube c in the preimage of s and try (recursively) to prove it unreachable from F_{k-2}, ...
 - c is a counterexample to induction (CTI)

If I is reached, counterexample found
A (very) high level view of IC3

- **Blocking phase:** incrementally strengthen trace until $F_k \models P$
 - Get bad cube s
 - Call SAT solver on $F_{k-2} \land \neg s \land T \land s'$
A (very) high level view of IC3

- **Blocking phase:** incrementally strengthen trace until $F_k \models P$
 - Get bad cube s
 - Call SAT solver on $F_{k-2} \land \neg s \land T \land s'$
 - **UNSAT:** $\neg c$ is inductive relative to F_{k-2}
 - Generalize c to g and block by adding $\neg g$ to $F_{k-1}, F_{k-2}, \ldots, F_1$
A (very) high level view of IC3

- **Blocking phase:** incrementally strengthen trace until $F_k \models P$
 - Get bad cube s
 - Call SAT solver on $F_{k-2} \land \neg s \land T \land s'$
 - **UNSAT:** $\neg c$ is inductive relative to F_{k-2}
 - Generalize c to g and block by adding $\neg g$ to $F_{k-1}, F_{k-2}, \ldots, F_1$
A (very) high level view of IC3

Propagation: extend trace to F_{k+1} and push forward clauses

For each i and each clause $c \in F_i$:

Call SAT solver on $F_i \land T \land \neg c'$

If UNSAT, add c to F_{i+1}
A (very) high level view of IC3

Propagation: extend trace to F_{k+1} and push forward clauses

For each i and each clause $c \in F_i$:

Call SAT solver on $F_i \land T \land \neg c'$

If UNSAT, add c to F_{i+1}

$F_i \land T \models c'$
A (very) high level view of IC3

Propagation: extend trace to F_{k+1} and push forward clauses

For each i and each clause $c \in F_i$:

Call SAT solver on $F_i \land T \land \neg c'$

If UNSAT, add c to F_{i+1}

If $F_i \equiv F_{i+1}$, P is proved,
otherwise start another round of blocking and propagation
Inductive Clause Generalization

- Crucial step of IC3
- Given a relatively inductive clause \(c \equiv \{l_1, \ldots, l_n\} \) compute a generalization \(g \subseteq c \) that is still inductive

\[
F_{i-1} \land T \land g \models g' \tag{1}
\]

- Drop literals from \(c \) and check that (1) still holds
 - Accelerate with unsat cores returned by the SAT solver

- 3 variants considered
 - lattice-based exploration of FMCAD'07 (original IC3)
 - Simple “iterative” algorithm (ABC, Tip)
 - CTG-based algorithm of FMCAD'13
void indgen(c, i):
 done = False
 for iter = 1 to max_iters:
 if done:
 break
 done = True
 for each l in c:
 cand = c \ {l}
 if not is_sat(I & cand) and
 not is_sat(trace[i] & ~cand & T & cand'):
 c = get_unsat_core(cand)
 done = False
 break
void indgen(c, i):
 fail = 0
 for each l in c:
 cand = c \ {l}
 if down(cand, i):
 c = up(cand, i)
 fail = 0
 elif ++fail > max_fail:
 break

bool down(c, i):
 while True:
 if is_sat(I & c): return False
 if not is_sat(trace[i] & ~c & T & c'):
 c = get_unsat_core(c)
 return True
 else:
 s = get_predecessor(i, T, c')
 c = lattice_join(c, s)
void indgen(c, i, d=0):
 f = 0
 for each l in c:
 cand = c \ {l}
 if ctg_down(cand, i, d):
 c = cand
 elif ++f > max_f:
 break

bool ctg_down(c, i, rec_depth):
 ctgs = 0
 while True:
 if is_sat(I & c): return False
 if not is_sat(trace[i] & ~c & T & c'):
 c = get_unsat_core(c)
 return True
 elif rec_depth > max_depth: return False
 else:
 s = get_predecessor(i, T, c')
 if ctgs < max_ctgs and i > 0 and
 not is_sat(I & s) and
 not is_sat(trace[i-1] & ~s & T & s'):
 ctgs += 1
 j = find_max_level(i, s)
 indgen(s, j-1, rec_depth+1)
 trace[j].append(s)
 else:
 ctgs = 0
 c = lattice_join(c, s)
An important optimization

```c
void indgen(c, i):
    f = 0
    for each l in c:
        cand = c \ {l}
        if down(cand, i):
            c = up(cand, i)
        elif ++f > max_f:
            break
```

```c
bool down(c, i):
    while True:
        if is_sat(I & c):
            return False
        if not is_sat(trace[i] & ~c & T & c'):
            c = get_unsat_core(c)
            return True
        else:
            s = get_predecessor(i, T, c')
            cj = lattice_join(c, s)
            c = cj
```
An important optimization

void indgen(c, i):
 required = {}
 f = 0
 for each l in c:
 cand = c \ {l}
 if down(cand, i):
 c = up(cand, i)
 else:
 if ++f > max_f:
 break
 required.add(l)

bool down(c, i):
 while True:
 if is_sat(I & c):
 return False
 if not is_sat(trace[i] & ~c & T & c'):
 c = get_unsat_core(c)
 return True
 else:
 s = get_predecessor(i, T, c', no_lifting)
 cj = lattice_join(c, s)
 if (c \ cj) \ required != {}:
 return False
 c = cj

Applies to CTGs as well
[thanks to A. Bradley]
When $F_i \land \neg s \land T \land s'$ is satisfiable:

- s reaches $\neg P$ in $k-i$ steps
- s can be reached from F_i in 1 step
 - strengthen F_i by blocking cubes c in the preimage of s

- Extract CTI c from the SAT assignment
- And generalize ("lift") to represent multiple bad predecessors

2 variants considered

- Simple syntactic generalization based on cone-of-influence (similar to original IC3)
- SAT-based generalization with unsat cores of FMCAD'11
 - (effects similar to ternary simulation)
void lift(cti, inputs, next):
 for \(i = 1 \) to max_iters:
 b = is_sat(cti & inputs & T & ~next')
 assert not b # assume T to be functional
 c = get_unsat_core(cti)
 if should_stop(c, cti):
 break
 cti = c
Other high-level aspects

[See the paper for details]

- Management of proof obligations of cubes to block \((c, i)\)
 - recursive (i.e. stack-based) procedure vs priority queue

- Target enlargement
 - 0-step (PDR FMCAD'11), 1-step (original IC3), 4-step (Tip)

- Model preprocessing with sequential simplifications
 - no preprocessing vs 2-step temporal decomposition and detection of equivalences
A number of “low-level” settings can significantly affect the performance of IC3. **We considered:**

- **SAT solver**: minisat-core, minisat-simp, picosat
- **CNF conversion**: standard Tseitin-like, “ABC-like” [SAT'07]
- **# of SAT solver instances**: single instance, one per frame
- **Activity of literals** for inductive generalization: on, off
- **Approximated SAT queries** in inductive generalization
 - **Bound on the number of decisions**: if reached, report SAT
 - To reduce the runtime on satisfiable instances
 - Only applied during inductive generalization, does not affect correctness nor completeness
 - Use a static bound of 100 decisions in the experiments
Setup of the experiments

- **Benchmarks**: single track of HWMCC '11, '12, '13
 - Include all instances, even the “questionable” ones (e.g. bwd beem)
- **Machine**: 2.5Ghz Xeon X5650 CPU, 96Gb RAM, 12Mb cache, 900s time limit, 4Gb mem limit
- **Baseline configuration** following the PDR description of [FMCAD'11]
- **Other configurations change only a single parameter**
 - Assumption of independence of parameters
 - Necessary simplification to avoid combinatorial explosion
- Implementation available at https://nuxmv.fbk.eu/tests/difts2014
Inductive generalization

- Configurations tested in the paper:
 - **baseline**: iterative algorithm with \(\text{max_iters}=+\infty \), "round robin" loop over literals to drop
 - Essentially, the Tip way

- **indgen-ic3**: lattice-based generalization with \(\text{max_fails}=3 \), apply **up** only for cubes with >25 literals
 - The strategy of the original IC3 paper

- **indgen-ctg**: ctg-based generalization with \(\text{max_fails}=3 \), never apply **up**, use \(\text{max_ctgs}=3, \text{max_depth}=1 \)
 - What is described in FMCAD'13

- **no relative induction**: only check \(F_i \land T \models c' \)
Inductive generalization

- Further configurations tested (not in the paper):
 - indgen-ctg and indgen-ic3 with the optimization described earlier
 - iterative with max_iters=4 and max_iters=64
 - down unbounded: lattice-based generalization with max_fails=+\infty, no up
 - ctg unbounded: ctg-based generalization with max_fails=+\infty
Results: inductive generalization

<table>
<thead>
<tr>
<th>Configuration</th>
<th># solved</th>
<th>Δ baseline</th>
<th>Gained</th>
<th>Lost</th>
<th>Total time</th>
</tr>
</thead>
<tbody>
<tr>
<td>ctg unbounded</td>
<td>431</td>
<td>10</td>
<td>31</td>
<td>21</td>
<td>36681</td>
</tr>
<tr>
<td>down unbounded</td>
<td>427</td>
<td>6</td>
<td>16</td>
<td>10</td>
<td>28931</td>
</tr>
<tr>
<td>iterative max_iters=64</td>
<td>422</td>
<td>1</td>
<td>10</td>
<td>9</td>
<td>29985</td>
</tr>
<tr>
<td>baseline (iter unbounded)</td>
<td>421</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27242</td>
</tr>
<tr>
<td>ctg (optimized)</td>
<td>417</td>
<td>-4</td>
<td>25</td>
<td>29</td>
<td>31736</td>
</tr>
<tr>
<td>ctg (naive)</td>
<td>412</td>
<td>-9</td>
<td>26</td>
<td>35</td>
<td>34632</td>
</tr>
<tr>
<td>ic3 (optimized)</td>
<td>396</td>
<td>-25</td>
<td>9</td>
<td>36</td>
<td>30388</td>
</tr>
<tr>
<td>iterative max_iters=4</td>
<td>386</td>
<td>-35</td>
<td>11</td>
<td>46</td>
<td>25541</td>
</tr>
<tr>
<td>ic3 (naive)</td>
<td>384</td>
<td>-37</td>
<td>7</td>
<td>44</td>
<td>30405</td>
</tr>
<tr>
<td>no relative induction</td>
<td>381</td>
<td>-40</td>
<td>5</td>
<td>45</td>
<td>32539</td>
</tr>
</tbody>
</table>
Inductive generalization
Results: other high-level parameters

<table>
<thead>
<tr>
<th>Configuration</th>
<th># solved</th>
<th>Δ baseline</th>
<th>Gained</th>
<th>Lost</th>
<th>Total time</th>
</tr>
</thead>
<tbody>
<tr>
<td>preprocessing</td>
<td>431</td>
<td>10</td>
<td>22</td>
<td>12</td>
<td>25399</td>
</tr>
<tr>
<td>unroll-4</td>
<td>431</td>
<td>10</td>
<td>29</td>
<td>19</td>
<td>31525</td>
</tr>
<tr>
<td>unroll-1</td>
<td>428</td>
<td>7</td>
<td>23</td>
<td>16</td>
<td>34005</td>
</tr>
<tr>
<td>baseline</td>
<td>421</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27242</td>
</tr>
<tr>
<td>stack</td>
<td>401</td>
<td>-20</td>
<td>14</td>
<td>34</td>
<td>34447</td>
</tr>
<tr>
<td>syntactic CTI lifting</td>
<td>334</td>
<td>-87</td>
<td>9</td>
<td>96</td>
<td>31360</td>
</tr>
</tbody>
</table>
Other high-level parameters

Target enlargement

Preprocessing

CTI lifting

Queue management
Results: low-level parameters

<table>
<thead>
<tr>
<th>Configuration</th>
<th># solved</th>
<th>Δ baseline</th>
<th>Gained</th>
<th>Lost</th>
<th>Total time</th>
</tr>
</thead>
<tbody>
<tr>
<td>cnf-abc</td>
<td>448</td>
<td>27</td>
<td>30</td>
<td>3</td>
<td>28431</td>
</tr>
<tr>
<td>sat-approx</td>
<td>438</td>
<td>17</td>
<td>26</td>
<td>9</td>
<td>28833</td>
</tr>
<tr>
<td>activity</td>
<td>430</td>
<td>9</td>
<td>17</td>
<td>8</td>
<td>31352</td>
</tr>
<tr>
<td>minisat-simp</td>
<td>429</td>
<td>8</td>
<td>18</td>
<td>10</td>
<td>27413</td>
</tr>
<tr>
<td>baseline</td>
<td>421</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27242</td>
</tr>
<tr>
<td>many solvers</td>
<td>420</td>
<td>-1</td>
<td>14</td>
<td>15</td>
<td>32306</td>
</tr>
<tr>
<td>picosat</td>
<td>402</td>
<td>-19</td>
<td>11</td>
<td>30</td>
<td>32570</td>
</tr>
</tbody>
</table>
Low-level parameters

SAT solver

CNF conversion

Indgen tweaks
Comparison with the state of the art

- **Best candidate** configuration (combination of all the improvements). **Baseline +:**
 - preproc, unroll-4, cnf-abc, activity, sat-approx, minisat-simp
- PDR implementation in **ABC**
- A. Bradley **IC3 reference** implementation
- **Virtual best** among all (our) configurations
Comparison with state of the art

<table>
<thead>
<tr>
<th>Configuration</th>
<th># solved</th>
<th>Δ baseline</th>
<th>Gained</th>
<th>Lost</th>
<th>Total time</th>
</tr>
</thead>
<tbody>
<tr>
<td>virtual best</td>
<td>505</td>
<td>84</td>
<td>84</td>
<td>0</td>
<td>26509</td>
</tr>
<tr>
<td>bestcandidate</td>
<td>477</td>
<td>56</td>
<td>68</td>
<td>12</td>
<td>27341</td>
</tr>
<tr>
<td>ABC (PDR only)</td>
<td>447</td>
<td>26</td>
<td>37</td>
<td>11</td>
<td>25360</td>
</tr>
<tr>
<td>baseline</td>
<td>421</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27242</td>
</tr>
<tr>
<td>IC3ref</td>
<td>418</td>
<td>-3</td>
<td>32</td>
<td>35</td>
<td>33924</td>
</tr>
</tbody>
</table>

![Graph showing the comparison of different configurations](image)
Comparison with state of the art
Conclusions

- Systematic evaluation of IC3 variants/optimizations
 - Same implementation allows for better comparison
 - Despite limitations (independence, only runtime compared), interesting results
 - Independent confirmation of results from the literature
 - Importance of some low-level parameters (CNF conversion)

Future work

- Improve the analysis of results (e.g. analyze other statistics, evaluate the dependency among parameters)
- Consider further parameters (e.g. effect of recycling of SAT solvers)
- Include recent IC3-like variants (e.g. Lazy Abstraction, Avy)
Thank You
bool IC3(I, T, P):
 trace = [I] # first elem of trace is init formula
 trace.push() # add a new frame
 while True:
 # blocking phase
 while is_sat(trace.last() & ~P):
 c = extract_cube() # c |= trace.last() & ~P
 if not rec_block(c, trace.size()-1):
 return False # counterexample found

 # propagation phase
 trace.push()
 for i=1 to trace.size()-1:
 for each cube c in trace[i]:
 if not is_sat(trace[i] & ~c & T & c'):
 trace[i+1].append(c)
 if trace[i] == trace[i+1]:
 return True # property proved
def rec_block(s, i):
 if i == 0:
 return False # reached initial states
 while is_sat(trace[i-1] & ~s & T & s'):
 c = get_predecessor(i-1, T, s')
 if not rec_block(c, i-1):
 return False
 g = generalize(~s, i)
 trace[i].append(g)
 return True
IC3 pseudo-code

```python
bool rec_block(s, i):
    if i == 0:
        return False  # reached initial states
    while is_sat(trace[i-1] & ~s & T & s'):
        c = get_predecessor(i-1, T, s')
        if not rec_block(c, i-1):
            return False
        g = generalize(~s, i)
    trace[i].append(g)
    return True
```

- **Predecessor computation**
- **Inductive generalization**
A proof obligation \((c, i)\) represents a cube reaching the bad states in \(k-i\) steps \((k: \text{number of frames in the trace})\)

- \(c\) is bad regardless of the value of \(i\)
 - if later another obligation \((c, j), j > i\) is generated, \(c\) must be blocked again
 - when \((c, i)\) is blocked, try blocking also \((c, i+1)\)
 - from stack to priority queue (ordered by \(i\))

2 variants considered

- simple recursive procedure (stack based)
- priority queue
Queue-based blocking

```python
bool rec_block(s, i):
    q = PriorityQueue()
    q.push((s, i))
    while not q.empty():
        (c, j) = q.top()
        if j == 0:
            return False  # reached initial states
        if is_sat(trace[j-1] & ~c & T & c'):
            p = get_predecessor(j-1, T, c')
            q.push((p, j-1))
        else:
            q.pop()
            g = generalize(~c, j)
            trace[j].append(g)
            if j < trace.size():  # try blocking at later frames
                q.push((c, j))
    return True
```
The IC3 presented here is the PDR variant [ABC FMCAD'11]

- for all $i < k$, $F_i \models P$
- Blocking starts from $F_k \cap \neg P$

Original IC3:

- $F_i \models P$ for all i (including F_k)
- Blocking starts from $F_k \land T \models P'$

PDR can emulate IC3 with 1-step target-enlargement

- Preprocess the model replacing P with unroll($1, P$)

3 variants considered

- no enlargement (PDR-like)
- 1-step enlargement (IC3-like)
- 4-step enlargement (Tip-like)
Model simplification

- **Preprocessing** with sequential simplification techniques often critical for performance
 - E.g. winners of HWMCC

- 2 variants considered
 - no preprocessing, just IC3
 - 2-step *temporal decomposition* + detection of *equivalences* (with ternary simulation)