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Abstract—This paper addresses the issue of property group-
ing, property decomposition, and property coverage in model
checking problems.

Property grouping, i.e., clustering, is a valuable solution
whenever (very) large sets of properties have to be proven
for a given model. As such sets often include many “easy-to-
prove” and/or “similar” properties, property grouping can reduce
overheads, and avoid reiteration on common sub-tasks.

On the other end of the spectrum, property decomposition
can be effective whenever a given property turns-out (or it is
expected) to be “hard-to-prove”. Decomposition of properties into
“sub-properties” follows the divide-and-conquer paradigm, and
it shares with this paradigm advantages and disadvantages.

Our contribution is to present a heuristic property manager,
running on top of a multi-engine model checking portfolio, with
the specific target of optimizing productivity. We discuss, and
compare, different clustering heuristics, and we exploit circuit de-
composition strategies for property sub-setting. We also consider
the problem of evaluating a coverage measure for properties,
where the “coverage” is used to monitor the “advancement”
during the (partial) verification of a given property. We finally
consider estimates of the bound of a property as a measure of
confidence in BMC runs.

We include preliminary experimental data indicating that the
proposed approaches can provide improvements over state-of-
the-art methods potentially enhancing productivity in industrial
environments.

I. INTRODUCTION

Typical industrial verification frameworks are characterized

by the necessity to prove a large number of properties on

the same model. Nevertheless, most modern model checkers

handle just single properties, verifying multiple properties

one at a time in a sequential way. Little information, or

no information at all, is usually retained from one verified

step (property) to the following one. On the one hand, this

approach does not exploit possible correlations and shared sub-

problems among different properties. On the other one, it can

get stuck on the hardest property without producing useful

results, and with no knowledge at all on how significant the

proven properties are.

Recent works on this subject [1], [2], [3] mainly study how

to group, and how to sort sets of properties. Khasidashvili et.

al [1] and Qin et. al [2] addressed Bounded Model Checking

(BMC), and inductive Unbounded Model Checking (UMC),

conjoining simple properties together, and using incremental

SAT across proofs of different properties. Cabodi et al. [3]

based property grouping and sorting on an affinity measure,

and addressed the issue of partitioning single complex proper-

ties into sets of easier problems. In all those cases, results were

limited and the issue of grouping and decomposing properties

was far from being solved.

On a parallel research path, the quality and comprehensive-

ness of a given set of properties can be used to increase the ef-

ficacy of model checking. In this area, a first possible strategy

consists in measuring the coverage of a set of properties [4],

[5], [6], [7]. Coverage is usually related to the fraction of

alterations to the model that would be detected by the given

set of properties. A second possible approach assesses the

quality of the properties detecting vacuous passes [8], [9].

Following the definition of [8] a formula ϕ passes vacuously

in a model if it passes in the model, and there is a sub-formula

ϕ̂ of ϕ that can be changed arbitrarily without affecting the

outcome of model checking. The vacuous pass of a formula

often signals problems in any combination of the model, its

environment, and the formula itself. If a formula ϕ passes

vacuously, it can be “vacuum cleaned”, by replacing ϕ̂ with

either true or false. In other words, vacuity detection in

model checking looks for properties that hold in a model,

and can be strengthened without causing it to fail. Notice

that coverage and vacuity detection are complementary tech-

niques. While coverage addresses the question of whether

enough properties have been specified, vacuity detection is

concerned with improving individual formulas. Nevertheless,

albeit coverage is a very well known and used technique by

the testing community, both coverage and vacuity are far from

being broadly adopted in the formal verification area.

In this work, we focus on multiple-property detection frame-

works, and we propose new heuristics to:

• Group, and order, easy-to-solve properties to avoid re-

peated computations.

• Decompose hard-to-solve properties into easier sub-

properties.

• Gauge the progress of an entire verification process in

terms of sub-properties coverage or advancement.

• Guess the SAT/UNSAT bound of a property to give some

confidence on the coverage given by partial runs.

We also concentrate on how to efficiently exploit possible

synergies among different verification tasks. Moreover, we

oriented our effort to avoid that, while decomposing a hard-to-

solve (unfeasible) property, the last property slices is (again)



the hard-to-solve (unfeasible) ones. We finally present verifica-

tion bound and state space estimates able to give an indication

about the progress of the entire verification process.

Preliminary experimental results, on single and multi-

property benchmarks, derived from the Hardware Model

Checking Competition 2013, illustrate the most interesting

features of our approach.

II. BACKGROUND

We address systems modeled by labeled state transition

structures and represented implicitly by Boolean formulas.

From our standpoint, a system M is a triplet M = (S, S0, T ),
where S is a finite set of states, S0 ⊆ S is the set of

initial states, and T ⊆ S × S is a total transition relation.

The system state space is encoded through an indexed set

of Boolean variables V = {v1, . . . , vn}, such that a state

s ∈ S corresponds to a valuation of the variables in V and a

set of states can be implicitly represented through a Boolean

formula over V . With abuse of notation, hereinafter we make

no distinction between a set of states and its characteristic

function over V .

Given a system M , a state path of length k is a sequence

of states π = (s0, . . . , sk) such that T (si, si+1) is true for

all 0 ≤ i ≤ k. A state set R is said to be reachable if there

exists a path of any length connecting a state in S0 to another

state in R. An over-approximation R+ of a set of states R
is any state set including R : R ⊆ R+. Given a system M ,

we assume that P = {p1, . . . , pm} is a set of m invariant

properties to be verified over M . For each invariant pi ∈ P ,

the model checking problem can be described as exploring

the set of states reachable by M , while verifying whether pi
holds. If pi is true for all such states, the invariant holds in

M . On the other hand, if there exists a reachable state such

that pi is false, then the invariant does not hold for M .

For a Boolean function of n variables {x1, . . . , xn}, a

product term in which each of the n variables appears once (in

either its complemented or uncomplemented form) is called

a minterm. Thus, a minterm is a logical expression of n

variables that employs only the complement operator and the

conjunction operator.

III. PROPERTY GROUPING

Given a large set of properties to be verified on the same

model, the straightforward approach to perform verification

consists in checking them serially and individually. This

strategy suffers from two potential drawbacks:

• The overhead to initialize and finalize single property

checks. Though negligible in case of hard-to-check prop-

erties, the cumulative overhead can be very high with

several easy-to-check properties.

• The repetition of shared sub-tasks, throughout multiple

“similar” properties. This can dramatically slow down the

overall process in cases where exact and/or approximate

state sets are recomputed for each property and their

overlap is non negligible.

In the next three subsections we will introduce some alterna-

tive possibilities to face those problems.

A. Clustering Multiple Properties

In order to overcome repeated computations and the sub-

sequent overhead, a set P of properties can be grouped and

the entire group can be checked at the same time. In [10] the

authors generate and verify a “grouped-property” p (a cluster),

given by the Boolean conjunction of all properties:

P : p =
∧

i

pi

The most attractive aspect of verifying clustered properties is

the opportunity to share sub-problems and learning. As the

underlying circuit model M is common to all properties, this

is an attractive opportunity, especially for large models with

several properties that share most of their cone of influence

(COI). In this scenario several verification methods, such

as IC3, ITP or BDD-based verification methods, can avoid

performing over and over again the same computation, such

as evaluating the exact or over-estimated reachable state set.

Obviously, when the grouped properties have non-overlapping

COIs the COI of the grouped property can be much larger than

the original one. A right balance between those two extremes

can be difficult to find. Notice that when the verification of

a cluster delivers a failure, the counter-example has to be

examined to remove failed properties from the cluster before

verifying the cluster again. The works presented in [1], [2],

[3] all reap most of their benefits from this fact.

As a limit case, clustering all properties together is an

option, exploiting the fact that each property p can be consid-

ered as a specification of the correct behavior for the model

under verification. Obvious scalability problems are here en-

countered, due to extremely large properties, and subsequent

excessively load on the model checker.

In [11] we have tackled the problem of optimizing multiple

COI evaluation. In this paper, we study clustering strategies,

and we experimentally show that it is often useful to cluster

properties.

B. Single Property Verification with Learning

As the main drawback of the simultaneous multiple checks

is the cumulative growth of the COI, a possible alternative is to

individually verify single properties, and to inherit/propagate

some learning across individual verifications. Although this

idea was partially present in [1], [2], due to the shared

clause database (and related learning), our target is to explore

completely new techniques, specifically oriented to unbounded

model checking (UMC), working at a higher level of abstrac-

tion than the SAT engine.

Our strategy is the following one:

• Given a set of properties, we classify them according to

their mutual affinity or their potential ability to share sub-

problems and characteristics.

• We group properties in subsets. Properties in a group

are verified simultaneously. The groups are sorted by

increasing expected verification effort.



• We modify UMC algorithms in order to:

– Gain information from successful verifications, e.g.,

reachable states, inductive invariants, circuit transfor-

mations and simplifications.

– Exploit assimilated data coming from the verification

of other properties. We specifically deal with the

problem of how to project constraints and reachable

state sets from a given COI onto another one, with

potentially different sets of support variables.

The overall verification of multiple properties is thus organized

through a compositional-like scheme, where we sequentially

prove individual properties or groups of properties, and exploit

mutual propagation of learnt information.

Finally, we extend our approach beyond the case of a

“given” set of properties, to be checked over the same system

M , by addressing the potential decomposition of a single

“monolithic” property into a set of properties. Starting from

a circuit representation of an invariant property1, it turns out

that the invariant may often be expressed as the conjunction

of several terms. This is true even if the property corresponds

to the output of a Boolean OR gate, because it is possible to

re-write those logic as a conjunction by applying simple logic

rules. For example, if

p = z ∨ (x ∧ y)

then we can write

p = (z ∨ x) ∧ (z ∨ y)

by distribution. Thus, reversing the reasoning of Section III-B

the property can be viewed as a “grouped” specification, with

each term of the conjunction providing a separate invariant.

Obviously, this decomposition usually gives some results

for difficult model checking tasks. In other words, if the

monolithic invariant is already “easy” to prove, then the

overhead introduced by the decomposition may result in an

overall worse performance. Further speculations of this topic

are presented in Section IV.

C. Organizing Multiple Properties

As previously mentioned, the properties in P to be verified

over M are initially classified according to their mutual

affinity. Several criteria could be used for affinity measures,

such as the amount of circuit sharing. In our current implemen-

tation, we limited ourselves to considering the sets of support

variables Vi in the cone of influence of each p.
More specifically, given two invariants pj and pk, we

compute their affinity following the Jaccard Index (or Jaccard

Similarity Coefficient), which is used in statistic to compare

the similarity or diversity of sample sets. Using this index, the

affinity α, between pj and pk, is defined as the cardinality of

the intersection divided by the size of the union of the sets:

α =
|Vj ∩ Vk|

|Vj ∪ Vk|

1This is a common situation, as invariants are often specified as pseudo-
outputs of the model under check.

If α is larger than a given threshold, then properties pj and pk
are grouped together and verified simultaneously, as described

in Section III-B.

It should be finally observed that, before starting the model

checking tasks, the grouped properties are sorted by increasing

number of variables in their COI. The underlying motivation is

an attempt to attack property checks by increasing complexity

(complexity that is often related to the COI size and set of

support variables). Although different solutions could be ex-

plored, this is a good starting point to study the simplification

impact of information coming from previous verifications.

IV. PROPERTY DECOMPOSITION

In the case of hard-to-solve properties, we propose a divide-

and-conquer approach, based on decomposing properties into

sets of (easier-to-solve) sub-properties. In [3], the authors con-

sidered straightforward circuit decompositions, where proper-

ties were already given as conjunctions of (i.e., generated by

directly AND-ing) sub-properties. However, two-level circuit

rewriting and other circuit manipulations are also possible as

introduced at the end of Section III-B.

Presently, we consider as hard-to-solve those properties that

are unsolved after a preliminary inexpensive (in terms of wall

clock time and memory) phase of model checking. However,

we plan to adopt a static evaluation phase in which we take

into account the COI size of the property, and an estimate of

the state space it covers (see Section V). Once target properties

P are selected, they are decomposed as:

P =
∧

i

pi

The general goal of this sort of decomposition is obviously

to produce a subset of properties individually easier to verify

that their conjunct. Sub-properties are expected to have smaller

COIs and/or representing sub-behaviors or be constrained to

sub-spaces, possibly simpler to explore by a SAT solver.

Anyhow, this sort of decomposition is not easy to obtain, as

it is quite common that one or more sub-properties are as

difficult to verify as the full original (monolithic) property.

As a consequence, to target this problem, we also follow an

orthogonal direction.

We use a SAT solver as a sub-target enumerator, and we

partially relax the goal of “fully” verifying a property, i.e., we

accept to (only) “partially” verify a property. More in detail,

let us consider invariant properties, whose negation can be

seen as a verification target (t):

t = ¬p

We consider as first sub-target a randomly chosen minterm:

t0 = SAT (t)
p0 = ¬t0

This property p0 is often easy to verify, but as a sub-product of

model checking (either using IC3 or interpolation), we obtain

a set of over-approximated reachable states:

R1, . . . ,Rk



We iteratively select as ti sub-targets that hit the innermost

reachable state ring.

The approach terminates whenever a partial target is proved

reachable (and the property is thus disproved), or the set of

reachable states is strong enough to prove the full p property.

Even though we do not converge to full property verification,

the approach is interesting as it allows the partial verification

of a property, and it can provide more information than an

unsuccessful verification effort ending with a time or memory

overflow.

V. COVERAGE (VACUITY) ESTIMATION

Given a property P and one of its signal s, Hoskote et

al. [4] define coverage, of that property for the specified

observed signal, as the number of reachable states in which

the value of the observed signal must be checked to prove

the satisfaction of the property. Nevertheless, their work left

several question unanswered. Among the main ones, we recall

that it was not clear how to select the observed signal, and that

several properties, such as “eventually” properties, proved to

have significant low coverage.

To reduce those effects, we propose a coverage metric

based (again) on the size (or percentage) of reachable state

set covered by the properties. Anyhow, we compute this value

in an “absolute” way without any reference to observed signal.

Moreover, we do not only compare the set of states covered

by the property to the entire reachable state set, but we also

compare the set of states covered by part of the properties

or by different properties among themselves. Furthermore, in

our case the state space estimation algorithm is based on

a new graph-based algorithm, presented in Section V-A. Its

application to the actual coverage estimate is presented in

Section V-B.

A. State space estimation

Let us suppose we want to compute the number of states in

which a property P is true. An exact computation is feasible

only for very small and/or simple properties, for which BDDs

are built in a reasonable amount of time. In most cases,

however, this is not possible. We thus need a way to estimate

the cardinality of the state space of a property P .

Estimating the size of a set is analogous to estimating

the size of a population, a well-known problem in several

domains, for example life sciences. In Computer Science many

researchers are working on estimating the size of a graph,

the goal being, for example, to independently compute how

large the community of a social network is [12]. Kurant et

al. [13] provide an extensive summary of existing techniques

and suggest a new one for graph-size estimation.

Our problem is much more similar to the one found in life

sciences, as we are dealing with a set of states, not with a graph

where vertices (states) are connected by edges, representing

a relation between them. Many population estimation tech-

niques in life sciences rely on variants of the “capture-mark-

recapture” approach: a first uniform sample of the population

is taken, the individuals belonging to the sample are marked

and put back in their environment, a second uniform sample

is taken and the number of individuals captured twice is used

to estimate the size of the population.

In our context, the uniform sampling assumption does not

hold. Given n state variables, the state space may contain up

to 2n states, though in most real cases its cardinality is much

less that the theoretical upper bound and the states are very

scattered, i.e., the state space is very sparse. Sampling can very

often result in an empty set, making it impossible to estimate

the size.

Our approach to state space estimation relies on the use of a

SAT solver to compute a bounded set of evaluations of the state

variables that are minterms. Let this number be #minterms.
Notice that, to maintain the effort reasonable, we usually limit

the number of SAT calls to about 210.

Starting from this bounded set, we compute new valuations

at increasing Hamming distance, i.e., by randomly changing

from 1 to n bits in the valuation, we produce new state

variable assignments. At each step i the generated valuations

are simulated and the ones that are minterms are retained. Let

this number be #mintermsi.

The ratio

#mintermsi/#minterms

measures how many valuations at distance i are still minterms

with respect to the original number. Knowing the number of

possible valuations at distance i, i.e., n choose i, the product

of these two terms gives us an estimate of the number of

minterms at Hamming distance i. Iterating from 1 to n, and
adding up all the contributions, we estimate the size of the

state space. However, when we have that

#mintermsi < threshold

for example 5, as the number of minterms is statistically

irrelevant, their contribution is neglected.

B. Using State Space Estimation

Given a decomposed property, we are currently studying

how to use the previous estimate of the state space covered

by some of the sub-properties, to evaluate a coverage/vacuity

metric. The idea in this area is to have an “advancement bar”,

i.e., an indication of “how much” has been verified with regard

to the entire property, when only a few sub-properties have

been verified.

As far as estimation is concerned, we now estimate the

SAT/UNSAT bound of a property by verifying the bound

of one or more of its sub-properties. In this case, given a

decomposition of the property we verify one (or some) of the

sub-properties generated. If the verification delivers a counter-

example, we are usually done. If the verification delivers a

“prove” result, we then infer a “proof bound” for the entire

property. This proof bound can be used to stop a subsequent

BMC run on the entire property to guess (with a greater

confidence) a pass result.



VI. EXPERIMENTAL RESULTS

In this section we present some preliminary results on

partitioning of “large” properties, and on clustering of “small”

ones. Moreover, we describe some results on bound estima-

tion. In order to analyze the full potential benefit of those

techniques, we run experiments on the suite of Hardware

Model Checking Competition 2013 (HWMCC’13). We con-

sider benchmarks taken from both the single and the multi-

property suites.

Our prototype software package has been implemented on

top of our verification tool PDTRAV. Experiments were run

on an Intel Core i7-3770, with 8 CPUs running at 3.40GHz,
16 GBytes of main memory DDR III 1333, and hosting a

Ubuntu 12.04 LTS Linux distribution.

A. Clustering (Grouping) Properties

Table I reports our results on clustering heuristics. In this

case we concentrate on the largest multi-property designs of

the HWMCC’13. For each design, we verify the properties

using a flat approach, i.e., properties are solved sequentially

one at a time, and our clustering heuristic. In both cases

we consider the best result in terms of wall clock time. The

table reports the number of solved properties (either SAT or

UNSAT) within the allowed time slot (15 minutes), of the

two methods. For the sake of completeness, the table also

shows the largest number of solved properties obtained during

past hardware model checking competitions considering all

contestants (column Best Result, HWMCC). Comparing the

last two columns, advantages are evident in the majority of the

designs. Clustering can then be useful to improve productivity

in any verification environment where several hundreds of

properties has to be verified on the same model.

Figure 1 plots the last two columns of Table I, using

a logarithmic scale along both axes. It essentially shows a

graphical and concise representation of the tool improvement

using clustering.
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Fig. 1. Clustered approach: comparing PdTRAV results with and without
clustering.

Table II compares standard PdTRAV runs, i.e., without

clustering, with several other runs characterized by increasing

clustering threshold. Each cluster based run is bound to a

specific maximum number of clusters allowed, i.e., Max 25

means that at most 25 clusters are allowed. Threshold are

selected to respect those bounds. Each column presents the

maximum number of properties PdTRAV is able to complete

(i.e., prove or disprove), given that specific setting, in the

slotted time limit (again 15 minutes). The last column, labeled

Best, represents the best result achievable through clustered

approaches. Even if none of the individual configurations

dominates the others, a concurrent run of the same approach

with a few cluster thresholds may be really beneficial. We are

currently working on strategies able to estimate the best results

and based on the main benchmark characteristics.

Finally, Figure 2 compares the COI size distribution as a

function of the clustering threshold. Essentially, we consider

6 representative circuits, and we apply our clustering routine

with increasing threshold size. Again, for example, MAX 500

means that we use a small threshold, and we allow 500 parti-

tions at most during clustering. For each clustering threshold,

we compute the average COI size, and we express this value

as a percentage of the global COI size (i.e., the total number

of memory elements) for that design. Theoretically, increasing

the cluster size (i.e., moving along the x axis) should imply

larger COI size. Nevertheless, the graph shows that, when we

reduce the number of clusters, we obtain a COI size increment

in just 2 cases out of 6. Anyway, also in those two cases, the

increment in the COI size is very limited. In other words, our

clustering strategy is able to reduce the number of verification

instances without increasing (too much) the AIG size to deal

with during those instances. This again is a very useful feature

in a clustering strategy, and it can improve productivity in

complex multiple-property verification instances.
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Fig. 2. COI size distribution as a function of the clustering threshold for 6
representative large HWMCC’23 benchmarks.

B. Property Decomposition and Bound Estimation

In Table III, we concentrate on deep hard-to-solve single

properties on which we apply the decomposition and the

bound estimation techniques introduced in Section IV and Sec-

tion V-B, respectively. More specifically, for each verification



Benchmark Best Result
Name #FF #AIG Node #Prop HWMCC PdTRAV without Clustering PdTRAV with Clustering

6s361 186401 2471311 56211 5312 0 7684
6s114 101639 898079 32210 2338 997 2015

bob12m04m 439650 172107 30228 30228 3035 30228
6s400 14665 165347 13784 13555 13410 13410
6s355 15091 164299 13356 13038 12909 12907
6s289 12707 115953 10789 3070 6054 9720
6s117 23957 542556 8064 8043 132 2747
6s265 7139 155547 7300 3794 3794 3794
6s264 6360 92378 6416 3154 2549 2549
6s253 3984 101653 3893 11 306 626
6s402 13365 295376 2944 4 4 19
6s403 5468 108595 2382 2382 668 2304
6s110 807 23231 1613 1613 497 466
6s250 6185 47229 1402 1385 143 146
6s125 260713 3279044 1041 511 361 696
6s299 467369 4904114 960 265 35 35
6s176 1566 52993 952 948 321 300
6s381 12321 91582 932 150 7 7
6s380 5606 59604 897 823 17 87
6s322 80927 658407 896 144 178 176
6s405 11861 164004 874 874 195 700
6s384 14952 65415 816 793 54 61
6s275 3196 25552 673 673 673 673
6s276 3201 25549 673 673 673 673
6s277 3201 25549 673 673 673 673
6s124 6748 89589 630 619 6 14
6s413 4343 53754 597 597 377 396
6s137 32922 299551 589 1 1 0
6s301 35462 225694 569 569 75 64

TABLE I
COMPARISON OF THE BEST RESULTS ACHIEVABLE BY PDTRAV (WITH AND WITHOUT CLUSTERING) AGAINST THE OVERALL BEST RESULTS EVER

OBTAINED DURING PAST HWMCC (CONSIDERING ALL CONTESTANTS).

Benchmark Best Result
Name #FF #AIG Node #Prop No Cluster Max. 25 Max. 50 Max. 100 Max. 200 Max. 500 Best

6s361 186401 2471311 56211 0 4498 4500 5067 6486 7684 7684
6s114 101639 898079 32210 997 1409 1935 1938 1944 2015 2015

bob12m04m 439650 172107 30228 3035 25410 28653 30006 30228 29490 30228
6s400 14665 165347 13784 13410 13410 13410 13410 13410 13410 13410
6s355 15091 164299 13356 12909 12907 12907 12907 12907 12907 12907
6s289 12707 115953 10789 6054 9504 9720 8856 9342 7216 9720
6s117 23957 542556 8064 132 2261 2592 2349 2747 1530 2747
6s265 7139 155547 7300 3794 3794 3794 3794 3794 3794 3794
6s264 6360 92378 6416 2549 2549 2549 2549 2549 2549 2549
6s253 3984 101653 3893 306 626 548 507 380 344 626
6s402 13365 295376 2944 4 4 4 4 19 4 19
6s403 5468 108595 2382 668 2304 2208 1464 2148 2120 2304
6s110 807 23231 1613 523 497 423 448 449 466 497
6s250 6185 47229 1402 143 57 56 146 54 10 146
6s125 260713 3279044 1041 361 672 693 693 696 696 696
6s299 467369 4904114 960 35 35 35 35 35 35 35
6s176 1566 52993 952 321 273 300 242 267 294 300
6s381 12321 91582 932 7 7 7 7 7 7 7
6s380 5606 59604 897 14 61 87 14 14 13 87
6s322 80927 658407 896 178 144 162 171 170 176 176
6s405 11861 164004 874 195 700 630 513 520 356 700
6s384 14952 65415 816 54 33 51 60 54 61 61
6s275 3196 25552 673 673 673 673 673 673 673 673
6s276 3201 25549 673 673 648 673 673 673 673 673
6s277 3201 25549 673 673 648 673 673 673 673 673
6s124 6748 89589 630 6 0 13 14 4 6 14
6s413 4343 53754 597 377 312 348 366 390 396 396
6s137 32922 299551 589 1 0 0 0 0 0 0
6s301 35462 225694 569 75 3 32 40 45 64 64

TABLE II
RESULTS ON SELECTED LARGE HWMCC MULTIPLE PROPERTIES BENCHMARKS: NUMBER OF PROPERTIES COMPLETED (EITHER PROVED OR

DISPROVED),WITH AND WITHOUT CLUSTERING, USING THE BEST AVAILABLE ENGINE.



Benchmark Full Verification Partial Verification
Name #PI #FF #AIG Node Time CexBound PassBound Time #Part Bound

6s207rb16 150 1747 24195 10.89 10 - 6.60 2 14
6s210b105 514 147 1716 1.49 9 - 6.20 1 8
6s215rb0 720 838 8190 3.51 9 - 8.50 3 18
6s216rb0 720 839 8220 3.71 15 - 8.16 2 18

6s218b1246 8356 2212 41858 6.12 10 - 8.00 2 45
6s289rb00529 1085 34 114 4.01 9 - 0.10 2 8
6s301rb106 24194 2521 22724 32.42 32 - 7.30 3 30
6s307rb06 1862 406 2911 81.50 15 - 9.80 3 24
6s311rb1 613 3 35554 470.94 4 - 65.15 3 22
6s318r 61 300 1621 1.44 3 - 3.50 3 32

6s335rb60 224 209 1187 2.26 6 - 0.60 2 12
6s350rb35 2281 164361 1125967 21.19 6 - 7.30 1 4
6s353rb101 7282 18544 262784 32.22 13 - 16.37 1 12
6s374b029 2102 15155 214159 286.69 11 - 85.30 1 6
6s386rb07 18612 3300 45437 19.27 14 - 13.40 2 16
6s389b11 177 3824 33149 6.40 6 - 4.20 2 28
6s401rb051 458 8328 136742 72.30 15 - 46.60 1 6
beembrdg2f1 61 56 1021 192.96 33 - 0.70 3 29
beemldelec4b1 1345 1209 28673 567.00 13 - 3.20 2 4
beempgsol5b1 541 402 8344 159.00 4 - 35.30 3 8
bob12s04 47302 21308 33823 8.58 2 - 6.34 2 2

neclaftp3002 32 2508 23171 18.11 16 - 10.60 2 12
oski1rub04 11445 1384 94374 131.51 14 - 35.30 2 15

6s131 439 812 17972 64.58 - 8 50.28 4 7
6s144 480 3337 17972 291.48 - 10 80.10 5 8
6s181 252 608 12914 43.34 - 8 20.34 4 8
6s35 77 1571 11504 588.67 - 73 301.30 1 84
6s366r 86 1998 20560 612.28 - 73 7.50 2 5

6s428rb093 410 3790 29084 746.75 - 7 244.10 1 9
6s102 72 1096 6846 488.47 - 20 97.7 5 15
6s189 479 2434 39823 214.46 - 23 180.4 5 12
6s130 439 811 25335 96.92 - 9 86.4 3 10

TABLE III
BOUND ESTIMATE FOR BOTH SAT AND UNSAT VERIFICATION INSTANCES.

instance the table reports three sections in which we sum-

marize some design characteristics, some data regarding the

verification of the original property, and some data concerning

our decomposition strategy and subsequent bound estimate.

As far as the design characteristics are concerned, the

table reports the benchmark name, the number of primary

inputs (PI), memory elements (FF), and AIG nodes (AIG

Node). For the verification of the entire property (section Full
Verification), we proceed as follow. For all SAT properties,

we perform verification using BMC and a time limit of 15
minutes. During those runs, we compute the bound reached

to obtain a SAT result and the counter example extraction,

and we report those bounds in column CexBound. For all

UNSAT properties, we perform verification using our most

performing engine/setting (often interpolation or IC3), and we

report in column PassBound the bound at which the prop-

erty passes. The wall clock times, for the entire verification

process, is also reported in column Time in all cases. For

our decomposition strategy (section Partial Verification), we
perform decomposition, and we run an UMC engine (again,

interpolation or IC3) with a time limit of 5 minutes, on

one or more sub-properties. Again, we compute the bound

reached to prove those sub-properties SAT or UNSAT, and we

report those results in column Bound. Column Part reports

the number of property partitions on which we performed

verification, i.e., used to estimate the verification bound. The

table shows that our bound estimates, computed in a fraction of

the global verification time on a few partitions of the original

property, are quite close to the exact ones. This is promising

and demonstrates that it should be possible to estimate the

verification bounds also for verification instances outside the

verification power of modern model checking tools. Those

results would give some deeper knowledge on the design, i.e.,

hints on how deep BMC has to be run to be confident that the

property holds.

VII. CONCLUSIONS

This paper addresses the issue of property grouping, prop-

erty decomposition, and property coverage (and vacuity) in

model checking problems.

Our contribution is a set of heuristics targeting a productiv-

ity increment in industrial verification environments.

Preliminary experimental results are promising and demon-

strate that the ideas can be really beneficial if appropriately

implemented and integrated in a complete verification envi-

ronment.
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